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Abstract: In this work anexample-basedoutlier detection method exploiting both positive (that is, outlier) and negative
(that is, inlier) examples in order to guide the search for anomalies in an unlabelled data set, is introduced.
The key idea of the method is to find the subspace where positive examples mostly exhibit their outlierness
while at the same time negative examples mostly exhibit their inlierness. The degree to which an example
is an outlier is measured by means of well-known unsupervised outlier scores evaluated on the collection of
unlabelled data.
A subspace discovery algorithm is designed, which searches for the most discriminating subspace. Experi-
mental results show that the method is able to detect a near optimal solution, and that the method is promising
from the point of view of the knowledge mined.

1 INTRODUCTION

Unsupervised outlier detection techniques search for
the objects most deviating from the data population
they belong to. These techniques are employed on
unlabelled data sets, that is when no a priori infor-
mation about what should be considered normal and
what should be considered exceptional is available,
and outliers are singled out on the basis of certainout-
lier scoresthat can be assigned to each single object.

However, in addition to the unlabelled data set,
very often alsoexamples of normalityandexamples
of abnormalityare available. In this scenario it is then
of interest to modify the mining technique in order to
take advantage of these examples.

In this work anexample-basedoutlier detection
method exploiting both positive (that is, outlier) and
negative (that is, inlier) examples in order to guide
the search for anomalies in an unlabelled data set,
is introduced. The task here introduced is novel, in
that previous methods are able to exploit only posi-
tive examples. The key idea of the method is to find
the subspace where positive examples mostly exhibit
their outlierness while at the same time negative ex-
amples mostly exhibit their inlierness.

The method can be useful when a small amount of
labelled data is available, e.g. a few patients for which
an ascertained diagnosis is known, and the individuals

to be single out are anomalous, that is their occurrence
frequency is very low, e.g. consider people affected
by a rare disease.

The degree to which an example is an outlier is
measured by means of well-known unsupervised out-
lier scores evaluated on the collection of unlabelled
data. A distance-based unsupervised outlier scores is
employed, that is the mean distance of the object from
its k nearest neighbors (Angiulli and Pizzuti, 2002).
A subspace is then deemed to comply with the pro-
vided examples if a separation criterium between out-
lier scores associated with positive examples and out-
lier scores associated with negative examples is sat-
isfied, and, moreover, the difference between the for-
mer and the latter ones is positive.

The most discriminating subspace is that which
maximizes the above difference. Note that this mea-
sure is not monotonic with respect to subspace con-
tainment. While from a semantic point of view this
property can be considered a desideratum, from the
algorithmic point of view the above property makes
very difficult to guide search towards the right sub-
space.

A subspace discovery algorithm is designed,
which searches for the most discriminating sub-
space. As already noted, finding this subspace is a
formidable problem due to the huge search space,
while the non-monotonicity of the measure to op-
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timize makes difficult to alleviate the cost of the
search. The introduced mining technique is based on
the paradigm of genetic algorithms, which are able to
provide good approximate solutions to the problem of
optimizing a multidimensional objective function.

The rest of the work is organized as follows. In the
rest of this section, work related to the one here pre-
sented is briefly surveyed and major differences are
pointed out. In Section 2, the novel task tackled with
in this work is formally defined. Subsequent Section
3 presents theExampleBasedOutlierDetectionalgo-
rithm. Section 4 describes experiments on both syn-
thetic and real data sets. Finally, Section 5 draws con-
clusions and future work.

1.1 Related Work

Next some outlier detection methods working on
subspaces and/or exploiting examples are briefly re-
called. Contributions of this work are clarified by
pointing out differences with related methods while
discussing them.

The work (Aggarwal and Yu, 2001) detects
anomalies searching for subspaces in which the data
density is exceptionally lower than the mean den-
sity of the whole data. Promising subspaces are de-
tected by employing a technique based on genetic al-
gorithms. Although this method works on the sub-
spaces, it does not contemplate the presence of exam-
ples.

In (Zhang and Wang, 2006) the interest is on
searching for the subspaces in which the sum of the
distances between a fixed object and itsnearest neigh-
borsexceeds a given threshold. A dynamic subspace
search exploiting sampling is presented and compared
with top-down and bottom-up like techniques. This
work exploits only one positive example and it has no
negative ones. Furthermore, subspaces in which the
example is exceptional are searched for, while discov-
ery of additional outliers is not accomplished.

The work (Wei et al., 2003) focuses on discover-
ing sets of categorical attributes, calledcommon at-
tributes, being able to single out a portion of the data
base in which the value assumed by an object on a sin-
gle additional attribute, calledexceptional attribute,
becomes infrequent with respect to the mean of the
frequencies of the values assumed by the same at-
tribute. Common attributes are determined by select-
ing the sets of frequent attributes of the data base.

In (Zhu et al., 2005) theOutlier by Example
method is introduced. Given a data set and user-
provided outlier examples, the goal of the method
is to find the other objects of the data set exhibiting
the same kind of exceptionality. Data set objects are

mapped into the MDEF feature space (Papadimitriou
et al., 2003), and both user-provided examples and
outstanding outliers, i.e. those that can be regarded
as outliers at some granularity level, are collected to
form the positive training data. Then the SVM algo-
rithm is employed in order to build a classifier sepa-
rating the normal data from the positive training data.
This technique employs only positive examples, is
based on the MDEF measure, and does not work on
subspaces, but instead searches for anomalies in the
full feature space.

In (Zhu et al., 2005), given an input set of exam-
ple outliers, i.e. of objects known to be outliers, the
authors search for the objects of the data set which
mostly exhibit the same exceptional characteristics.
In order to single out these objects, they search for
the subspace maximizing the average value of sparsity
coefficients, that is the measure introduced in (Aggar-
wal and Yu, 2001), of cubes containing user exam-
ples. This method is suited only for numerical at-
tributes, it is based on the notion of sparsity coeffi-
cient, which is different from the notion of distance-
based score, and it can take advantage only of pos-
itive examples, while negative ones are not consid-
ered. Moreover, it must be noted that the sparsity co-
efficient is biased towards small subspaces. Indeed,
in order to prefer larger ones it should take place that
the number of objects is exponentially related to the
number of attributes, a very unlikely situation.

2 PROBLEM STATEMENT

First some preliminary definitions are provided, and
then the example-based outlier score is introduced.

A feature is an identifier with an associated do-
main. A space Fis a set of features. Anobjectof
the spaceF is a mapping among featuresA ∈ F and
values in the domain ofA. The value of the objecto
on the featureA∈ F is denoted byoA. A subspace S
of F is any subset ofF. Theprojectionof the object
o in the subspaceS, denoted byoS, is an object of the
spaceSsuch thatoS

A = oA, for eachA ∈ S. Note that
oF = o. The projection of a set of objectsO in the
subspaceS, denoted byOS, is {oS | o∈ O}.

A distancedist on the spaceF is a semimetric
defined on each pair of objects of each subspace of
F , that is a real-valued function which satisfies the
non-negativity, identity of indiscernibles and symme-
try axioms.

Let a set of objectsDSof the spaceF , calleddata
set in the following, be available. LetK ≥ 1 be an
integer. TheK-th nearest neighborof oS (in the data
set DS), denoted bynnK(oS), is the objectp of DS
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such that there exist exactlyK − 1 objectsq of DS
with dist(oS,qS) ≤ dist(oS, pS).

Outlier Score. In this work, we employ a well-
established distance-based measures of outlierness,
also saidoutlier scorein the following.

Theoutlier score os(o) of o is defined as follows
(Angiulli and Pizzuti, 2002):

os(o) =
1
K

K

∑
i=1

dist(o,nni(o)).

The outlier score is given by the sum of the distances
betweeno and itsK nearest neighbors in the data set.
Its value provides an estimate of the data set density in
the neighborhood of the objecto. The objectso scor-
ing the greatest values of outlier scoreos(o) are also
called outliers, since they be considered anomalous
with respect to the population under consideration.

Let E be a set of objects. Theoutlier score sc(E)
of E is defined as the mean of the outlier scores asso-
ciated with the elements ofE:

sc(E) =
1
|E| ∑

e∈E
os(e).

Subspace Score. Assume a setO of outlier exam-
ples(or positive examples) and a setI of inlier exam-
ples(or negative examples) are available.

We are interested in finding subspaces where the
outlier examples deviate from the data set population,
the inlier examples comply with the data set popu-
lation, and the separation between these examples is
large.

In order to formalize the above intuition, the fol-
lowing definition of consistent (with respect to a set of
positive and negative examples) subspace is needed.

We say that a subspaceSis ρ-consistent, or simply
consistent, whereρ ∈ [0,1] is a user-provided param-
eter, with respect to a setO of positive examples and a
setI of negative examples, if theρ percent of the ob-
jects inOS, that are the positive examplesO projected
in the subspaceS, is globally more outlying than the
set of objects inIS, that are the negative examplesI
projected in the subspaceS, while the remaining 1−ρ
percent of the objects inOS is individually more out-
lying than all the objects inIS, that is to say,

1. sc(OS
b) > sc(IS), whereOb is the set of the⌈ρ|O|⌉

objectso of O having the smallest outlier scores
os(oS), and

2. os(oS) > maxi∈I os(iS), for eacho∈ (O−Ob).

where the first condition does not apply ifρ = 0 orOb
is empty, and, dually, the second condition does not
apply if ρ = 1 orO−Ob is empty.

In order to measure the relevance of the subspace
Swith respect to the above criterium, next the concept
of subspace score is introduced. Thesubspace score
ss(S) of the spaceSwith respect to set of positive ex-
amplesO and set of negative examplesI is

ss(S) =

{

sc(OS)−sc(IS) , if S is ρ-consistent w.r.t.O andI
0 , otherwise

Note that for a consistent subspaceS, the correspond-
ing subspace scoress(S) is always positive.

Moreover, it is worth to point out that the subspace
score is not monotonic with respect to subspace con-
tainment.

Outliers by Example Problem. We are now in the
position of defining the main task we are interested in.

Given an integern≥ 1, and a subspaceS, the top-
n outliers ofDS in S are then objectso of DS with
maximum value of outlier scoreos(oS).

Theoutlying subspace Sss is defined as

argmax
S

ss(S).

Given a data setDS, a set of positive examplesO, a set
of negative examplesI , and a positive integer number
n, theDistance-Based Outlier Detection by Example
Problemis defined as follows: find the top-n outliers
in the outlying subspaceSss.

3 ALGORITHM

Finding the outlying subspace is in general a
formidable problem. We decided to face it by exploit-
ing the paradigm ofgenetic algorithms(Holland et al.,
1986; Holland, 1992), a methodology also pursued by
other subspace finding methods for outlier detection
(Aggarwal and Yu, 2001; Zhu et al., 2005). Genetic
algorithms are based on the theory of evolution and
they are probabilistic optimization methods based on
the principles of evolution. These algorithms have
been successfully applied to different optimization
tasks. In the optimization of non-differentiable or
even discontinuous functions and discrete optimiza-
tion they outperform traditional methods since deriva-
tives provide misleading information to conventional
optimization methods.

Genetic algorithms maintain a population of po-
tential solutions. In our context, a potential solution
is a subspace and it is encoded by means of a binary
string, also said achromosome, of length|F |. Theith
bit of the binary string being 1 (0, resp.) means that
the ith feature ofF is (is not, resp.) in the subspace
encoded by the chromosome. At each iteration afit-
nessvalue is associated with each chromosome, rep-
resenting a measure of the goodness of the potential
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Algorithm ExampleBasedOutlierDetection
Input: data setDSon the set of featuresF , setO of positive examples, setI of negative examples, numberK of
nearest neighbors to consider, numbern of top outliers to return, parameterρ
Output: the example-based outliers ofDS

1. Let P the initial population of subspaces having sizeM, obtained by selecting at randomM subsets of the
overall set of featuresF

2. While the convergence criterion is not meet do

(a) For each subspaceS in P, determine ifS is already stored in the hash tableSSTableand, in the positive
case, retrieve its fitness value

(b) LetPnew= {S1, . . . ,Sm} be the subset ofP composed of the subspaces which are not stored inSSTable
(c) For each negative examplei in I = {i1, . . . , iNI }, determine simultaneously the outlier scores

{os(iS1), . . . ,os(iSm)}

(d) Let B denote the number⌈ρ|O|⌉, and letα1, . . . ,αm (β1, . . . ,βm, resp.) denote the maximum (mean,
resp.) outlier scores associated with the negative examples in the subspacesS1, . . . ,Sm, respectively, that
is α j = maxi∈I os(iSj ) (β j = sc(ISj ), resp.), forj = 1, . . . ,m

(e) For each positive exampleok in O = {o1, . . . ,oNO} do

i. Determine simultaneously the outlier scores{os(oS
k) | S∈ Pnew}

ii. For each subspaceSj in Pnew do
A. Let Ok, j be the set composed of precisely theB objectso of {o1, . . . ,ok} having the smallest outlier

scoresos(oSj ), and letok, j be the object having the(B+1)–th smallest outlier scoreos(ok, j
Sj )

B. If either (1)α j ≥ os(ok, j
Sj ) or (2) β j ≥ sc(O

Sj

k, j ), then setPnew= Pnew−{Pj}, and set the fitness of the
subspacePj to zero and store it in the hash tableSSTable

(f) For each subspaceS remained inPnew, compute its fitness assc(OS)−s(IS) and store it in the hash table
SSTable

(g) From the setP, selectM pairs〈S1
1,S

2
1〉, . . .〈S

1
M ,S2

M〉 of parent subspaces for the next generation (selection
step)

(h) Compute the set of subspacesPnext = {S′1, . . . ,S
′
M}, where each subspaceS′j is obtained by crossover of

the parent subspacesS1
j andS2

j , for i = 1, . . . ,M (crossoverstep)

(i) Mutate some of the subspaces in the setPnext (mutationstep)
(j) Set the current populationP to the next generationPnext

3. Select the subspaceSss in P scoring the maximum fitness value

4. Determine the top-n outliers in the subspaceSss and return them as the set of the example-based outliers

Figure 1: TheExampleBasedOutlierDetectionalgorithm.

solution. The current population is iteratively updated
by means of the selection, crossover, and mutation
mechanisms till a convergence is meet.Selectionis a
mechanism for selecting chromosomes for reproduc-
tion according to their fitness.Crossoverdenotes a
method of merging the genetic information of two in-
dividuals; if the coding is chosen properly, two good
parents produce good children. In genetic algorithms,
mutationcan be realized as a random deformation of
the strings with a certain probability. The positive ef-
fect is preservation of genetic diversity and, as an ef-
fect, that local maxima can be avoided.

Figure 1 shows the algorithmExampleBasedOut-
lierDetectionwhich solves theOutliers by Example
Problem. We employed the subspace score as fitness
function for the genetic algorithm. Since computing
the subspace score is expensive, some optimizations
are accomplished in order to practically alleviate its

cost, which are explained next.
First of all, an hash tableSSTableof sizeT main-

tains the latestT subspaces visited by the algorithm,
together with their fitness, and with a timestamp
which is exploited to implement the insertion policy.
This table is used as follows. Before computing the
fitness associated to a subspace, it is searched for in
the hash table. If the subspace is found, then its times-
tamp is updated and then the fitness stored in the table
is employed. Vice versa, when a novel subspace has
to be stored in the hash table, but no more space is
available in the selected entry, the timestamps are ex-
ploited in order to determine the subspace (that is, the
oldest one) that will be replaced with the latest sub-
space.

In this work we employed the Euclidean distance
as distance function. LetS1, . . . ,Sm the subspaces of
the current population which are not already stored
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in SSTable. In order to save distance computations,
the outlier scoresos(eS1), . . ., os(eSm) associated with
a positive or negative examplee are computed si-
multaneously as follows: first the setU is computed
as S1 ∪ . . . ∪ Sm and, for eachA ∈ U , the values
dA = (xA− yA)2 are obtained, and then the distances

dist(xSj ,ySj ) are computed as
√

∑A∈Sj
dA.

As a further optimization, the outlier scores as-
sociated with the negative examples are computed
first (see steps 2(c) and 2(d)). Then, while comput-
ing outlier scores associated with positive examples
(see step 2(e)), the outlier scores of the negative ones
are immediately exploited in order to filter out sub-
spaces which are notρ-consistent (see step 2(e)ii)
and, hence, avoiding useless distance computations.

As selection-crossover-mutation strategies we
used proportional selection, one-point crossover, and
mutation by inversion of a single bit, while as conver-
gence criterion was used an a-priori fixed number of
iterations, also saidgenerations(Holland, 1992).

As far as the temporal complexity of the algorithm
is concerned, sayN the number of data set objects,
NE the total number of examples,d the number of
features in the spaceF , andg the number of gener-
ations. In the worst case, for each generation in or-
der to determine outlier scores the distances among
all the examples and all the data set objects are com-
puted, with a total costO(g∗NE ∗N ∗d). After hav-
ing determined the outlying subspaceSss, in order to
compute the top-n outliers in that subspace, all the
pairwise distances among data set objects are to be
computed, and, then, the top-n outliers are to be sin-
gled out, with a total costO(N2 ∗d). Summarizing,
the temporal cost of the algorithmExampleBasedOut-
lierDetectionis O(g∗NE ∗N∗d+N2∗d).

4 EXPERIMENTAL RESULTS

In the experiments reported in the following, if not
otherwise specified, the crossover probability was set
to 0.9 and the mutation probability was set to 0.01.
Moreover, the parameterρ, determining the “degree”
of consistency of the subspace, was set to 0.1.

First of all, we tested the ability of the algorithm
to compute the optimal solution (that is the outlying
subspace). With this aim, we considered a family of
synthetic data sets, calledSynthin the following.

Each data set of the family is characterized by the
sizeD of its feature space. Each data set consists of
1,000 real dimensional vectors in theD-dimensional
Euclidean space, and is associated with aboutD posi-
tive examples andD negative examples. Examples are

placed so that the outlying subspace coincides with
a randomly selected subspace having dimensionality
⌈D

5 ⌉.
We varied the dimensionalityD from 10 to 20 and

run our algorithm three times on each data set. We
recall that the size of the search space exponentially
increases with the number of dimensionsD. We set
the population size to 50 and the number of genera-
tions to 50 in all the experiments. The parameterK
was set to 10.

Table 1 reports the results of these experiments.
Interestingly, the algorithm always found the optimal
solution in at least one of the runs. Up to 15 dimen-
sions it always terminated with the right outlying sub-
space. For higher dimensions it reported also some
different subspaces, but in all cases the solution re-
turned is a suboptimal one. Indeed, the second and
third solutions concerning the data setSynth18Dare
subsets of the optimal solution both having only a sin-
gle missing feature, while the second solution con-
cerning the data setSynth20Dis a superset of the op-
timal one having two extra features. By these exper-
iments it is clear that the method is able to return the
optimal solution or a suboptimal one.

The subsequent experiment was designed to val-
idate the quality of the solution returned by the pro-
posed method. In this experiment we considered the
Wisconsin Diagnostic Breast Cancer data set from the
UCI Machine Learning Repository. This data set is
composed of 569 instances, each consisting in 30 real-
valued attributes, grouped in two classes, that arebe-
nign (357 instances) andmalignant(212 instances).
The thirty attributes represent mean, standard error,
and largest value associated with the following ten
cell nucleus features: radius, texture, perimeter, area,
smoothness, compactness, concavity, concave points,
symmetry, and fractal dimension.

We normalized the values of each attribute in the
range[0,1]. Moreover, we randomly selected ten be-
nign instances as the set of negative examplesIwdbc
and twenty malignant instances as the set of posi-
tive examplesOwbdc. Moreover, we built a data set
DSwdbc of 357 objects by merging together all the re-
maining benign instances (that are 347) with other
ten randomly selected malignant examples, say them
DSO

wdbc.
We set the number of neighborsK to 50, and the

number of top outliersn to 20. First of all, we com-
puted the distance-based outliers in the full feature
space. We found that among the top twenty outliers,
six of them belong to the setDSO

wdbc(corresponding to
the 60% ofDSO

wdbc). Next, we run theExampleBased-
OutlierDetectionalgorithm. The outlying subspace
Sss

wdbc found was composed of seventeen features. In
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Table 1: Experimental results on the synthetic data set family.

Dataset Outlying subspace Outlier score Algorithm output Outlier score

0000100001 1.121307

Synth10D 0000100001 1.121307 0000100001 1.121307

0000100001 1.121307

101000010000 1.428615

Synth12D 101000010000 1.428615 101000010000 1.428615

101000010000 1.428615

000010011000000 1.522407

Synth15D 000010011000000 1.522407 000010011000000 1.522407

000010011000000 1.522407

000100000010001100 1.667848

Synth18D 000100000010001100 1.667848 000100000010001000 1.424176

000100000010001000 1.424176

00011000000001000010 1.701322

Synth20D 00011000000001000010 1.701322 00011000100001000011 0.995888

00011000000001000010 1.701322

this subspace, nine objects of the setDSO
wdbc belong

to the top twenty distance-based outliers ofDS (that
is the 90%).

Thus, by exploiting our method we singled out a
subspace in which the anomalies detected by using
the distance-based definition are of better quality with
respect to those detected in the full feature space by
using the same definition.

5 CONCLUSIONS

We presented an example-based outlier detection
method exploiting both positive and negative exam-
ples in order to search for anomalies in an input data
set. The task here introduced is novel, in that previous
methods are able to exploit only positive examples,
and, moreover, are based on different outlier defini-
tions. We presented a subspace discovery algorithm
designed to search for the optimal subspace, and ex-
periments showed that the method is able to detect a
suboptimal solution, and that the method is promising
from the point of view of the knowledge mined.

As a future work, it is of interest to investigate
the inclusion in our framework of other outlier defini-
tions, and the design of policies for selecting outliers
in the outlying subspace guided by the examples. Fi-
nally, we plan to execute a more extensive experimen-
tal campaign concerning both from the computational
and the semantic point of view.
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