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Abstract: Knowledge is a vital component of engineering design. Computer systems enriched with logic and 
engineering knowledge can support engineering design by automating routine configuration design 
processes. This automation is well structured in the framework concept of a Design and Engineering 
Engine, applying Knowledge Based Engineering techniques. The lack of recognized development 
methodologies implies significant investments for the development and maintenance of Design and 
Engineering Engines. To alleviate the required effort an ontology for engineering knowledge is being 
developed. To that end, a classification of configuration design processes is proposed as well as a 
classification of knowledge elements. The resulting knowledge repository can be considered a Domain 
Specific modelling Language. To validate the proposed ontology, a case study is presented, addressing an 
assignment problem in the field of wire harness design. Using the Domain Specific modelling Language, the 
source code for the product model can be generated automatically using a model-driven approach. 

1 INTRODUCTION 

Modern-day market dynamics and the current 
economic climate require an increasing industrial 
focus on lifetime cost reduction, shorter time-to-
market and greater product differentiation. In order 
to achieve the associated improvement in product 
development and remain competitive in a globalized 
market, the engineering industry needs more cutting 
edge productivity enhancements.  

While the continuous improvement of the 
production process by the application of lean 
principles is making good progress, the increase of 
the effectiveness and efficiency of the engineering 
processes by adopting lean principles is still in its 
infancy. The next step in the efficiency increase is to 
reuse corporate engineering knowledge to a larger 
extent (Drucker, 2001) (Quinn, 1992) . 

Knowledge is a vital component of engineering 
design and significant reductions in costs and 
product development time can be realized if 
engineering knowledge would be reused to a larger 
extent and more often. Where previously the 
geometric model took a central position in product 
development, today design knowledge should have 

the focus: human intellect should be managed and 
engineered as a key business asset (Drucker, 2001).  

Computer systems enriched with logic and 
engineering knowledge can support engineering by 
automating repetitive and time-consuming routine 
design processes. This reuse of knowledge decreases 
the intellectual resources required during product 
development processes and relieves engineers from 
repetitive and tedious design activities, making more 
time available to exploit their creativity and 
engineering skills. Knowledge Based Engineering 
(KBE) is known as the cross product of engineering 
and Knowledge Based Systems (KBS) and enables 
this automation of routine engineering design 
processes (La Rocca, 2002). By defining parametric 
generative models of systems, KBE enables 
designers to explore the design space more 
efficiently by automatically generating and 
analyzing new design configurations and instances. 

Although huge time and cost benefits can be 
gained, KBE techniques are not yet widely adopted 
by industry. Efficient utilisation of knowledge in 
software implies significant investments for the 
development and support of KBE applications due to 
a lack of acknowledged methodologies. In addition, 
developed applications are frequently considered 
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‘black boxes’, since the applied methods are poorly 
documented and the source code is inexpressive. 
This has a negative effect on the maintainability and 
the extendibility of such applications. 

In this paper an ontology, a structure of the 
existing knowledge categories and their relations, is 
proposed to support the implementation of a second 
generation KBE systems in industry. The ontology 
for engineering knowledge is geared towards routine 
design processes. It entails a categorisation of 
knowledge elements into product versus process 
knowledge and domain-specific versus problem-
specific knowledge. The proposed ontology aims to 
achieve better use of intellectual human resources as 
tangible asset: it enables the reuse of domain 
knowledge across multiple design problems as well 
as sharing problem related knowledge across 
multiple application fields. Repositories of 
knowledge based on the proposed ontology provide 
a platform to rapidly develop design models for 
KBE applications, reusing the knowledge already 
captured and formalised. 

2 ENGINEERING DESIGN 

Engineering design can be considered a deliberate 
search problem in a solution space for artefacts that 
satisfy functional needs within a set of constraints. 
The solution space or design space can be 
considered a range of available components and a 
set of relations between those components in order 
to form artefacts. Although the solution space can 
encompass an infinite number of solutions, in 
general only a small number of artefacts form 
feasible and satisfying, not to mention optimal, 
solutions. Such a solution to the design problem 
entails a collection of components and their 
relations, that together provide a complete 
specification of the system that delivers the 
requested functions and satisfies the constraints 
(Chandrasekaran, 1990). 

2.1 Design Problem Categorisation 

Design problem solving can be divided into routine 
and non-routine design activities, based on the 
identification and availability of the knowledge 
involved in the design process. Brown and 
Chandrasekaran identified three classes of design, 
related to the level of ‘routineness’ (Brown, 1989): 

 For the first class, Class 1 Design, neither all 
possible decompositions of the artefact nor the 
approach to solve the design problem is 
known in advance.  

 For Class 2 Design, the possible 
configurations and components are known, 
however the problem solving strategy is not. 

 For the third class, Class 3 Design, all possible 
configurations, components and design 
variables are known. Furthermore, the 
problem solving approach is acknowledged, 
resulting in the availability of so-called design 
plans. 

The three abovementioned classes of design 
correspond to the general acknowledged categories 
of design into routine design, innovative design and 
creative design as introduced by Gero (Gero, 1993). 
Here, routine design concern designs that fit within 
the space of previous solutions. Therefore in routine 
design the components and their variables, the 
constraints for those variables and the type of 
requirements are known in advance. Innovative 
designs are based on known design options, however 
the applicable range of values for the variables is 
extended. Creative design involves the definition of 
new components, variables or relations between 
components. Here, neither all components nor the 
problem solving strategy is known in advance. 
Innovative and creative design together make up the 
non-routine design problems. Typically, a 
development process for a new product will 
encompass routine, innovative and creative design 
activities. The remainder of this paper will focus on 
routine design problems. 

2.2 Routine Design Problems 

Judged by the type of components and the assembly 
of the artefact, different dimensions of routine 
design problems can be distinguished (Wielinga, 
1997). Figure 1 summarizes the most common types 
of routine design problems. It should not be 
considered an attempt to provide a comprehensive 
overview of all routine design problems. 

Starting with the most basic form of routine 
design, verification problems aim to confirm the 
validity of a synthesized artefact, where both the 
assembly as well as the components are predefined. 
Assignment problems deal with matching sets of 
resources (components in product design) with a 
fixed collection of subjects, defined as the assembly 
outline or skeleton. Example problems are the 
assignment of airplanes to terminal gates or the 
assigned queuing of travellers at airport security 
gates. Lay-out design or scheduling problems also 
involve fixed sets of components, but the outline nor 
composition of the artefact is known in advance. An 
example is the arrangement of machines for a 
factory layout. Parametric design assumes a 
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predefined assembly and is concerned with the 
assignment of values to component parameters in 
order to meet the requirements. An example is the 
sizing of an structural beam according to a static 
load case. Skeletal design is concerned with a 
continuous solution space and involves the matching 
of parametric components to a given assembly. 
Finally, configuration design involves the assembly 
of an undetermined set of parametric components to 
meet a set of requirements. An example problem is 
the design of an aircraft wing, where the 
composition as well as the values for the parameters 
belonging to the different components shall be 
determined (e.g. material, number of ribs and 
thickness of the spar web). 

Configuration design is closest to non-routine 
design problems and differs from innovative design 
by the constrained values ranges for the design 
parameters for which the problem solving strategy 
holds. 

The provided types of design problems are listed 
in order of increasing complexity. Both the amount 
of applicable components and the collection of 
settable parameters add to the degrees of freedom of 
the assembly enlarging the valid solution space. 

Since the approach, the components and the 
requirements are known for routine design problems 
they are particularly well suited for design 
automation using KBE techniques (Chandrasekaran, 
1990). 

3 KNOWLEDGE BASED 
ENGINEERING 

According to La Rocca (Milton, 2008) KBE 
concerns the development of software systems to 
support engineers, usually design engineers, to 
increase their productivity. KBE systems are 
considered a subset of Knowledge Based Systems or 
Expert Systems dedicated to engineering design and 
therefore empowered with Computer Aided Design 
(CAD) capabilities. The KBE cornerstones are 
considered to be rule-based design, object-oriented 

programming, and parametric CAD (La Rocca, 
2005). KBE systems are able to capture and reuse 
engineering product and process knowledge to 
automatically solve engineering design problems 
involving the manipulation of geometry, product 
configuration and analyses and computations.  
The main objective of KBE is reducing time and 
cost in product development by means of the 
following: 

 Automation of recurring and routine 
engineering design activities. This mainly 
involves the automation of the preceding 
routine design problems for which all related 
knowledge can be captured and formalised. 
Due to the nature of product development, it 
best suits detailed design. 

 Support and integration of multidisciplinary 
design and optimisation problems. It 
facilitates innovative and creative design since 
it concerns the definition of new components, 
design parameters and configurations in order 
to create novel solutions and investigate 
multiple ‘what-if’ scenarios. It mainly applies 
to the conceptual and preliminary phases of 
the design process. 

The automation of engineering design problems 
is well structured using the framework concept of a 
Design and Engineering Engine. 

3.1 Design and Engineering Engine 

A Design and Engineering Engine (DEE) is defined 
as an advanced design environment that supports 
and accelerates the design process of 
multidisciplinary product families through the 
automation of routine and recurring design activities 
(La Rocca, 2002). Figure 2 shows a schematic 
drawing of the DEE concept for the aerospace 
sector.  

The main components of the DEE are the 
Initiator, the Multi-Model Generator, the Analysis 
tools and the Converger & Evaluator. 

 

Figure 1: The dimensions of components and assembly drive the different types of routine design. 
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Figure 2: The Design and Engineering Engine concept. 

The Initiator is responsible for providing feasible 
initial values for the design parameters in order to 
instantiate the generative product model. 

The Multi-Model Generator (MMG) is 
responsible for instantiation of the generative 
product model and extracts different views on the 
model to facilitate the discipline specialist tools. The 
MMG is where the KBE cornerstones object-
oriented programming, parametric CAD and rule-
based design are encapsulated. It forms the heart of 
the DEE. 

The Analysis (discipline specialist) tools are 
responsible for evaluating one or several aspects of 
the design in their domain or discipline (e.g. 
structural response, cost or manufacturability). 

The Converger & Evaluator is responsible for 
checking convergence of the design solution, 
compliance of the system’s properties with the 
requirements and generation of a new design vector. 

The framework concept of the DEE provides 
engineers with a guided control mechanism to search 
the solution space. The elements of the DEE are 
addressed iteratively in order to define a feasible 
design solution satisfying the requirements 
definition. To that purpose, the framework also 
offers communication capabilities through the 
coupling of software agents using a Multi-Agent 
Task Environment (Berends, 2008). 

3.2 Multi-Model Generator 

Design engineers like to think of a system or artefact 
as a collection of components providing conceptual 
solutions to fulfil functional requirements. To 
support engineers in their perspective of design the 
MMG provides a catalogue of parametric building 
blocks, called High Level Primitives (HLPs) (La 
Rocca, 2005). They represent classes of components 

containing product related knowledge that drives the 
instantiation of individual components by assigning 
values to the parameters. The HLPs can be 
individually sized and assembled to compose a large 
number of different product configurations. 
Therefore an assembly of HLPs can be considered a 
generative product model, capable of generating 
parametric geometric representations for families of 
products with a similar composition. Next to the 
HLPs Capability modules (CMs) form the other 
main element in the MMG. CMs are ‘report writers’ 
applied to generate specific aspect views of a 
system, e.g. an aerodynamic mesh or a Finite 
Element model of an aircraft wing. The CMs 
facilitate the analysis tools representing the various 
engineering disciplines. 

Consequently, the concept of the MMG supports 
a modular approach to engineering design problems 
and offers the designers a more effective approach to 
visualize their ideas, compared to the approach 
offered by conventional CAD systems. The HLPs 
are considered principal elements storing 
engineering knowledge. Instead of geometric 
primitives incorporated by CAD systems, the MMG 
is oriented to knowledge primitives. 

4 DESIGN KNOWLEDGE 

Knowledge is defined as the state of knowing about 
a particular fact or situation and how to act 
accordingly (Hornby, 2000). Most engineering 
knowledge is not an explicitly and consistently 
defined collective, but instead is concealed in the 
processes, products, language and human specialists 
themselves which define the local engineering 
practices. This expertise should be transformed into 
a well-defined body of knowledge suitable for 
encoding into High Level Primitives and utilisation 
in KBE systems. 

When developing intelligent systems, the 
developers or knowledge engineers should have a 
good understanding of the various types of relevant 
knowledge and representation techniques that suit 
the application. Knowledge can be organised in 
many different ways, not one of them being a 
supreme theory that addresses the management of all 
human intellect. Before engineering knowledge can 
be utilised in KBE systems, it is therefore important 
to get a thorough and formal description of the 
knowledge involved.  

4.1 Knowledge Base 

In order to support the reuse of engineering 
knowledge by KBE techniques, knowledge is 
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initially captured and stored in a knowledge base, a 
repository containing a formal description of 
knowledge representing the expertise of a particular 
domain (Milton, 2008). A knowledge base has 
multiple main functions. In order to alleviate the 
effort involved in developing KBE applications the 
knowledge should be intelligible to both engineers 
and software agents. It should therefore incorporate 
two different perspectives on the design process: 

 Provide a comprehensive overview of the 
routine design process (IST); 

 Provide insight in and understanding of the 
KBE application and applied methods (SOL). 

The anatomy of a knowledge base is identical to 
the structures that underlie human expertise or 
psychological registration. Psychologists have found 
that this is based on four main elements; 
components, attributes, values and relations (Milton, 
2008). According to the Methodology and tools 
Oriented to KBE Applications (MOKA) a 
knowledge base should contain two primary types of 
diagrams to visualise these knowledge components 
(Stokes, 2001); process models and product models. 
The process model is a process flow chart or activity 
diagram. The process model focuses on the activities 
performed by actors and is oriented to the ‘input-
behaviour-output’ perspective. It mainly contains 
procedural knowledge. The product model is 
considered a composition tree. It is a product-centric 
and object-oriented model providing a hierarchical 
decomposition of the system into subassemblies and 
components. It is oriented to the ‘object-relation-
object’ perspective and mainly contains conceptual 
knowledge. 

Using both types of diagrams, two distinct 
segments of the knowledge base can be built. This 
partition complies with the contrasting perspectives 
(IST and SOL). The segments are referred to as the 
informal model and the formal model. 

The informal model is used to capture and 
validate the knowledge in close corporation with the 
domain experts. The engineering knowledge is 
represented using natural language, terminology 
from the domain under consideration and pre-
defined forms. The informal model acts as an 
analysis instrument, developed to obtain 
understanding of the domain. The objective of the 
informal part of the knowledge base is to verify the 
correctness and completeness of the knowledge 
involved in the routine design process. The concepts 
in the domain of interest are organized without any 
consideration of their role in the KBE application. 
The formal model provides a more formal view of 
the problem geared towards the involved knowledge 
engineers, developers and software agents. The 
formal model acts as blueprint for the design of the 
KBE application and uses the elements of the 

informal model to define reusable building blocks 
representing predeveloped modules of knowledge. 
The elements of the formal model form a 
specification for the software classes that 
encapsulate the engineering knowledge in the DEE. 
These elements are indeed the HLPs, specified and 
assembled to represent the generative product model 
of the MMG. Frame representations are used to 
define the characteristic attributes and specify their 
values or parameters. Besides, CMs are defined in 
accordance with the process flow description of the 
informal model. The formal model will also define 
the type of routine design problem and the 
appropriate Problem Solving Method (PSM), 
algorithm and optimisation criteria. The source code 
for the DEE can be designed based on the formal 
model and the model will provide insight in the 
composition of and reasoning behind the software 
(Larman, 2005) (Evans, 2000). 

The different perspectives for the informal and 
formal model of the knowledge base require 
different structures. Whereas there are several 
ontologies to capture engineering knowledge in 
general, ontologies specifically built to develop KBE 
applications using a model-driven approach are yet 
to be determined. Such an ontology is proposed in 
the next section. The structures of the informal and 
the formal model are sketched in Figure 3. 

4.2 Ontology Proposition for KBE 

In order to organise a body of knowledge for 
utilisation in KBE applications, an ontology, an 
armature of the existing knowledge categories and 
their relations within a domain, is proposed. It is 
based on two orthogonal categories of knowledge. 
The first category defines procedural knowledge 
versus conceptual knowledge (Stokes, 2001). 

 
Figure 3: Schematic overview of knowledge base with 
two-fold structure. 
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Procedural knowledge concerns processes, tasks and 
activities. It describes the conditions, under which 
specific tasks are performed, the order in which 
tasks are performed and the resources required to 
perform tasks. Conceptual knowledge or declarative 
knowledge concerns the description of concepts or 
components, their relation to one another and their 
properties, e.g. the attributes and parameters. 

The second category of knowledge distinguishes 
problem-solving or problem-specific knowledge 
from domain-specific knowledge. Problem-solving 
knowledge specifies how to use the factual 
knowledge about a domain to construct a solution to 
the problem (Chandrasekaran, 1997). Considering 
routine design problems, the problem solving 
knowledge might concern for example suitable 
Problem Solving Methods (PSMs), algorithms and 
control regimes for a particular type of routine 
design problem. Domain knowledge is defined as 
factual knowledge representative for a specific 
domain of interest (components, relations, 
properties, rules etc.). Figure 4 presents an 
assortment of different types of knowledge involved 
in KBE. Note that there does not exist a clear 
division between domain-specific and domain-
independent or problem-specific knowledge. For 
example, the elements object, physical object, wing, 
delta-wing and composite delta-wing are all 
abstractions of the same object in order of increasing 
domain-specificity (Chandrasekaran, 1997). 

The resulting ontology entails two taxonomic 
branches. The first branch allows for the structuring 
of domain knowledge; the second branch arranges 
problem-solving knowledge. This way, the 
knowledge repository enables captured domain 
knowledge to be shared and reused across multiple 
different design problems, whereas the knowledge 
for a particular type of design problem can be shared 
and reused across multiple domains. 

 
Figure 4: Classification of knowledge involved in KBE. 

 

5 DOMAIN-SPECIFIC 
MODELLING 

According to the previous section, a knowledge base 
embedding the proposed ontology contains two 
disjointed sets of knowledge elements that together 
can facilitate the modelling of DEEs. Developers 
can select the predeveloped modular HLPs and CMs 
and combine them with problem-solving methods to 
construct models for new KBE applications. 

Furthermore the reuse and extension of the 
knowledge elements for future KBE applications or 
DEEs is facilitated: the knowledge base can be 
applied as an environment to intuitively model and 
construct new components (HLPs), configurations or 
algorithms for specific design problems. The 
predeveloped knowledge elements from the 
knowledge base are considered the building blocks 
for formal models, like words are used in natural 
languages to compose sentences. The knowledge 
base, including the proposed ontology is therefore 
considered a Domain Specific modelling Language 
(DSL). 

A DSL enables the abstract representation of 
conceptual classes of the problem domain and is 
considered a visual dictionary of noteworthy 
abstractions, domain vocabulary and knowledge 
content of the domain under consideration (Kelly, 
2008) (Larman, 2005). While traditional modelling 
languages like the Unified Modelling Language 
(UML) aim to be as generic as possible to serve a 
broad range of domains, a DSL is carefully defined 
to allow modelling of systems within a particular 
problem domain. 

5.1 Model-Driven Design 

Since a DSL focuses on a narrow field of application 
the elements of the formal model require limited 
effort to be mapped one-on-one to equivalent 
software classes that will embed the engineering 
knowledge in source code. If the ontology of the 
knowledge base incorporates the correct syntax for 
the programming language of the KBE platform, the 
definitions of the knowledge elements also become 
intelligible to virtual machines. It has been 
demonstrated that dynamic source code generation 
can be achieved from the formal model via code 
generators (Kelly, 2008) (Van der Elst, 2008a). The 
DSL provides a visual representation of elements for 
ease of construction. Furthermore it can be reasoned 
that the DSL facilitates the model-driven design of 
KBE applications thereby increasing the level of 
abstraction of the models that define DEEs. Hence 

KEOD 2009 - International Conference on Knowledge Engineering and Ontology Development

266



 

less expertise and effort is required to develop 
correct and novel KBE applications.  

The concepts of DSL and model-driven design 
have been applied to develop a KBE application for 
the aircraft wiring harness industry.  

6 CASE STUDY: AIRCRAFT 
WIRE HARNESS DESIGN 

Aircraft electric wiring harnesses can be comprised 
of hundreds of cables and ten thousands of wires, 
providing electrical connectivity between all the 
mission and vehicle systems ensuring sufficient 
redundancy and reliability. Aircraft wiring design 
has a repetitive, time-consuming and rule-based 
nature making it a well-suited domain to implement 
KBE techniques. The development of the KBE 
application is performed in close corporation with a 
main, international partner on the aircraft electric 
wiring market, regarding both design and 
manufacturing. 

For the wiring harness design process, one of the 
key opportunities for the application of KBE is the 
assignment of signals at disconnects. At the 
disconnects, also known as production breaks, 
electrical connectors connect the different wiring 
harnesses (Figure 5). Each wiring harness connector 
can include up to 150 slots, called pins, to 
accommodate signals. The pins can vary in size, as 
do the wires transferring the individual signals. 

This process of pin assignment is considered 
routine and time-consuming due to the vast quantity 
of signals to be assigned and rework caused by 
changing input, e.g. governed by design iterations 
for the aircraft structural design. Furthermore 
separation of signals across multiple wiring harness 
segments is enforced by numerous opposing design 
rules and regulations, e.g. redundancy of flight 
controls and electro-magnetic compatibility. 

The allocation of electrical signals (subjects) to a 
collection of conducting pins at disconnects 
(resources) is considered a problem of the type 
assignment: the outline of the system, the total set of 
signals is given whereas the problem solving process 
involves the definition of the collection of pins 
(distribution, size, position etc.) that can best 
accommodate these signals. 

 
Figure 5: Connectors applied at an aircraft wire harness. 

6.1 Wire Harness Knowledge Base 

An ontology for the wire harness domain is 
developed in order to support the design of the KBE 
application. The knowledge base and the associated 
ontology are developed using the Knowledge 
Management (KM) software suite PCPACK 5, using 
the Extensible Mark-up Language XML to store the 
knowledge. The ontology used to structure the 
knowledge base is derived from the MOKA 
(meta)ontology which is by itself oriented to the 
engineering domain in general.  

Besides relationships and attributes, there are 
four types of elements constituting the ontology: 
objects (components), constraints, activities and 
rules. Concerning the pin assignment process, four 
main conceptual classes of objects are identified: 
signal, production-break, connector and pin. Note 
that signal is not a physical object. Next to the 
conceptual classes, the ontology also contains the 
definition of relevant classes of software objects. 
These software classes contain the definition of the 
High Level Primitives according to the KBE system. 
The KBE system utilized for the development of the 
MMG is Genworks’ GDL. Both the conceptual 
classes and the software classes can be considered 
super-classes of the HLPs, as displayed by the 
taxonomy in Figure 6. 

The concept of inheritance enables the 
integration of relevant attributes for respectively the 
wire harness domain and the software development 
domain into the class definition of the HLPs. Each 
object type has a specific frame structure called 
annotation template, used to define the characteristic 
properties (attributes) of the class. By specifying the 
values of the properties, specific instances of classes 
are instantiated. 

Instances of the four object classes comprise the 
structural composition of the wire harness 
production-break and are related by the - has part - 
relationship. The geometric representation of the 
connector is based on the child ‘back-shell’. 
Although the back-shell is a component of a 
connector and therefore a conceptual class in the 
problem domain, it is not considered a primitive in 
the software domain. A back-shell is an instance of 
the software class ‘circle’ (geometrical primitive).  

By defining new classes, for example rectangular 
connectors, additional design options can be defined 
and new configurations can be generated. In the 
example of rectangular connectors, the class 
‘rectangular connector’ would be added to the 
knowledge base, while the associated back-shell 
becomes an instance of the class ‘box’, another 
geometric primitive defined by the GDL software 
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classes. The pin primitive can be reused to provide 
the rectangular connector with a set of contacts. 

The application of the functional object-oriented 
programming language enables the structure of the 
software code to resemble the composition of the 
product model in an intuitive and intelligible 
manner. The conceptual classes from the problem 
domain and the software classes from the software 
domain have become each others domain equivalent, 
describing identical domain knowledge on different 
levels of abstraction. The Knowledge Base acts as 
DSL and alleviates the effort required to implement 
knowledge into the software code embodying the 
HLPs. Hence it decreases the time required for the 
development of the application. Furthermore, 
engineers are not only capable of operating the 
design application; they will also gain better 
understanding of the Problem Solving Method the 
application uses in order to generate solutions. The 
latter has proven of critical importance for the 
successful implementation of KBE techniques (Van 
der Elst, 2008b). 

Using the resulting KBE application, the lead-
time for the pin assignment process is reduced by 
approximately 80%. 
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Figure 6: Partial knowledge base taxonomy encompassing conceptual classes and software classes. 
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