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Abstract: Sometimes, it is difficult to cope with a good set of values for the parameters of an algorithm that solves an spe-
cific optimization problem. This work presents a methodology for fine-tuning the parameters of a Simulated
Annealing (SA) algorithm solving the Bridge Club (BC) problem. The methodology uses Covering Arrays as
a tool that evaluates a set of values for the parameters of the SA so that it achieves its best performance when
solving BC. The results in the experiments performed show that, using this methodology, the SA reached the
optimal solution of the BC problem with a relatively small number of evaluations, in comparison with other
strategies that solves BC.

1 INTRODUCTION

The Bridge Club (BC) problem has been considered
as a case of study in discrete optimization. This prob-
lem, in appearance simple, arises as a complex prob-
lem when solved by an exact approach. The Bridge
Club problem and its optimal solution are defined in
(Elenbogen and Maxim, 1992).

BC has been solved using several approxi-
mated approaches: greedy algorithm (Elenbogen and
Maxim, 1992), partial branch & bound (Elenbo-
gen and Maxim, 1992), steepest descent (Elenbo-
gen and Maxim, 1992), annealed search (Elenbo-
gen and Maxim, 1992), Kreher, et. al. (Kreher
et al., 1996), Genetic Algorithm (Simpson, 1997),
tabu search (Morales, 1997). Even though some of
these techniques are sensitive to the values of its pa-
rameters, few is known about how good such values
are (Simpson, 1997).

Table 1 compares the reported algorithms that
solve the BC problem. First column shows the name
of the methods. The second and third columns show
the best solution and time spent by each algorithm,
respectively. The last column shows the number of
evaluations of the cost function used by each algo-
rithm to reach their best reported value.

The best values for the parameters of an algo-
rithm are estimated according with the problem that
is solved. Several strategies to choose these values
can be found in the literature. Generally, the best

Table 1: Comparison between the different algorithms that
solve BC.

Method Cost Time Evaluations
Greedy Algorithm 22 3 hrs. 40,397
Partial Branch & Bound 20 8 hrs. 100,000
Steepest Descent 14 2 hrs. 75,000
Annealed Search 14 1 hr. 50,000
Kreher, et. al. 12 - 1,000,000
Genetic Algorithm 12 - 375,000
Tabu Search 12 - 3,456 - 153,600

values for an algorithm are determined through an
experimental design. Sometimes, these values are
taken from the literature (Laarhoven and Aarts, 1987).
Some other are just chosen without validating its ef-
fectiveness. More recent approaches try new tech-
niques based on factorial designs (Dı́az and Laguna,
2006).

In the search for the best solution of a problem
we try to find the best values for its parameters and
the parameters of the algorithm that solves it. The pa-
rameters of a problem are the ones that are defined ac-
cording with its definition. Among these parameters
are the neighborhood function, the evaluation func-
tion, initial solution and internal representation. The
parameters of an algorithm are those that do not need
the definition of the problem to be specified. Some ex-
amples of algorithm parameters are temperature and
population. Most of the time, the selection of the val-
ues for the parameters of the problem is independent
from the parameters of the algorithm. This way of
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choosing values represents an area of opportunity in
the sense that, combining both kind of parameters we
can choose their values in one experimental design
and we can exploit the relationship that can exist be-
tween the parameters of the algorithm and the param-
eters of the problem.

In order to show the effectiveness of a methodol-
ogy for fine-tuning parameters of both the algorithm
and the problem, this paper proposes a methodology
based on Covering Arrays (Lopez-Escogido et al.,
2008). The proposed methodology fine-tunes the pa-
rameters of a solution for the Bridge Club problem
via Simulated Annealing.

This document is organized as follows. Sec-
tion 2 shows the details about the implementation of
the Simulated Annealing that solves the Bridge Club
problem. Section 3 describes the methodology used
to tune the parameters of the Simulated Annealing
as well as the parameters of the problem. Section
4 shows the results of applying the tuning process
in the solution of the Bridge Club problem through
the Simulated Annealing algorithm. Finally, section
5 presents the conclusions derived from this research
work.

2 SIMULATED ANNEALING

The Simulated Annealing Algorithm(SA) first intro-
duced by S.Kirkpatrick (Kirkpatrick, 1983) is in-
spired in statistical mechanics. The parameters of the
SA are the cooling schedule and the stop criterion.
The parameters of the BC problem are the internal
representation of the solution, the initial solution, the
neighborhood function and the evaluation function.

The cooling schedule refers to an initial temper-
ature T0, a final temperatureTf , a cooling factor
α, the frozen parameterΓ (number of consecutive
Markov chains without improvement) and the length
of a Markov chainL. In addition, in order to deter-
mine the moment in which the SA ends, a number of
evaluationsI is used. Once that the evaluation func-
tion is performedI times, the SA exits and reports the
best solution achieved.

The solution representations for the BC problem
are based in the matrix representations proposed in
(Simpson, 1997) (representationR b), in (Elenbogen
and Maxim, 1992) (representationR a) and a new rep-
resentation (representationR c that fixes the groupA
in the initial solution in the first column of the repre-
sentation proposed by (Elenbogen and Maxim, 1992).

The initial solution for all the representations is
randomly generated. The values of the matrixM with
representationR a will be randomly chosen between

{1,2, ...,12} or between{A,B,C} otherwise.
In this approach we tested three evaluation func-

tions. The first oneΠ1(M ) shown in Equation 1 and
defined in Elenbogen, et al. (Elenbogen and Maxim,
1992).

Π1(M ) =
11

∑
i=1

12

∑
j=i+1

(mi j −2)2 (1)

Two other evaluation functions are analyzed in the
solution of the BC problem. The evaluation function
Π2(M ) rises to 4 instead of 2 the difference(mi j−2).
The evaluation functionΠ2(M ) obtains the absolute
difference instead of a power. Any evaluation func-
tion Π must be minimized by the SA algorithm to
achieve the optimal solution.

This research work proposes three methods to
build new solutionsM ′ during the SA. The neighbor-
hood functionN 1 createsM ′ by exchanging values
between two elementsmi, j,mi,k of a given a solution
matrixM . The inversion strategyN 2 can be defined
as a set of exchanges; given two elementsmi, j,mi,k ∈
M , j < k, a new solutionM ′ is constructed by apply-
ingN 1 to mi,ι,mi,κ, for all j ≤ ι,κ ≤ k.

The neighborhood function based in rotationsN 3
createsM ′ using a solutionM and two elements
mi, j,mi,k ∈M , j < k. This function assigns the value
of each elementmi,ι, for every j ≤ ι < k, to the el-
ementmi,ι+1. The elementmi,k assigns its value to
mi, j.

Every neighborhood functionN requires two el-
ementsmi, j,mi,k ∈ M . The elements can be defined
by choosing the values fori, j,k . The valuei repre-
sents a row inM while the valuesj,k represent two
different columns. This research work proposes three
methodsχa,χb,χc to choose the values ofi, j,k to test
the performance of the SA algorithm.

The methodχa randomly chooses the valuesi, j,k
every time that a neighborhood functionN build a
new solutionM ′. The methodχb is just like χa but
it randomly selects the value ofj once. After that, its
value is increased by one at every call of a neighbor-
hood functionN . The methodχc, differs in which
valuesi, j are randomly chosen once and after that
their values are increased by one each time a neigh-
borhood functionN constructs a new solutionM ′.

The SA stops the search for a solution for the BC
problem when one of the following criteria are met:
the system get frozen, the final temperatureTf has
been reached, the maximum number of evaluations
I has been exceeded or the optimal solution has been
found, i.e.,Π(M ) = 12, for a particular value ofM .

The next section describes the tuning process fol-
lowed to find the best values for the parameters of the
SA to solve the BC problem.
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3 FINE-TUNING OF THE SA

Fine-tuning of parameters is the process of adjusting
the parameters of an algorithm to solve a problem.
Several works like (Barr et al., 1995), (Fink and S.,
2002) have addressed the importance of performing
a calibration of the parameters in heuristic and meta-
heuristic approaches. Related works about method-
ologies that can be followed to perform a fine-tuning
are shown in (Dı́az and Laguna, 2006), (Fidanova
et al., 2009), (Taguchi, 1994).

A Covering Array(CA) (Lopez-Escogido et al.,
2008) is an arrayM of sizeN×k consisting ofN vec-
tors of lengthk with entries from 0, 1, . . . ,v−1 (v is
the size of the alphabet) such that every one of thevt

possible vectors of sizet occurs at least once in every
possible selection oft elements from the vectors. The
parametert is referred to as thecovering strength.

This process is based in a set of instancesβ of a
problemP and in a Covering ArrayCA(N; t,k,v) to
study the effect of the interaction between parameters
in the solution ofP using an algorithmA .

In the CA, the valuek is the number of param-
eters of the algorithmA and the problemP object
of the fine-tuning. The value of the alphabetv will
correspond to the cardinality of the set of values for
the parameters considered in the tuning process. The
level of interaction between parameters is initialized
to t = 2. During the process, the performanceϕt of
the algorithm solving the problemP with a level of
interactiont is measured. If the performance is im-
proved, the values of the parameters ofP andA are
adjusted in order to find better solutions. If the perfor-
manceϕt is no longer improved, the interaction level
t is increased by one only ifϕt − ϕt−1 > ε. ε is a
threshold selected so that the fine-tuning process halts
in a suitable amount of time. Every time that the level
of interactiont is increased then a newCA(N; t,k,v)
must be constructed.

The next section presents the experiments done to
tune the values of the parameters of the Simulated An-
nealing to solve the BC problem using the methodol-
ogy described in this section.

4 EXPERIMENTAL RESULTS

The methodology described in Section 3 was used to
fine-tune the parameters of the Simulated Annealing
in order to solve the BC problem.

The initial values selected for the parameters dur-
ing the tuning process are shown in Table 2. The first
column shows the parameter, the last 3 columns are
the values selected for that parameter.

Table 2: Values for the parameters of the Simulated Anneal-
ing.

Type of Parameter Parameter 1st value (0) 2nd value (1) 3rd value (2)
Problem R R a R b R c
Problem χ χa χb χc
Problem Π Π1 Π2 Π3

Algorithm T0 1.0 0.5 0.25
Algorithm α 0.99 0.90 0.85
Algorithm Tf 0.001 0.000001 0.000000001
Algorithm I 10000 100000 1000000
Algorithm L 500 800 1000
Algorithm Γ 5 10 15
Problem N N 1 N 2 N 3

Table 3: Summary of the results obtained during the fine-
tuning process using aCA(14;2,10,3).

Num. Avg. Avg. Avg. Avg.
Conf. Sol. Opt. Sol. Time Eval. Opt. Eval.

0002010112 14.00 0.00 37.29 0.00 20129.03 0.00
0101221200 12.00 6.00 32.26 0.90 97483.81 4666.67
0120112011 22.00 0.00 49.03 0.00 127741.88 0.00
0210002222 18.00 0.00 53.68 21.94 1331612.75 0.00
1001101122 14.00 0.00 38.84 0.00 91354.82 0.00
1011212100 12.00 2.00 32.77 0.58 47380.64 4800.00
1021020221 18.00 0.00 46.45 0.00 19354.84 0.00
1112000020 12.00 4.00 32.90 0.00 18322.58 4250.00
1210120210 12.00 2.00 37.16 0.00 18903.23 3000.00
2000021002 14.00 0.00 33.29 1.94 193548.45 0.00
2120200102 14.00 0.00 38.45 0.00 20129.03 0.00
2202122101 28.00 0.00 72.00 3.87 284903.31 0.00
2211201011 30.00 0.00 112.52 0.00 37741.95 0.00
2222211220 12.00 2.00 37.03 0.00 80903.23 45000.00

Table 3, in the first column, shows the first
CA(14;2,10,3) used for the tuning process. The al-
phabet for this CA is shown in the Table 2. Each digit
from left to right correspond to a parameter shown in
Table 2. The values 0, 1 and 2 correspond to values in
the columns 2, 3 and 4, in Table 2, respectively.

The BC problem was solved using the SA and the
CA shown in the first column of Table 3. The BC
problem was solved 31 times by each configuration.
Table 3 summarizes the results obtained during the
fine-tuning process using a level of interaction of two
t = 2. Column 2 shows the best solution achieved
by each configuration. Column 3 shows the number
of times that the optimal solution was reached. Col-
umn 4 presents the average cost of a solution using a
specific configuration. Column 5 presents the average
time measured in seconds that the SA spent in finding
the optimal solution. Column 6 is the average number
of times that the evaluation function was computed
during the SA. Column 7 shows the average number
of times that the SA needs to compute the evaluation
function in order to find the optimal solution.

The results presented in Table 3 show a low qual-
ity in the solution achieved by the SA using the com-
bination of the values described byCA(14;2,10,3).
The best configuration just achieved the optimum
value 19% of the times. The solutions of the SA aver-
aged a distance of 168% over the optimal solution, in
the best case.

In order to improve the performance of the SA
when solving the BC, the level of interaction between
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parameterst was increased. A new Covering Ar-
ray CA(54;3,10,3) was used. The results obtained
were significantly improved. The best configuration
achieved the optimum value in 54% of the cases. The
solutions of the SA averaged a distance of 6% over
the optimal solution. And with respect to the number
of evaluations performed by the SA to find the opti-
mal solution, it averages 25458 evaluations. In gen-
eral, the time spent by the SA in finding a solution
was around 0.81 seconds. The improvement achieved
in the next level of interactiont = 4 did not surpass
the thresholdε. The fine-tuning process halted at this
point. The SA algorithm performed better with the
configuration 2010002110 for the SA algorithm and
BC parameters.

5 CONCLUSIONS

This document presents a methodology for fine-
tuning the parameters of the SA and the BC problem.
The methodology relies on the use of a CA to perform
the parameters tuning.

The fine-tuning process adjusts the values of the
set of parameters formed by the parameters of the SA
and the parameters of the Bridge Club problem. An
initial interaction of level two (a CA of strengtht = 2)
was initially proven, the best configuration achieved
the optimal solution 19% of the times it was runned.
In general, it averaged a 168% above the optimal solu-
tion. When increasing the level of interaction to three
(a CA of strengtht = 3), the best configuration found
the optimal solution in 54% of the times and its aver-
age distance from the optimal was reduced to 6%, a
dramatical change with respect to the interaction of
level t = 2. No significative change in the perfor-
mance of the SA were achieved with greater level of
interaction.

The SA algorithm improves the reported results
by other approaches. The methodology shows that
the performance of an algorithm can be dramatically
affected by the interaction level between the param-
eters involved. In our case of study, an interaction
level of value threet = 3 was sufficient to find satis-
factory values for the parameters of the SA in order
to get a good performance in solving the BC problem.
Finally, we can conclude that the Covering Arrays,
as part of experimental designs, are valuable tools for
fine-tune parameters associated with an algorithm and
the problem being solved.
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