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Abstract: We propose an extension of the heterogeneous multi-context reasoning framework by G. Brewka and T. Eiter,
which, in addition to logical contexts of reasoning, also incorporates sub-symbolic contexts of reasoning. The
main findings of the paper are a simple extension of the concept of bridge rules to the sub-symbolic case and the
concept of bridge rule models that allows for a straightforward enumeration of all equilibria of multi-context
systems. We illustrate our approach with two examples from the fields of text and image classification.

1 INTRODUCTION

One of the important problems in knowledge repre-
sentation and knowledge engineering is the impossi-
bility of writing globally true statements about realis-
tic problem domains. A circumstance that is also doc-
umented by the use of contexts and micro-theories in
CYC ((Lenat, 1995)). Multi-context systems (MCS)
are a formalization of simultaneous reasoning in mul-
tiple contexts . Different contexts are inter-linked
by bridge rules which allow for a partial mapping
between formulas/concepts/information in different
contexts. Recently there have been a number of inves-
tigations of MCS reasoning (for instance, see (Roelof-
sen and Serafini, 2005) or (Brewka et al., 2007)),
with (Brewka and Eiter, 2007) being one of the lat-
est contributions. There, the authors describe reason-
ing in multiple contexts that may use different log-
ics locally. Logical reasoning on the one hand is a
special case of symbolic reasoning where, according
to (Kurfess, 2002), entities of the application domain
are represented by symbols. In sub-symbolic reason-
ing on the other hand domain entities are represented
by (micro-)features.

∗This is a short version of the paper. The full ver-
sion, containing a short introduction to the notion of MCS
and another more sophisticated application example from
the domain of image classification, as well as proofs for
the propositions stated, a categorization of our work and
a comparison to similar approaches in the field can be
found underhttp://www8.informatik.uni-erlangen.
de/inf8/Publications/bridging_mcs_original.pdf.

There is no strict boundary between symbolic
and sub-symbolic: what in one example are micro-
features can be declared as entities and be symbol-
ically reasoned about in another example (and vice
versa). In this paper, we integrate contexts of logi-
cal reasoning and contexts of sub-symbolic reasoning
into a single MCS. Possible applications of such rea-
soners are numerous. I.e. shortcomings of statistical
methods could be remedied with declarative knowl-
edge and vice versa.

2 INTEGRATING LOGICAL AND
SUB-SYMBOLIC CONTEXTS
OF REASONING

We now generalize concepts from (Brewka and Eiter,
2007) to be applicable for both logical and sub-
symbolic reasoners.

Observation 1. The concept of ‘logic’ as defined
in (Brewka and Eiter, 2007) is – besides its name –
also a valid characterization of sub-symbolic reason-
ing: The knowledge base consists of the available ev-
idence (the input of the sub-symbolic reasoner), the
set of possible belief sets is the set of possible results
of the sub-symbolic reasoner, and the functionACC
defines the actual reasoning. (It isACC that is often
generated from training examples.)

In fact the only conceptual generalization that we
make is to make no assumptions about the form of
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the inputsof the reasoner which in the original work
were assumed to be sets. Instead, we require test and
update functions. This idea leads to our definition of
a reasoner.

Definition 1. A reasoner is a 5-tuple R =
(Inp R,ResR,ACCR,CondR,UpdR) where InpR
is the set of possibleinputs to the reasoner,ResR
is the set of possibleresults of the reasoner,
ACCR : InpR 7→ 2ResR defines the actual reasoning
(assigning each input a set of results in a decidable
manner),CondR is a set of decidable conditions on
inputs and results, condR : Inp R×ResR 7→ {0,1},
and UpdR is a set of update functions for inputs,
updR : InpR 7→ InpR.

The example below shows that our Definition 1 com-
prises logics in the sense of (Brewka and Eiter, 2007)
and sub-symbolic reasoners like Neural Nets, which
originally were not covered. Hence Definition 1 is a
generalization.

Example 1. A logic L defined over a signatureΣ
(as of Definition 1) is a reasoner withInp R =
KBL, ResR = BSL, ACCR = ACCL, UpdR = {fnx :
kb→ kb∪{x}|∀x∈

⋃
k∈KBL

k,∀kb∈ KBL}, CondR=
{fnx : (·,b)→ 1 iff x ∈ b,0 else|x∈

⋃
bs∈BSL

bs}

Example 2. A standard feed-forward neural network
N with n real valued inputs and m real valued out-
puts is a reasoner withInp R = R

n, ResR = R
m and

ACCR(inp) = {N (inp)} where inp∈ InpR. In this
case,ACCR maps to singleton sets.CondR is a set of
indicator functions on feature vectors,UpdR is a set
of update functions, each performing an update for a
certain value of a component of a feature vector.

The following definitions adapt the basic concepts of
multi-context reasoning given in (Brewka and Eiter,
2007) for the use with reasoners as of Definition 1.
In order to adapt the concept of bridge rules, we have
to take into account the fact that the assumption of
the reasoner inputs being sets is not made for general
reasoners. Instead we have to use the defined test and
update functions.

Definition 2. Let R= {R1, . . . ,Rn} be a set of reason-
ers. An Rk -bridge rule over R,1≤ k≤ n, containing
m conditions, is of the form

u← (r1 : c1), . . . ,(r j : c j),

not(r j+1 : c j+1), . . . ,not(rm : cm)
(1)

where j≤m,1≤ rk≤ n and ck is a condition of inputs
and results of some Rrk and u is an element ofUpdk.

Definition 3. A generalized multi-context system
M = (C1, . . . ,Cn) consists of a collection of contexts
Ci = (Ri , inpi,bri), where Ri = (Inp i ,Resi ,ACC i ,

Condi ,Updi) is a reasoner, inpi an input (an ele-
ment ofInp i ), and bri is a set of Ri-bridge rules over
{R1, . . . ,Rn} as of equation (1).

Concerning the belief states, we require input-output
pairs instead of belief sets in every context.

Definition 4. Let M= (C1, . . . ,Cn) be a generalized
MCS. A generalized belief state is a sequence S=
(S1, . . . ,Sn) such that each Si is of the form(inpi , resi)
with inpi ∈ Inp i and resi ∈ Resi .

We say a bridge ruler of form (1) is applicable
in a generalized belief stateS= (S1, . . . ,Sn) iff for
1≤ i ≤ j : ci(inpi , resi) = 1 in Si and for j +1≤ k≤
m : ck(inpk, resk) = 0 in Sk. Now we prepare for the
concept of equilibrium in the generalized setting.

Definition 5. The set of (context local) update func-
tions with respect to a corresponding element Si of a
belief state S is given byUSi(MCS,S) = {head(r)|r ∈
bri applicable in S}, where bri denotes the set of
bridge rules of Si ’s corresponding context Ci .

In general, a set of update functions may yield dif-
ferent results when the functions are applied multiple
times or in different orders. We do not allow such sets
of update functions.

Definition 6. An applicable set of update functions
USi(MCS,S) is stationary for an input inpi iff the
following two conditions hold:∀u ∈ USi(MCS,S) :
u(inpi) = um(inpi) for m≥ 1 (i. e. idempotency), and
∀u,u′ ∈USi(MCS,S) : u(u′(inpi)) = u′(u(inpi)) (i. e.
commutativity).

Definition 7. The update of a belief state element
Si of a belief state S, with respect to a set of up-
date functionsUSi with k elements, is given by
u1(u2(. . .uk(inpi) . . .)) if USi is stationary for inpi ,
and undefined otherwise.

Please note that stationarity is only required for the
set of update functions that is actually applied to be-
lief state elements at a time. We now can give the
definition of the generalized concept of equilibrium.

Definition 8. A generalized belief state
S= ((inp1, res1), . . . ,(inpn, resn)) of M is an equilib-
rium iff, for 1≤ i ≤ n, the following condition holds:
update(inpi,USi) = inpi and resi ∈ ACC(inpi)
where update(inpi,USi) denotes the update of Si
with respect to USi, which in turn has to be stationary
for the corresponding inpi.

Please note that inputs for which the update is non-
stationary are not part of any equilibrium.

Proposition 1. Definitions 1 to 8 are a generalization
of Definitions 1 to 5 in (Brewka and Eiter, 2007).
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3 COMPUTING EQUILIBRIA
FOR FINITE MCS

For a belief state being an equilibrium only means that
all the bridge rules are respected. As local reasoners
may be non-monotonic and, furthermore, the bridge
rules are non-monotonic also, there may be several
equilibria for a given MCS. In general it is not clear
which one constitutes the desired one.

When no external knowledge about preferences
(e. g. a preference function which induces an order on
equilibria) is available, in the field of computational
logic, there exists theprinciple of minimality. Sadly
minimality in general has no straightforward transla-
tion to sub-symbolic reasoning contexts (e. g. for vec-
tor valued sub-symbolic reasoning contexts we would
need some kind of metric).

As for a deterministic sub-symbolic reasoner,
given a set of inputs, there is exactly one correspond-
ing set of results, one may nonetheless try to carry
over minimality from the symbolic-only background.
Using the notion of C*-minimality as introduced by
in (Brewka and Eiter, 2007), minimality may be de-
manded for the symbolic contexts of a generalized
MCS, which may in this case be composed of sym-
bolic and deterministic sub-symbolic reasoners. As
the deterministic sub-symbolic reasoners only yield
exactly one set of results for a given set of inputs (and
no phenomena as self-sustaining equilibria are possi-
ble), the C*-minimality generalizes to a global prop-
erty of the equilibrium.

The remainder of this section describes a proce-
dure to compute all equilibria of a finite MCS, based
on complete enumeration. Thus criteria as e. g. min-
imality may be applied to the set of equilibria after-
wards. Part of future research will be to construct
more specialized algorithms, already exploiting the
properties of ordering relations during the computa-
tion.

Definition 9. An MCS M= (C1, . . . ,Cn) is said to be
finite, iff for 1 ≤ i ≤ n, following condition holds:
|ACC(inpi)|< ∞ and|bri |< ∞.

For the implementation, we consider finite MCS
only.

Definition 10. Let Br be a set of n bridge rules of
an MCS. A bridge rule model is an assignmentBr 7→
{0,1}n that represents for each bridge rule inBr
whether it is active or not.

Proposition 2. For each equilibrium there is exactly
one bridge rule model.

For a given bridge rule model and an MCS we first
apply all the bridge rules activated in the bridge rule

model yieldinginp′1...inp′n. Then we compute the set
of results for each contexti given inp′i by applying
ACC(inp′i), yielding a set of resultsresj

i for eachi,
being of finite cardinality as MCS was said to be fi-
nite. Thus, testing whether(inpi , resj

i ) is an equilib-
rium for all j, we obtain the set of equilibria for the
given bridge rule model. Iterating the procedure over
the (finite) set of all bridge rule models and joining
the resulting sets of equilibria finally yields the set of
all equilibria.

Definition 11. Given an MCS with a (global) set
of bridge rules br=

⋃
i bri . A set of bridge

rules brj ⊆ br is called update-monotonic iff
for all belief states S, S’ the following condi-
tion holds: S′ = update(MCS,S)⇒ VC(MCS,S) ⊆
VC(MCS,S′) where VC(MCS,S) =

⋃
i{condi ∈

Ri |condi(inpi, resi) = 1} and update(MCS,S) is the
(global) update over all Si ∈ S.

As bridge rules in the update-monotonic subset
of bridge rules of the MCS are guaranteed to remain
active after any update, the update-monotonic bridge
rules that are initially active in the MCS when search-
ing for equilibria have to be active in any equilibrium.
Hence, when iterating over all bridge rule models,
only those bridge rule models that comply with the
initially active update-monotonic bridge rules have to
be considered.

As a downside computing the update-monotonic
subset of the bridge rules depends on the idiosyn-
crasies of the reasoners involved, condition test and
update functions and therefore cannot be performed in
general. Another inconvenience is the fact that if there
are no update-monotonic bridge rules all elements of
the entire set of bridge rule models have to be tested
for representing an equilibrium.

Definition 12. A reasoner R =
(Inp R,ResR,ACCR,CondR,UpdR) is determin-
istic iff ACCR(x) is a singleton set for every x∈ InpR.

Proposition 3. For an MCS with deterministic rea-
soners only, there exists at the most one equilibrium
for each bridge rule model.

Applying the proposition to the algorithm
sketched above, one may reduce the number of pairs
(inpi , resj

i ) to be tested for being an equilibrium, by
testing each pair(inpi, resj

i ) directly after it was gen-
erated, and switching to the next bridge rule model
after having found an equilibrium for this very model,
as there may be one at the most.
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4 EXAMPLE

We present an example application for multi-context
reasoning which involves logical and sub-symbolic
contexts of reasoning. As logical reasoners, we
assume a propositional logical reasonerRpl. As
sub-symbolic reasoners, we assume a maximum-
likelihood reasoner using the Naive Bayes assumption
Rnb.

4.1 Text Classification

This example is taken from the domain of (statistical)
text classification. Text may be categorized into two
different classes: ‘music event’ and ‘political event’.
We assume a binomial text model (see (Manning
et al., 2008) for more details) and – for the sake of
simplicity – a vocabulary of only two terms:Queen,
Elizabeth.

Term t P(mus. ev.|t) P(pol. ev.|t)
Queen 4.1×10−3 2.0×10−3

Elizabeth 3.0×10−3 1.9×10−2

Query q Naive Bayes probability of q
Queen Elizabeth 1.2×10−5 3.8×10−5

Figure 1: Prior probabilities of terms and Naive Bayes prob-
ability of a query for the classes ‘music event’ and ‘political
event’.

Figure 1 shows the prior probabilities of the
classes given the terms, and the Naive Bayes prob-
abilities given the combined queryQueen Elizabeth.
The priors have been obtained by querying a web
search engine, but for the example the actual source
of the priors is not of much interest. Those prob-
abilities define the functionACCnb of Rnb. When
stating the query ‘Queen’ to the reasoner (inpnb =
{Queen}), the result (via maximum likelihood) is
resnb = {‘music event’}.

We would like to improve the reasonerRnb
by providing specific knowledge about the British
Royals. Hence, we use a proposition logi-
cal reasonerRpl together with a knowledge base
inppl= Elizabeth← Queen of relevant information.

In order to link the two reasoners, we define bridge
rules brpl = {add Queen← nb : has input Queen} and
brnb = {add to query Elizabeth← pl : holds Elizabeth},
where the condition and update functions have the
obvious meaning. Taking the query ‘Queen’ into ac-
count, the MCS for reasoning inRnb andRpl is given
by Mt = {Cnb,Cpl} with Cnb = (Rnb,{Queen},brnb),
Cpl = (Rpl , inppl,brpl).

Then, the belief state

(({Queen, Elizabeth},{‘political event’}),

(inppl ∪{Queen}, inppl ∪{Queen, Elizabeth}))

is the only equilibrium ofMt . Hence, with multi con-
text reasoning, the result for the query ‘Queen’ has
been changed from ‘music event’ to ‘political event’.

5 CONCLUSIONS

The paper presents a generalization of heterogeneous
multi-context systems that allows for the use of sub-
symbolic contexts of reasoning alongside logical con-
texts of reasoning. An exhaustive algorithm for enu-
merating all equilibria of an MCS is given.

Still, the lack of a conceptual notion of minimality
or stability for sub-symbolic beliefs poses a challenge
for future research, which we are confident to handle
in the near future.

On the pragmatic side, the illustrative examples
demonstrate that a more powerful language to de-
scribe updates and conditions on reasoner inputs and
results, respectively, has to be developed in order to
allow for concise definitions of bridge rules.
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