
A KNOWLEDGE MANAGEMENT APPROACH FOR
INDUSTRIAL MODEL-BASED TESTING

Dmitrij Koznov
St.-Petersburg State University, Faculty of Mathmatics and Mechanics

Department of Software Engineering, 198504 Bibliotechnaya sq., 2 St.-Petersburg, Russia

Vasily Malinov, Eugene Sokhransky, Marina Novikova
DataArt, Inc., 475 Park Avenue South, Floor 9, New York, NY 10016, U.S.A.

Keywords: Knowledge Management, Model-Based Testing, Partial Specifications, Requirement Recovering,
Architecture Recovering, UniTesk.

Abstract: This paper offers a knowledge management method for industrial model-based testing, which based on
partial specifications and “attached” to the software development process that uses it. Partial specification
means formal description of considerable/potentially problematic properties of a system, and is used for
further automated testing. That allows reducing expenses of testing compared to developing full formal
specifications. The “attached” nature of the method means that the team of testers can work independently
of the basic process, without imposing on it any specific limitations connected with model-based testing.
The method intends for lightweight processes where a lack of documentation and formal described
requirements are absent. The paper also presents approbation of the method while testing an industrial Web-
application by means of model-based testing technology UniTesk in DataArt Inc. software company.

1 INTRODUCTION

Formal methods are particular kind of
mathematically-based techniques for the
specification, development, verification and testing
of software systems. Model-based testing is one of
the formal methods and uses formal system
specifications for automatic generation of tests and
testing environment. The advantages of formal
methods are commonly known – these methods
provide high guarantees of correctness of objects
which they applied for. However there are barriers to
their wide dissemination in industry, as discussed
in (Hinchey, M., et. al., 2008), (Knight, J., 1998).
This problem is so important that a special
conference ISoLA is organized to surmise efforts of
the academic and industry communities to resolve it.
It would be said, that one of the main obstacle for
moving formal methods from universities to industry
is a lack of proper knowledge management methods
in this area. Scientists offer their methods mainly
focusing on languages, algorithms, and other
knowledge that could be expressed formally and is
absolutely explicit. But a lot of tacit knowledge is
not taken into account: motivations, physiological
issues, personal background, etc. There is no enough
attention paid to development and dissemination of

patterns, best practices, guidelines for special kinds
of software and for different types of development
processes. There are no estimations of formal
methods effectiveness for various projects sizes. A
reasonable implicit work that should be done to use
formal methods efficiently stays also in shadow. For
example, the size of formal specifications is often
comparable with the size of tested system; or using
formal methods often puts forward additional
requirements to the development process, e.g.
model-based testing requires well-defined and
documented requirements, which is not always done
in real projects. So research focus in the formal
methods should be really shifted from what to apply
to how to apply. It would be say using semiotic
lexicon that formal methods need pragmatic above
syntax and semantic.

This paper offers a knowledge management
method for model-based testing based on partial
specifications and “attached” to the development
process that uses it. Partial specifications are
actively used in the context of formal methods and
are not an unambiguously defined notion – see
surveys (Easterbrook, Callahan, 1997), (Johnsen,
Owe, 2002), (Hendrix, Clavel, Meseguer, 2005).
Here partial specification shall mean formal
description of software system developed from

200
Koznov D., Malinov V., Sokhransky E. and Novikova M. (2009).
A KNOWLEDGE MANAGEMENT APPROACH FOR INDUSTRIAL MODEL-BASED TESTING.
In Proceedings of the International Conference on Knowledge Management and Information Sharing, pages 200-205
DOI: 10.5220/0002310402000205
Copyright c© SciTePress

model-based testing perspective, and describing not
the system as a whole but only some set of system’s
features, which important for the customer and/or
potentially problematic and labour-intensive for
testing. So we considerably reduce testing expenses
and provide suitable quality. If we would like to
provide exhaustive testing covering than the size of
formal specification became near to the size of code,
and only a few software projects can provide
correspondent testing resources. The “attached”
nature of the method means that the team of testers
can work independently of the basic process,
without imposing on it any specific limitations
connected with model-based testing. That allows
localizing specific work for utilization mathematized
tools without making the process more complicated,
in particular with detailed description of the
requirement. That will also allow performing model-
based testing for system with different readiness
degree in the outsourcing mode. On the other hand
this approach requires the use by testers of special
knowledge mining methods to get the needed
information about the systems. The central
approaches here are requirement recovering and
architecture recovering.

The paper also presents approbation of the
method while testing an industrial Web-application
with the help of model-based technology UniTesk
(Bourdonov, 2002), (Kuliamin, 2003) in DataArt
Inc. software company1.

2 BACKGROUND

2.1 Knowledge Management in
Software Engineering

Knowledge Management (KM) comprises a range of
practices used in an organization to identify, create,
represent, distribute and enable adoption of insights
and experiences (Nonaka, 1991). Core components
of KM include people, processes, technology (or)
culture, depending on the specific perspective
(Spender, Scherer 2007).

Software engineering is a complex business that
involves many people working in different phases
and activities. The knowledge in software
engineering is diverse and its proportions immense
and grow. Software engineering involves a multitude
of knowledge-intensive tasks: analyzing user
requirements for new software systems, identifying
and applying best software development practices,
collecting experience about project planning and risk
management, and many others (Birk, et. al., 1999).
Software companies have problems keeping track of

1 http://www.dataart.com/

what this knowledge is, where it is, and who has it.
A structured way of managing knowledge could help
them to improve development process essentially, to
make easier introducing of the new technologies and
to meet clients requirements more thoroughly.
Survey of KM methods and tools applied for
Software Engineering could be found out in
(Engelhart, 2001).

In (Engelhart, 2001) identified following
categories of software engineering tasks to which
KM is applicable:
1. Tasks performed by a team focusing on

developing a software product based on
customer requirements.

2. Tasks that focus on improving a team’s ability to
develop a software product (that is improving
tasks in the first category).

3. Tasks that focus on improving an organization’s
or an industry’s ability to develop software.
The method offered in the paper focuses mainly

on the task 1, partly including task 2, and not
including task 3.

2.2 Model-based Testing

Model-based testing is software testing in which test
cases are derived in whole or in part from a model
that describes some (usually functional) aspects of
the system under test (Utting, Legeard, 2007). The
model is built before or parallel to the development
process of the system under test, and it can also be
constructed from the completed system. Usually the
model is created mostly manually, but there are
some attempts to create the model automatically, for
instance out of the source code.

2.3 UniTesk: Model-based Testing
Technology

This technology having been developed,
implemented and used for many years (Bourdonov,
2002), (Kuliamin, 2003). It assumes making contract
specifications with consequent automatic generation
of tests and oracles. Test scenarios are organized on
the bases of finite state machines. The technology
provides an opportunity to use common
programming languages for development of formal
specifications, which are extended with some
additional constructions. Hence if the tested system
is developed using languages Java, C# etc., the test
specifications shall be developed in the same
languages. The technology provides a range of
software products for different development
platforms. We used product @Chaise for Microsoft
.NET Studio/C# environment.

A KNOWLEDGE MANAGEMENT APPROACH FOR INDUSTRIAL MODEL-BASED TESTING

201

2.4 Requirement Recovering

Approach FOREST (Kuliamin, Pakulin, Petrenko,
2005) was developed by the authors of UniTesk and
in fact is a requirement recovering method
providing suitable input for model-based testing. It
implies that good written sources of information,
such as documented requirements, standards (e.g.
telecommunication standards) are available.

Approach AMBOLS (Liu, K., 2005) is intended
for restoring requirements for legacy information
systems with consequent substitution of the old
system with the new one. The source of information
for AMBOLS is the system users and the system
itself that is treated as a working application. The
source codes and documents are desirable but not
required as in practice they are considerably
incomplete or unavailable. The basic tools used in
AMBOLS are visual models methods and
organizational semiotic methods.

In opposite AMBOLS the approach presented in
(El-Ramly, Stroulia, Sorenson, 2002) is an example
of an automated approach to requirements
recovering on the basis of analyzing the source texts
of the system.

All these approaches aim at finding all the
requirements, and are not oriented to partial
requirement recovering in accordance with some
special criterias. Nevertheless these approaches may
be used in our method, especially FOREST for
processing documental requirement sources,
AMBOLS and other similar ones for applying visual
models.

2.5 Architecture Recovering

There is a huge number of methods in this sphere.
One of the most general contexts of architecture
recovering is software evolution. (Mens, T.,
Demeyer, S., 2008) is one of the recent papers on
this subject giving references to further reading. We
would like to mention specially two more papers
(Jansen, Bosch, Avgeriou, 2008), (Koznov,
Romanovsky, Nikitin, 2001) dedicated to
architecture recovering of “living” systems, i.e. in a
situation where all sources of information about the
architecture (except documentation) are available
and system is actively developed and maintained.

2.6 Partial Specifications

The idea to build partial specifications in the context
of formal methods is not new – see (Easterbrook,
Callahan, 1997), (Johnsen, Owe, 2002), (Hendrix,
Clavel, Meseguer, 2005).

Often partial specifications are understood as a
simplified way for creating full system
specifications. Approaches described in

(Letichevsky, Kapitonova, 2004), (Falcone,
Fernandez, Mounier, 2007), (Petrenko,
Yevtushenko, 2005) are based on that. Besides in the
context of building a full formal model partial
specifications are also used to have the opportunities
of independent work with different items of a
software code, which is used for example when
creating models of object-orientated applications
(Johnsen, Owe, 2002).

Partial specifications are also often used to
extract a specifications of system/component
interface to use ones for black-box verification and
testing – see e.g. UniTesk approach. In (Acharya,
Xie, Pei, 2007) partial formal specifications are built
and used for testing the interaction between the
system and outside modules.

(Tichomirov, Kotlyrov, 2008) considers a
situation when a new component is added into an
existing system. The paper puts forward the idea of
developing formal specifications only for the part of
the system that directly interacts with the new
component. Further model-checking of the
component/system interface is performed on the
basis of such partial specifications. This paper is the
nearest to our ideas, although it is used for model-
checking and not for model-based testing. It is
possible to say that we generalize it, as we permit
arbitrary system properties, not only an interface of
the system and the new component.

3 METHOD

We suppose that there is a software company which
has an experience and/or desire to apply some
model-based testing technology in one of its project.
We use term ‘desire’ instead ‘needs’ due to which
there are a lot of alternatives to provide software
quality, and not every company is ready to use
formal methods for that purpose. It means there
should be some motivations to apply some special
technology or a class of such technologies and some
preliminary work should be done – and all that is
beyond the method.

Our method should be applied as following
sequence of steps.

1. General studying of the System: initial
acquaintance with the system, overview of all
the system requirements, identification of
requirement sources.

2. Elaboration of Requirements: defining quality
level which is significant for the customer or
influences the general system robustness, and
extracting exact important/potentially
problematic system properties.

3. Making Decision: making decision to use
model-based technology, taking into account

KMIS 2009 - International Conference on Knowledge Management and Information Sharing

202

technology availability, project needs, resources
for testing.

4. Studying: carrying out necessary learning of the
testers.

5. Development of formal partial specification of
the system, i.e. formalizing its properties
defined above.

6. Testing process setup: deployment and setting
of the testing software environment, setup of
the whole testing process.

7. Testing process execution.

3.1 General Studying of the System

The main focus of this step is understanding by
testers system in general and as a whole, overview
all requirements. For these purpose different
requirement recovering methods presented above
can be used depending on the availability of some or
other sources of information, type and size of the
system under testing. Expediency and intensiveness
of using this step depends on the degree of
“intimacy” of the testing team with the project. Here
it is possible that testers either participate in the
project from the very beginning or join it at a certain
stage. In the first case this step of the method is not
required as the system is studied in a natural way. In
the second case it is necessary. Besides, testers can
be either a part of a project team or an stand alone
team (e.g. outsourcing testing). In the latter case the
importance of this step of the method is especially
great.

The system study should not be too long and
the following step should be made as soon as
possible.

3.2 Elaboration of Requirements

It is not possible to find out and correct all errors in
software. As a role in each particular project there is
some implicate quality needs and correspondently
some amount of project recourses which could be
consumed for testing. This step aims at clarifying
this knowledge, and balancing expectations and
available recourses. In practice, as everybody
knows, not absolute but some real quality is required
in every particular case, this quality level is unique
for each project, hence more or less resources are
provided for testing.

When selecting system prosperities for intensive
testing it is important to pay attention to the system
functionality, the quality of which is important or
critical for the customer, as well as to the
problematic from the quality point of view single
components/group of components. In the first case
requirement recovering methods mentioned above
should be used, because we intend out approach for
lightweight processes where a lack of documentation

and formal described requirements are absent. In
the second case the above specified architecture
recovery methods turn to be useful when testers
study the system. In such a situation the requirement
recovering alone will not be enough. In both cases
testers could use software architectures, project
managers, developers as a main knowledge sources.
Also running system might be another source of
information.

3.3 Making Decision

In this step the quality requirements to the software
should be analyzed, and comparing resources
available for testing (people and their qualification,
time etc.) with testing technologies, existing tests
packages and other knowledge available in a
company should be carried out. As a result we make
a decision about using various means and
technologies for testing various system properties. It
may be possible that system’s complexity and
quality requirements are not so serious and manual
testing would be enough.

If we make a decision about using model-based
testing technology, then we have to take into account
that we are talking about new software application
for testing our target software. This application
includes testing specifications, mediators, scenarios,
etc., and should be designed, developed, and
debugged properly. That is why it is important to
evaluate the labour intensiveness of its
implementation thoroughly comparing planned costs
and available resources.

The selected software features to be tested
basing on model-based technology are analyzed of
the following parameters.
1. Presence of a great number of behaviour paths

– that means that it is expedient to use model-
based methods.

2. Expenses of implementation and debugging of
test specifications as well as implementation of
access to the system and testing. The costs may
overpass the benefits.

The rest properties would be tested manually.
Careful selection of software features, which are
reasonable to be tested using mode-based approach,
is also very important. This approach provides for a
good coverage of software behavior around selected
features but it takes a reasonable efforts to be
implemented, and a lot of computational resources
are consumed to perform final testing. So
deficiencies reduce efficiency substantially in this
case. Unfortunately there are no suitable sources of
such knowledge in model-based testing community.
This knowledge often appears as a tacit one of
technology authors, and could be extracted only
when they participate in testing directly. This

A KNOWLEDGE MANAGEMENT APPROACH FOR INDUSTRIAL MODEL-BASED TESTING

203

situation is one of the main reasons of large labour
costs and limited success of model-based testing
performed by non-authors of corresponding
technologies.

3.4 Studying

Teaching model-based testing technologies is a very
important aspect for successful application. This
field is so that it is not easy to learn in process. Very
often it is necessary to teach as fundamentals of
model-based testing approach as operation rules for
relevant instruments. However the exact scope of
teaching depends on primary background of testers
and can be reduced if testers are competent in
computer science (especially in mathematical
logics). Here we do not speak about general training
in the whole company, which is necessary for the
familiarization of the stuff with model-based
approach. It is assumed that teaching is carried out
for testers’ team to cover only some knowledge
gaps.

3.5 Development of Formal Partial
Specification

Design and development of test specifications take
place at this step. Each feature (or ‘family’ of tightly
coupled features) selected at the previous steps
should be placed into a separate component,
independent from any other. Nevertheless this may
not be the case and different features will be
dissipated about the whole formal specification. It
would happen as a result of the “attachment” of the
specification code to the software interface elements
of the tested application. Our recommendation is, as
far as it is possible, to create different components
for different tested features even if they use the same
entities of this interface. These components are
convenient for debugging, testing, using and
managing.

3.6 Testing Process Setup and
Execution

Steps 6 and 7 of the method have no specific and
should be done as usual.

4 EXAMPLE

We have applied the above offered method for
testing of a Web-application with the help of
UniTesk technology. This Web-application is
intended for creating and editing requests for
placement of advertisements through the Internet in

different printed media. By the moment of starting
our test the application had been already delivered to
the customer and worked.

The application was developed by usual for such
projects scenario. The customer specified the
purpose of the system and its basic functions that
had to be delivered. After that the first system
prototype was developed and shown to the customer
he proposed some modification, etc. The system
documentation was not adequate and in fact was
almost completely missing. The main sources of
information for the testers were the working
application itself and the project manager who
agreed to answer our questions. As a result we
defined the following potentially problematic system
properties:

 The user interface of the application that
looked rather complicated and with high
degree of probability could contain mistakes.

 Presence of a great number of attributes in the
application core object (advertisement) made
it possible to assume the possibility of
situations when due to absence of required
checks several incompatible attributes are
selected and the integrity of the application
data is distorted.

 Presence of a great number of steps and
branches in the main wizard of the application
resulted in the probability of incorrect
transitions. This was especially true about
reverse transitions.

These features assumed a great number of
scenarios, due to which their “manual” testing with
good coverage was a rather labour intensive task
(that is why after the system delivering mistakes
were left there).

We developed testing specifications and set up
UniTesk. As a result 11 mistakes were found, 4 of
which completely destroyed the advertisement
edited by the application, and to continue work it
was necessary to restart the application and start the
whole session anew.

The labour costs have been structured as follows:
 General studying of the system – 5%;
 Elaboration of requirements – 5%;
 Making decision – 10%;
 Studying – 14%;
 Development of formal partial specifications –

20%;
 Testing process setup – 30%;
 Testing process execution – 16%.

Finally, this activity took 31% of the total project
resources. Testing expenses the application before it
was delivered to the customer were 18%. Thus the
total costs for testing were 49%. It is possible to
reduce expenses significantly reusing UniTesk in the
same company and for the same project types: the

KMIS 2009 - International Conference on Knowledge Management and Information Sharing

204

economy would be achieved because there is no
large-scale manual testing, less resources are spent
for studying, and due to reuse of formal
specifications and components of testing software
and other related knowledge. We hope under these
conditions the total test expenses would come up to
20%, but additional experiments should be
performed to state for certain.

5 CONCLUSIONS

A lot of teams practically use the idea of this
method, but it has not been defined and structured
up to date and actually was used as a tacit
knowledge. It turns out to be a barrier for beginners
to use model-based testing approach and hinders
development of knowledge libraries – both inside of
the companies and in the context model-based
testing community.

This method good suit for lightweight
development processes, with absent of strict process
procedures and poor documentation support. But due
to iterative nature of such processes, the method
should be applied for the stable components or to the
end of a project.

It is planned to research measures thoroughly
necessary for successful reusing model-based testing
knowledge within the company. It is also necessary
to research various kinds of software from model-
based testing perspective, in order to make explicit
maximum of tacit knowledge.

We also plan to transfer the method to the
model-checking approach, which is the most
demanded software verification method. Expenses
of developing formal models in the context of this
approach is also a considerable barrier to its wide-
spread practical use.

REFERENCES

Hinchey, M., et. al., 2008. Software engineering and
formal methods. Commun. ACM 51(9): 54-59.

Knight, J., 1998. Challenges in the Utilization of Formal
Methods. FTRTFT: 1-17.

Easterbrook, S., Callahan J., 1997. Formal Methods for
Verification and Validation of partial specifications: A
Case Study. // Virginia University symposium, Vol. 1.
P. 26-37.

Johnsen, E., Owe, O., 2002. Composition and Refinement
for Partial Object Specifications. // Parallel and
Distributed Processing Symposium. P. 210-217.

Hendrix, J., Clavel, M., Meseguer, J., 2005. A Sufficient
Completeness Reasoning Tool for Partial
Specifications. // Proceedings of the 16h International
Conference on Rewriting. LNCS, Vol. 3467. Springer.
P. 165-174.

Bourdonov, I., et. al., 2002. UniTesK Test Suite
Architecture. FME 2002: 77-88.

Kuliamin, V., et. al., 2003. The UniTesK Approach to
Designing Test Suites. Programming and Computer
Software 29(6): 310-322.

Nonaka, I., 1991. The knowledge creating company.
Harvard Business Review 69 (6 Nov-Dec): 96-104.

Spender, J.-C., Andreas G.S., 2007. The Philosophical
Foundations of Knowledge Management: Editors'
Introduction. Organization 14 (1): 5-28.

Engelhart, P.M., 2001. Knowledge Management in
Software Engineering: a State-of-the-Art-Report. Air
Force Research Laboratory Information Directorate/
IFED. Rome, NY. 57 p.

Utting, M., Legeard, B., 2007. Practical Model-Based
Testing: A Tools Approach, Morgan-Kaufmann.

Kuliamin,V., Pakulin, N., Petrenko, O., et. al., 2005.
Requirement formalization in practice. Preprint of
RAS (In Russian).

Liu, K., 2005. Requirements Reengineering from Legacy
Information Systems Using Semiotic Techniques,
Systems, Signs and Actions - An International Journal
on Communication, Information Technology and
Work, 1(1): 36-61.

El-Ramly, M., Stroulia, E., Sorenson, P., 2002.
Recovering software requirements from system-user
interaction traces. SEKE. P. 447-454.

Mens, T., Demeyer, S., 2008. Software Evolution.
Springer.

Jansen, A., Bosch, J., Avgeriou, P., 2008. Documenting
after the fact: Recovering architectural design
decisions. Journal of Systems and Software archive,
V. 81, Issue 4, P. 536-557.

Koznov, D., Romanovsky, K., Nikitin, A., 2001. A
Method for Recovery and Maintenance of Software
Architecture. Ershov Memorial Conference: 324-327

Letichevsky, A.A., Kapitonova, J., 2004. Basic Protocols,
Message Sequence Charts, and the Verification of
Requirements Speci-fi-cations. // Proceedings of
International Work-shop, WITUL. P. 30-38.

Falcone, Y., Fernandez, J., Mounier, L., et. al., 2007. A
Compositional Testing Framework Driven by Partial
Specifications. // TestCom FATES. P. 107-122.

Petrenko, A., Yevtushenko, N., 2005. Testing from Partial
Deterministic FSM Specifications. // IEEE Trans.
Computers, vol.54, No. 9. P. 1154-1165.

Acharya, M., Xie, T., Pei, J., 2007. Mining API patterns as
partial orders from source code: from usage scenarios
to specifications. // Proceedings of SIGSOFT Seminar.
P. 25-34.

Tichomirov, V., Kotlyrov, V., 2008. An approach of
integration testing. // Systemnoe programmirovanie.
Saint-Petersburg State University. Vol. 3. P. 109-120.
(In Russian).

A KNOWLEDGE MANAGEMENT APPROACH FOR INDUSTRIAL MODEL-BASED TESTING

205

