
FORMAL MODELING FOR DEPLOYING

IMPROVEMENT AND INNOVATION IN INFORMATION
TECHNOLOGY

Philippe Michelin
AEBIS, 1155 René Lévesque, Montréal, Québec, H3B2K4, Canada

Marc Frappier
Dept. Computer Science, Université de Sherbrooke, Québec, J1K 2R1, Canada

Keywords: Definition, Distinction, Information Technology Innovation and Improvement.

Abstract: In this paper, we show the importance of building precise models of basic concepts before conducting

strategic information technology improvement and innovation. We use the notions of distinction and

definition to build precise models. Our modelling approach mixes both natural language and mathematical

definitions, to reach the appropriate level of precision. This modelling approach constitutes a form of

knowledge management similar to approaches like enterprise architecture, but focusing on modelling the

impacts of a given technology innovation and conducting projects in a more agile style.

1 INTRODUCTION

Information is everywhere in a modern Organization;

Information Technology (IT) has become the key

technology to capacity innovation, productivity

improvement, extension of services, and time to

market. But it is not so easy for Business and IT

people to weigh and plan the impact of IT

innovations that are supposed to fulfill their needs.

In the experience we have acquired over the years

in IT projects, clarity of discourse is a foremost

success factor we have regularly identified. The
ability to settle the most important issues in a project

invariably relies on a clear vision of the main

concepts at stake. All too often, issues arise from

misunderstandings between project stakeholders. The

field of IT is complex, riddled with ambiguities

which are hard to dispel. There are countless

examples of ambiguities that could be drawn from

the literature in IT. For instance, Service Oriented

Architecture (SOA), to pick one, is a hot technology

that is currently attracting much interest in the IT

community. However, SOA is also a poorly
understood concept, encompassing several notions

from which too many people make unrealistic

promises, or expect unrealistic benefits.

The single most important tool to dispel

ambiguities is to practice clarity by means of two
simple concepts: distinction and definition. This

could also be called formalization of domain

concepts. When we attack a problem, our first step is

to make sure that we identify a handful of basic

concepts, make clear-cut distinctions for them and

provide precise definitions. In our experience, too

often people assume that they are working with well-

defined concepts, and that they share with their

partners a common understanding of these concepts.

Hence, definitions and distinctions are frequently

overlooked, deemed too obvious to bother with. It is
a serious mistake which has severe impacts on the

course of a project.

In this paper, our purpose is to illustrate this

simple idea of definition and distinction on typical

examples from IT innovation and improvement. We

shall provide definitions mostly using plain natural

language, but our work is inspired from a formal,

mathematical language that we have defined over the

past years and which we often use to bring additional

318

Michelin P. and Frappier M. (2009).
FORMAL MODELING FOR DEPLOYING IMPROVEMENT AND INNOVATION IN INFORMATION TECHNOLOGY.
In Proceedings of the International Conference on Knowledge Management and Information Sharing, pages 318-323
Copyright c© SciTePress

precision in our discourse (Maynier, 2003). In this

paper, we shall use some of its constructs when

necessary, to illustrate the concision and clarity

brought by simple mathematical operators. This
formal language is supported by a parser and an

interpreter which allows one to build formal

glossaries which can be queried and executed. The

language is inspired from logic and functional

programming. The interpreter answers queries by

applying definitions to rewrite queries until a normal

form has been reached. Normal forms are either

Boolean terms or terms from some universe of

discourse. We use a three value logic that include

true, false and unknown.

Our work is also inspired from the work of
George Spencer-Brown (Spencer-Brown, 1969), who

has formalized the calculus of distinctions (Laws of

Form – LoF). LoF was extended by Francisco

Varela to introduce a third Truth Value, to

encompass the occurrence of self-referential

situations. Although this work is sometimes seen as a

reformulation of Boolean algebra, it also involves a

strong methodological emphasis on making

distinctions, a corner-stone concept of this work.

Hence, we do have means to construct formal

glossaries that can be used for knowledge

engineering. However, our emphasis in this paper is
to show knowledge built by means of simple plain

natural language definitions, supplemented when

necessary with mathematical operators, is sufficient.

For illustrative purposes, the terminology of our

examples is built from a subset of the glossary of the

Capability Maturity Model Integration (CMMI)
®

(CMMI® for Services, see ref.), proposed by the

Software Engineering institute (SEI). The CMMI is a

process improvement integrated approach that

transcends disciplines and provides organizations

with the essential elements of effective processes.

Although the CMMI product suite is a very strong

foundation for process improvement, it is not without

terminological problems that may lead to

misunderstanding. As an example, in the CMMI for

Services V1.2 glossary:

 The definition of „lifecycle model‟ starts with “A

partitioning of the life of a product, service, or
project into phases.”

 The definition of „product lifecycle‟ starts with

“The period of time, consisting of phases, that

begins when a product or service is conceived

and ends when the product or service is no

longer available for use.”

These two simple definitions prompt the following

questions: What is a phase? Is it a period of time? Is

the notion of time crucial, or is just the notion of

sequentiality that is critical in characterizing a phase?
What distinguishes a product life cycle from a project

life cycle? The notion of „phase‟ is not defined in the

CMMI‟s glossary. We shall provide our own

definition in this paper and try to clarify these

concepts through distinctions.

Pedagogy is an essential aspect of understanding.

We certainly cannot expect that throwing a bunch of

definitions at someone will allow him to understand

them. No one can understand physics simply by

looking at all its laws. Pedagogy is an essential part

of communication which we shall try to use to the
best of our knowledge in this paper, but we forcefully

admit that it is a goal which one is never sure of

attaining.

2 LIFECYCLE

A precondition for the deployment of an IT

improvement or innovation is to have a precise

definition of the term „lifecycle‟, applicable to
projects and products.

2.1 What is a Lifecycle?

Organizations, their products and projects go through

phases in their life, like living organisms in nature.

Following Humberto Maturana (Maturana, see ref),

we assume that time and space are not explanatory

principles in Management and Engineering. CMMI

definitions hint at time in the notion of phase, but

one cannot simply wait and let time pass to complete

a phase in an on-going project! Time and space are

basic concepts that are scientifically defined and
universally measured. Time can be measured for a

phase, but it does not constitute the main concept for

defining a phase. We define a phase as a

transformation of some inputs into some outputs. As

such, a phase can be represented by a function f, in

the traditional mathematical sense. The sequentiality

of phases can be represented by function

composition, typically noted “  ”, also in the
traditional sense. If there are n phases in some

lifecycle, then their composition is represented by

fn … f1

Function composition also takes into account the fact

that the output of one phase becomes the input of the

next phase. The actual transformation carried out by

FORMAL MODELING FOR DEPLOYING IMPROVEMENT AND INNOVATION IN INFORMATION
TECHNOLOGY

319

a given phase need not be made explicit at this point.

Knowing that a given phase is represented by some

function is sufficient to precisely define the concept.

For example, the lifecycle of a butterfly
(metamorphosis) can be composed as follows: egg

becomes caterpillar (larva); caterpillar becomes

chrysalis (pupa); chrysalis becomes butterfly (adult);

this can be formalized as follows:

butterfly  chrysalis  caterpillar  egg
Here, egg, caterpillar, chrysalis, butterfly are seen as

functions: egg is a function with no inputs (if one

want to abstract from its inception); hence, it is some

constant function. In the sequel, we shall use the

symbol “_” for function composition, which can be

also be used on words as function‟s signature.

Hence, our butterfly example can be formalized as:

butterfly_chrysalis_caterpillar_egg

A lifecycle model of a type of thing (a product, a

project …) is a composition of phases encompassing

the whole life of any instance of that thing.

Lifecycles models concern types, not instances;

instances are concerned with their own life, not with

cycles. Lifecycles are models used for planning in an

organization.

Should we want to make precise the notion of

typing, i.e. “is a”, used in the definition above, we

could use a mathematical notation to define its

properties (for example: typing transitivity).

When producing definitions in a given context,

one always have to judge the level of formality

needed and determine what is supposed to be known

from the reader and what isn‟t. This is a subjective

decision, but at least one must deliberately pay

attention to it, not simply overlook it. Our formal

language interpreter we mentioned in the

introduction can of course not afford to be given

expressions containing undefined operators. Hence,

there is a price to pay to use a completely

mathematical notation for computerized execution.

This is why we use a mixture of both in this paper.

2.2 Project Lifecycle

A project lifecycle model is a lifecycle model where

the type of thing is “project”. Following the

IEEE/EIA 12207 standard (Standard for Information

Technology-Software Life Cycle Processes, 1995),

an example of project lifecycle model could consist

of the following phases:

1. Feasibility Study and Planning;

2. Requirements Analysis;

3. Design;

4. Development;

5. Integration;
6. Verification & Validation;

7. Deployment;

8. Post mortem.

2.3 Product Lifecycle

A product lifecycle model is a lifecycle model where

the type of thing is “product”. It is a model for

planning expected transformations of an on-going

product.

A product lifecycle model could consist of the

following phases:

1. Vision and Architecture;

2. Design & implementation;

3. Testing and piloting;

4. Operation and Support;

5. Phase out.

3 DISTINCTION BETWEEN

PROJECT AND PRODUCT

3.1 Lifecycles of Project and Product
Distinction

We haven‟t said so far what a project is and what a

product is. We know what a project lifecycle is: it is

simply an instance of a project life cycle model.

Similarly for product. Applying our definitions, we

know it will include a composition of phases, each

phase being a function that transforms some inputs

into outputs.

We saw that both project and product share the

same notion of life cycle model. So what
distinguishes them? First, they are of different types:

something cannot be a project and a product; this

means that we can establish a distinction between a

project and a product. This is the essence of a

distinction: if two concepts are distinct, then one

thing cannot be an instance of both at the same time.

In mathematical terms, we could say that project is a

type, and represent a type by a set. Then we could

state that distinction as follows:

project  product = .

The simple notion of distinction, which most people

know from common sense, can be represented in

various forms in mathematics. This is another

KMIS 2009 - International Conference on Knowledge Management and Information Sharing

320

argument for the use of plain natural language for

some aspects, because of its sheer concision and

simplicity.

3.2 Works of Project and Product
Distinction

Work products are artefacts created or transformed
by actors working in an organization. Work products

intermediate interactions between actors, eventually

the same actor at different points of time. Work

products can be developed, maintained or acquired

by an organization.

A product is a work product that is delivered to a

customer; a product is either a good or a service.

A project is a managed set of interrelated actors,

work products and consumables. A project is never a

good, nor a service. Project and product are

connected in some other ways; for example: a project
delivers a product.

Both projects and products include work

products. Given a work product, it may belong to the

product or the project that delivers the product.

For instance, a class diagram of some design

component is a work product of a project and a

product. An iteration plan is a work product of a

project only; it bears no interest for the product itself.

 In what follows, we make a distinction between

work products that belong to the project, and work

products that belong to the product.

3.3 Architecture and Work Units

Architecture is a discipline that addresses critical

product qualities and design constraints; architecture

provides views of the work products that belong to

the product into a set of models. A product

architecture model is a representation of the more

structural, stable and invariant aspects of the product.

Product architecture models describe a partition

of the product into work units.

A product P, partitioned into n work units inside

a product architecture model can be formalized by a
reunion operation:

P = (P1 , … , Pn)

3.4 Project and Product Arrangement

The decomposition of the product built by a project

changes at each phase of the Project lifecycle, as the

product evolves:

 The partition of the product into work units
depends on the phase of the project

lifecycle.

As mentioned earlier, a project lifecycle model is

a composition of phases:

 A phase can be applied to 1 or many work

units.

We can distinguish between different lifecycle

models by looking at how work units are grouped

and how phases are applied, which we called

henceforth an arrangement.

The choice between different arrangements
depends on the requirements for the project or the

preferences of the organization. For instance, the

following groupings, inducing different lifecycle

models, are often considered:

1. waterfall model

2. iterative, i.e. time-boxed;

3. incremental, i.e. by work units that deliver value;

4. frequent customer feedback;

5. just in time detailed requirements.

The waterfall model is characterized by the

following arrangement, where phases are

successively applied to the single group of work
units:

(Lm …_(L2_(L1_(P1 , … , Pn)))…)

The incremental lifecycle model is characterized by

the following arrangement:

(Lm …_L1)_P1,

(Lm …_L1)_P2,

… ,

(Lm …_L1)_Pn

Interestingly, the end result is “equivalent” in either

case when these functional expressions are rewritten

according to the following simple laws:

1. Associativity: X_(Y_Z) = (X_Y)_Z

2. Factoring: (X_Y),(X_Z) = X_(Y, Z)

After applying law #1, m-1 times, the waterfall

arrangement is rewritten into:

(Lm_ …_L2_L1)_(P1 , … , Pn)

FORMAL MODELING FOR DEPLOYING IMPROVEMENT AND INNOVATION IN INFORMATION
TECHNOLOGY

321

After applying law #2, n-1 times, the incremental

arrangement is rewritten into:

(Lm_ …_L2_L1)_(P1 , … , Pn)

Each phase has been applied to the initial work units
and their resulting work units. Of course, typically,

the phases of a waterfall model are not exactly the

same as those of an incremental lifecycle model.

Moreover, the result of applying

(Lm _ …L1)_P1,

has a influence on the choice of P2. The feedback

obtained from the user after producing the output of

all phases on P1 allows software developers to refine

the selection or definition of the work unit P2. In the

waterfall model, the sequence of function application

evaluation does not allow such refinement.

Modeling phases as functions allows a simple

reasoning of the behavior of phases, and to reason

about them. It also offers a concise and crisp

description of what a lifecycle model is all about.

In software engineering theory, there exists well

known lifecycle models and it is often assumed that

they are reused as is on projects. The reality is far

from that. Each project is almost unique. Lifecycle

models are never applied as is, but adapted to the

given context of a project. Each project may deserve

its own arrangement.

When a new project is planned in a large
organization, people from different backgrounds

(external consultants from various companies,

internal people from various department), are

grouped together for the duration of a project. Hence,

definitions of basic concepts must be made precise,

to guarantee some cohesion in the project team.

Thus, it is often assumed that everybody in the team

has the same vision of the lifecycle, because model

from the literature are considered to be applied

everywhere the same way. In practice, each

individual has its own interpretation of the standard
models according to his personal story.

4 HOW TO TRANSFORM

AN ORGANIZATION BY IT

INNOVATION?

4.1 How to Deploy an IT Innovation?

Deploying an IT innovation in an organization is a

significant challenge which must be addressed in a

methodical manner. An approach which is commonly

suggested is to build a “model” of the enterprise and

use it to plan the implementation of the innovation.

For instance, suppose a large bank wants to use a
new security architecture. Then, in this case, what is

a good model of the bank? It is pointless to start

modeling the bank for that purpose. Rather, what is

needed is a model of the things (products) that will

be impacted by this new innovation and a model of

the way (projects) this new innovation will be

deployed. Thus, this is why an organization needs

good maps of its existing products and projects.

Now, imagine the number of work products that one

has to analyze to conduct the impact analysis. Which

work products should be analyzed? Work products of
the products will be analyzed to see how the new

security architecture can affect them. Work products

of the on-going projects will be analyzed to see the

impact of changes on costs, schedules, and detailed

plans. These observations stress the importance of

distinguishing between projects and products, and

work products belonging to the projects and work

products belonging to the products.

The project responsible for introducing the IT

innovation will have to be structured in a very

specific way, according to the impact analysis

conducted. Its lifecycle model may be very different
from the existing projects‟. This again stresses the

fact that the arrangement of a project is very specific,

but surely inspired from generic project lifecycle

models.

4.2 What is the Real Weigh
of Deploying an IT Innovation?

Table 1 (see next page) provides a structured list of

all activities for conducting the impact analysis on an

IS, based on the distinction between projects and

products.

The real weigh of deploying an IT innovation is

the sum of the unitary weighs of all these activities

and their interactions.

This model is well adapted for Business

Information Systems, but not for real-time systems or

embedded systems, because they require a different

product lifecycle model.

5 CONCLUSIONS

In this paper, we have presented an approach to

technology evolution which is based on simple

KMIS 2009 - International Conference on Knowledge Management and Information Sharing

322

Table 1: Impact analysis activities for an IT innovation.

Product Project

Vision & Architecture
 Modeling Components Separation induced by

the candidate innovation

 Modeling Components Reusability induced

by the candidate innovation

Design & implementation
 Mapping existing systems concerned by the

candidate innovation (IT infrastructure,

applications and data bases)

 Mapping existing business concepts concerned

by the candidate innovation (Data &

Processing)

Test & pilot
 Test cases dedicated to the candidate

innovation

Operation and Support
 Models of Components needed for the

candidate innovation

Phase out
 Models of Components needed for the

candidate innovation

On-going Projects Deployment
 Impact Analysis of the candidate innovation

Starting-up Projects Deployment
 Impact of the candidate innovation on the

Project planning phase

 Impact of the candidate innovation on the

Requirements Analysis phase

 Impact of the candidate innovation on the

Design phase

 Impact of the candidate innovation on the

Development phase

 Impact of the candidate innovation on the
Integration phase

 Impact of the candidate innovation on the

Verification & Validation phase

 Impact of the candidate innovation on the

Deployment phase

 Impact of the candidate innovation on the Post

mortem phase

concepts like definition and distinction. We

advocate that generic models often cited in the

literature cannot be reused as is in an organization,

but must always be interpreted and adapted, as it is

stated in a CMMI-based approach. In order to avoid
ambiguities, confusion and misunderstanding, an

organization must build its own models using simple

definitions. These will help it in implementing

improvements and innovations, by giving the ability

to conduct proper impact analysis. We favor the use

of mathematics whenever it can help in dispelling

ambiguities.

Using definitions and distinctions is certainly not

a new approach. It is the basic foundation that any

systematic endeavor typically uses, like in science

and engineering. However, our experience is that it is

often overlooked by IT practitioners.

Our approach to innovation can be contrasted

with other approaches like enterprise architecture

(EA). Like us, EA favors the use of models and

proposes a process to conduct IT innovation. EA

architecture frameworks like TOGAF (TOGAF,

2009) provide a comprehensive set of generic models

and methods. Any potential user of TOGAF must

pick what is needed in this framework (it is too large

and too generic to be used as is). This is where we

fit, by stating that the basic concepts of these models

hould be adapted to the context of an organization

and well-defined, by applying definition and

distinction.

REFERENCES

George Spencer-Brown. Laws of Form. Allen and Unwin,
London, 1969.

Jean Maynier, Modélisation des liens sémantiques d‟un
langage métier, M.Sc. Thesis, Dept. Of Computer

Science, Université de Sherbrooke, 2003
CMMI® for Services, Version 1.2, Software Engineering

Institute, Carnegie Mellon University, USA.
Humberto Maturana. The nature of Time,

http://www.inteco.cl/biology/nature.htm
Standard for Information Technology-Software Life Cycle

Processes, IEEE press, 1995.
TOGAF v9, The Open Group Architecture Framework,

The Open Group, 2009.

FORMAL MODELING FOR DEPLOYING IMPROVEMENT AND INNOVATION IN INFORMATION
TECHNOLOGY

323

