
EVOLUTIONARY PROGRAMMING GUIDED BY ANALYTICALLY
GENERATED SEEDS

Neil Crossley, Emanuel Kitzelmann, Martin Hofmann and Ute Schmid
Faculty Information Systems and Applied Computer Science, University of Bamberg, 96045 Bamberg, Germany

Keywords: Recursive functions, Analytical inductive programming, Evolutionary programming.

Abstract: Evolutionary programming is the most powerful method for inducing recursive functional programs from in-
put/output examples while taking into account efficiency and complexity constraints for the target program.
However, synthesis time can be considerably high. A strategy which is complementary to the generate-and
-test based approaches of evolutionary programming is inductive analytical programming where program con-
struction is example-driven, that is, target programs are constructed as minimal generalization over the given
input/output examples. Synthesis with analytical approaches is fast, but the scope of synthesizable programs is
restricted. We propose to combine both approaches in such a way that the power of evolutionary programming
is preserved and synthesis becomes more efficient. We use the analytical system IGOR2 to generate seeds in
form of program skeletons to guide the evolutionary system ADATE when searching for target programs. In
an evaluations with several examples we can show that using such seeds indeed can speed up evolutionary
programming considerably.

1 INTRODUCTION

Inductive programming research is concerned with
the synthesis of recursive programs from incomplete
specifications. Target programs are typically declara-
tive – mostly functional (Kitzelmann, 2009; Olsson,
1995), sometimes logical (Quinlan and Cameron-
Jones, 1995; Flener and Yilmaz, 1999). Specifica-
tions are typically given in the form of input/output
examples for the desired behavior of the target pro-
gram. In addition, constraints for code complexity or
time efficiency can be provided. There are two dis-
tinct approaches to inductive programming: analyti-
cal and evolutionary inductive programming.

Analytical inductive programming is data-driven
and often relies on specifications which consist only
of a small set of positive input/output examples. A
recursive program is learned by detecting recurrence
relations in the input/output examples and generaliza-
tion over these regularities (Summers, 1977; Kitzel-
mann and Schmid, 2006). Typically, analytical ap-
proaches are fast and they can guarantee certain char-
acteristics for the constructed program such as mini-
mality of the generalization with respect to the given
examples and termination. However, the class of
learnable programs is necessarily restricted to such
problems which can be specified by small sets of

input/output examples. The scope of learnable pro-
grams can be somewhat widened by allowing the use
of background knowledge (Kitzelmann, 2009).

Evolutionary inductive programming is based on
search through the hypothesis space of possible pro-
grams given some programming language. A hy-
pothesis is returned as a solution if it performs suffi-
ciently well on the input/output examples with respect
to some measure of fitness, typically involving code
length and time efficiency. In that sense, evolutionary
programming is a specific variant of generate and test.
The scope of programs learnable with an evolutionary
approach is, in principle, unrestricted. But, genera-
tion times are typically high and there is no guarantee
that the returned program is the optimal solution with
respect to the fitness function.

Therefore, we propose to use analytical induc-
tive programming to generate initial seeds for evolu-
tionary programming. The combination of both ap-
proaches should be such that if a solution can be gen-
erated by analytical means alone, this fast and reliable
approach should be used exclusively. If the problem
is out of scope for analytical programming, at least
a partial solution could be provided which then can
be used as input for program evolution. Based on
some initial experiments (Crossley et al., 2009), we
will present more extensive analyses in this paper.

198
Crossley N., Kitzelmann E., Hofmann M. and Schmid U. (2009).
EVOLUTIONARY PROGRAMMING GUIDED BY ANALYTICALLY GENERATED SEEDS.
In Proceedings of the International Joint Conference on Computational Intelligence, pages 197-202
DOI: 10.5220/0002286301970202
Copyright c© SciTePress

In the following, we first describe the evolutionary
programming system ADATE and the analytical pro-
gramming system IGOR2 (Kitzelmann, 2009). After-
wards we will introduce different strategies for the an-
alytical generation of program seeds with IGOR2 and
their incorporation in ADATE. We will report results
of our first experiments and give a short conclusion.

2 ADATE

ADATE (Olsson, 1995; Vattekar, 2006) was initially
proposed in the nineties and has been continually ex-
tended. To our knowledge, it is the most powerful ap-
proach to inductive programming which is currently
available. ADATE constructs programs in a subset of
the functional language ML, called ADATE-ML. The
problem specification presented to ADATE consists
of: a set of data types and a set of primitive functions;
a set of sample inputs; an evaluation function; an ini-
tial declaration of the goal function f . Sample inputs
typically are input/output pairs. It is enough to give
only positive examples, but it is additionally possible
to provide negative examples. There are a number of
predefined evaluation functions, each using different
measures for syntactic complexity and time efficiency
of the goal program. These are completed by a call-
back evaluation function given in the problem specifi-
cation which evaluates the return value of an inferred
function for a given input example. In general, the
search heuristic is to prefer smaller and faster func-
tions. As is typical for evolutionary approaches, there
are sets of individuals which are developed over gen-
erations such that fitter individuals have more chances
to reproduce. If no additional knowledge is provided,
in contrast to usual approaches, ADATE starts with a
single individual – the empty function f .

The function declarations of all constructed pro-
gram candidates use the declaration of f , differing
only in the program body. To construct program
bodies, only the programming constructs available in
ADATE-ML can be used together with additionally
data types and primitive functions provided in the
problem specification.

The search operators are transformations used in
reproduction to generate new individuals. These
transformations include: replacements of expressions
in the program body, abstraction of expressions by
introducing a call to a newly introduced function,
distributing a function call currently outside a case
expression over all cases, and altering the number
and type of function arguments by various embed-
ding techniques. From these ADATE constructs com-
pound transformations, consisting of multiple atomic

transformations, depending on the current stage of the
search. Through management of an upper bound for
the number of compound transformations used to gen-
erate individuals, ADATE can employ iterative deep-
ening in its exploration of the problem space. In the
current version of ADATE crossover is realized by ap-
plying a compound transformation from one individ-
ual to another (Vattekar, 2006).

In our experiments we used ADATE with the same
set of only positive input/output examples which can
be presented to the analytical system IGOR2. No
data types and function primitives beyond ADATE-
ML were used. Performance was evaluated with the
predefined measures. Correctness was evaluated by a
user-defined all-or-nothing function. The searched-
for program f was presented either with an empty
body or with an initial seed constructed by analytical
induction. A simple example is given in figure 1.

With only the minimum necessary background
knowledge, such as necessary data types and atomic
functions, ADATE is able to find reasonable solutions
given enough time. Additional background knowl-
edge can reduce the required transformations to in-
fer correct solutions, which can also reduce search
time. However, additional background knowledge ex-
acts deeper insights into the problem on behalf of the
problem specifier. From a programming assistance
system perspective, it would be not convenient to ex-
pect that a human programmer could provide exactly
such knowledge which would increase the speed of
generating a solution. This would presuppose (a) that
the user understands the inner workings of ADATE
and (b) has a deep insight in the programming prob-
lem at hand. From a cognitive perspective, such addi-
tional knowledge to guide ADATE’s search might be
gained by a closer inspection of the structure of the in-
put/output examples, thereby providing ADATE with
a helpful initial hypothesis.

3 IGOR2

IGOR2 (Kitzelmann, 2009) – to our knowledge – is
currently the most powerful system for analytical in-
ductive programming. Its scope of inducable pro-
grams and the time efficiency of the induction algo-
rithm compares very well with classical approaches
to inductive logic programming and other approaches
to inductive programming (Hofmann et al., 2008).
IGOR2 continues the tradition of previous work in
learning LISP functions from examples (Summers,
1977) as the successor to IGOR1 (Kitzelmann and
Schmid, 2006).

The system is realized in the constructor term

EVOLUTIONARY PROGRAMMING GUIDED BY ANALYTICALLY GENERATED SEEDS

199

Examples (represented in MAUDE notation):
sorts elem list.

ops a b c d: -> elem list [ctor].

op nil: -> list [ctor].

op _,_ : elem list -> list [ctor].

eq swap(nil) = nil.

eq swap((a,nil)) = (a,nil).

eq swap((a, b, nil)) = (b, a, nil).

swap((a, b, c, nil)) = (c, b, a, nil).

swap((a, b, c, d, nil)) = (d, b, c, a, nil).

Program induced by IGOR2:
1. swap(nil) = nil.

2. swap((X, XS)) = (last((X,XS)), sub((X,XS))).

3. last((X, nil)) = X.

4. last((X, XS)) = last(XS).

5. sub ((X, nil)) = nil.

6. sub ((X,Y,XS)) = swap((X , sub((Y,XS)))).

Best program induced by ADATE with empty seed:
fun f Xs =
case Xs of
nill => Xs

| cons(V144C, V144D) =>
case V144D of
nill => Xs

| cons(V63EC5, V63EC6) =>
case f(V63EC6) of
nill => cons(V63EC5, cons(V144C, V63EC6))

| cons(V66B8B, V66B8C) =>
cons(V66B8B, cons(V63EC5, f(cons(V144C, V66B8C))))

Figure 1: The Swap Function.

rewriting system MAUDE. Therefore, all constructors
specified for the data types used in the given exam-
ples are available for program construction. IGOR2
specifications consist of: a small set of positive in-
put/output examples, presented as equations, which
have to be the first examples with respect to the un-
derlying data type and a specification of the input data
type. Furthermore, background knowledge for addi-
tional functions can (but must not) be provided.

IGOR2 can induce several dependent target func-
tions (i.e., mutual recursion) in one run. Auxiliary
functions are invented if needed. In general, a set of
rules is constructed by generalization of the input data
by introducing patterns and predicates to partition the
given examples and synthesis of expressions comput-
ing the specified outputs. Partitioning and search-
ing for expressions is done systematically and com-
pletely which is tractable even for relatively complex
examples because construction of hypotheses is data-
driven. An example of a problem specification and a
solution produced by IGOR2 is given in figure 1.

Considering hypotheses as equations and apply-
ing equational logic, the analytical method assures
that only hypotheses entailing the provided example
equations are generated. However, the intermediate
hypotheses may be unfinished in that the rules contain
unbound variables in the right-hand side (rhs), i.e., do

not represent functions. The search stops, if one of the
currently best hypotheses is finished, i.e., all variables
in the rhss are bound.

IGOR2’s built-in inductive bias is to prefer fewer
case distinctions, most specific patterns and fewer re-
cursive calls. Thus, the initial hypothesis is a sin-
gle rule per target function which is the least gen-
eral generalization of the example equations. If a rule
contains unbound variables, successor hypotheses are
computed using the following operations: (i) Parti-
tioning of the inputs by replacing one pattern by a
set of disjoint more specific patterns or by introduc-
ing a predicate to the righthand side of the rule; (ii)
replacing the righthand side of a rule by a (recursive)
call to a defined function (including the target func-
tion) where finding the argument of the function call
is treated as a new induction problem, that is, an aux-
iliary function is invented; (iii) replacing subterms in
the righthand side of a rule which contain unbound
variables by a call to new subprograms.

Refining a Pattern. Computing a set of more spe-
cific patterns, case (i), in order to introduce a case
distinction, is done as follows: A position in the pat-
tern p with a variable resulting from generalising the
corresponding subterms in the subsumed example in-
puts is identified. This implies that at least two of the
subsumed inputs have different constructor symbols
at this position. Now all subsumed inputs are parti-
tioned such that all of them with the same constructor
at this position belong to the same subset. Together
with the corresponding example outputs this yields a
partition of the example equations whose inputs are
subsumed by p. Now for each subset a new initial hy-
pothesis is computed, leading to one set of successor
rules. Since more than one position may be selected,
different partitions may be induced, leading to a set of
successor rule-sets.

For example, let

reverse([]) = []
reverse([X]) = [X]
reverse([X ,Y]) = [Y,X]

be some examples for the reverse-function. The pat-
tern of the initial rule is simply a variable Q, since
the example input terms have no common root sym-
bol. Hence, the unique position at which the pattern
contains a variable and the example inputs different
constructors is the root position. The first example in-
put consists of only the constant [] at the root position.
All remaining example inputs have the list constructor
cons as root. Put differently, two subsets are induced
by the root position, one containing the first example,
the other containing the two remaining examples. The
least general generalizations of the example inputs of

IJCCI 2009 - International Joint Conference on Computational Intelligence

200

these two subsets are [] and [Q|Qs] resp. which are the
(more specific) patterns of the two successor rules.

Introducing (Recursive) Function Calls and Aux-
iliary Functions. In cases (ii) and (iii) help func-
tions are invented. This includes the generation of
I/O-examples from which they are induced. For case
(ii) this is done as follows: Function calls are intro-
duced by matching the currently considered outputs,
i.e., those outputs whose inputs match the pattern of
the currently considered rule, with the outputs of any
defined function. If all current outputs match, then
the rhs of the current unfinished rule can be set to a
call of the matched defined function. The argument
of the call must map the currently considered inputs
to the inputs of the matched defined function. For case
(iii), the example inputs of the new defined function
also equal the currently considered inputs. The out-
puts are the corresponding subterms of the currently
considered outputs.

For an example of case (iii) consider the last two
reverse examples as they have been put into one sub-
set in the previous section. The initial rule for these
two examples is:

reverse([Q|Qs]) = [Q2|Qs2] (1)

This rule is unfinished due to the two unbound vari-
ables in the rhs. Now the two unfinished subterms
(consisting of exactly the two variables) are taken as
new subproblems. This leads to two new examples
sets for two new help functions sub1 and sub2:

sub1([X]) = X sub2([X]) = []
sub1([X ,Y]) = Y sub2([X ,Y]) = [X]

The successor rule-set for the unfinished rule contains
three rules determined as follows: The original unfin-
ished rule (1) is replaced by the finished rule:

reverse([Q|Qs]) = [sub1([Q|Qs] | sub2[Q|Qs]]

And from both new example sets an initial rule is de-
rived.

Finally, as an example for case (ii), consider the
example equations for the help function sub2 and the
generated unfinished initial rule:

sub2([Q|Qs] = Qs2 (2)

The example outputs, [], [X] of sub2 match the first
two example outputs of the reverse-function. That is,
the unfinished rhs Qs2 can be replaced by a (recur-
sive) call to the reverse-function. The argument of
the call must map the inputs [X], [X ,Y] of sub2 to the
corresponding inputs [], [X] of reverse, i.e., a new help
function, sub3 is needed. This leads to the new exam-
ple set:

sub3([X]) = []
sub3([X ,Y] = [X]

The successor rule-set for the unfinished rule contains
two rules determined as follows: The original unfin-
ished rule (2) is replaced by the finished rule:

sub2([Q|Qs] = reverse(sub3([Q|Qs]))

Additionally it contains the initial rule for sub3.

4 ANALYTICALLY GENERATED
SEEDS FOR PROGRAM
EVOLUTION

As proposed above, we want to investigate whether
using IGOR2 as a preprocessor for ADATE can speed-
up ADATE’s search for a useful program. Further-
more, it should be the case that the induced program
should be as least as efficient as a solution found unas-
sisted by ADATE with respect to ADATE’s evaluation
function. Obviously, coupling of IGOR2 with ADATE
becomes only necessary in such cases where IGOR2
fails to generate a completed program. This occurs if
IGOR2 was presented with a too small set of examples
or if analytically processing the given set of examples
is not feasible within the given resources of memory
and time. In these cases IGOR2 terminates with an in-
complete program which still contains unbound vari-
ables in the body of rules, namely, with missing re-
cursive calls or auxiliary functions.

To have full control over our initial experiments,
we only considered problems which IGOR2 can solve
fully automatically. We artificially created partial so-
lutions by replacing function calls by unbound vari-
ables. We investigated the following strategies for
providing ADATE with an initial seed:

For a given ADATE-ML program of the form
fun f (...) : myType = raise D1
fun main (...) : myType = f (...)

• the function f is redefined using the partial solu-
tion of IGOR2,

• or the problem space becomes restricted from the
top-level by introducing the partial solution in the
function main.

• Any IGOR2 induced auxiliary functions can also
be included: as an atomic, predefined function to
be called by f or as an inner function of f also
subject to transformations.

EVOLUTIONARY PROGRAMMING GUIDED BY ANALYTICALLY GENERATED SEEDS

201

5 EXPERIMENTS

We presented examples of the following problems to
IGOR2:

addition(X, Y) = Z iff Z is the sum of the two non-negative natural num-
bers X and Y. X,Y and Z are represented using peano numbers.

even integer(X) is true iff X is an even number. X is a non-negative integer.

even peano(X) is true iff X is an even number. X is a non-negative peano
number.

even pos(X) = Y iff Y is a list containing all elements on even positions in
list X.

insert(X,Y) = Z iff X is a list of elements sorted in an ascending order and
Z is a list of elements X + Y sorted in an ascending order.

last(X) = Y iff Y is identical to list X without its last element.

lasts(X) = Y iff X is a list of lists and Y is a list containing the last element
of each list in X in the order those lists appear in X.

length integer(X) = Y iff there are Y elements in the list X. Y is an integer.

length peano(X) = Y iff there are Y elements in the list X. Y is a peano
number.

member(X,Y) is true iff X is also an element in the list Y.

multlast(X) = Y iff Y is a list of equal length as the list X and all its ele-
ments are identical to the last element in X.

reverse(X) = Y iff Y is a list containing the same elements as X, only in the
reverse order.

shiftL(X) = Y iff the list Y is identical to the list X, except that the first
element in X is on the last position in Y and all other elements are
shifted one position to the left.

shiftR(X) = Y iff the list Y is identical to the list X, except that the last
element in X is on the first position in Y and all other elements are
shifted one position to the right.

swap(X) = Y iff the list Y is identical to the list X, except that the first and
last element are swapped in around in Y.

swapalt(X) = Y iff the list Y is a permutation of the list X, created by alter-
natingly removing the last and first element of X and adding them onto
the end of the empty list.

switch(X) = Y iff the list Y can be obtained from the list X by switching
every second in X with the previous element.

switch2in3(X) = Y iff the list Y can be obtained from the list X by switch-
ing the second element and every third thereafter with the previous ele-
ment in X.

To generate an initial seed for ADATE, typically
the righthand side of a recursive rule was replaced by
an unbound variable. For example, the solution for
switch provided by IGOR2 was

switch ([]) = []
switch ([X]) = [X]
switch ([X,Y|XS]) = [Y, X, switch(XS)]

and the third rule was replaced by

switch ([X,Y|XS]) = Z.

 0.01

 0.1 1

 10

 100

 1000

 10000

 100000

 1e+
06

addition even_integer

even_peano
evenpos insert
last
lasts
length_integer

length_peano

m
em

ber m
ultlast reverse shiftL

shiftR
swap
swapalt switch
switch2in3

Creation in CPU Time (seconds)

F
unctional P

roblem
s

unassisted
refine

restrict

Figure 2: Creation times of best solutions.

If IGOR2 induced solutions with auxiliary func-
tions, either the function calls on the righthand side
of the rules were made known to ADATE (see Sect. 4)
or this information was obscured by again replacing
the complete righthand side by a variable.

For example, for swap, IGOR2 inferred one
atomic function last and inferred that the solution
consists of two functions that recursively call each
other as shown in figure 1. ADATE was presented with
the rule 1, 2, 5 and 6 from figure 1 where the righthand
side of rule 6 was replaced with an unbound variable.

The results were ascertained by analysing the log
files produced to document an ADATE run.1 To effec-
tively compare the specifications we evaluated each
according to the time taken to generate the most cor-
rect functions. Because ADATE infers many incorrect
programs in the search process, we restricted our fo-
cus to those programs that:

• were tested by ADATE against the complete set
of given training examples,

• terminated for each training example, and

• generated a correct output for each example.

This allowed us to achieve a meaningful overview
of the performance of the specifications. For the anal-
ysis of the ADATE runs we considered the following
information:

• the elapsed time since the start of the search until
the creation of the program,

• the breakdown of the results the function pro-
duced for the examples, which in our case is the
number of results evaluated as correct, incorrect
or timed-out. Due to our evaluation restrictions,
we filtered out all inferred functions which did not
attain 100% correct results with the test examples.

1Technical details are given in a report by N. Crossley
available at http://www.cogsys.wiai.uni-bamberg.de/teach-
ing/ss07/p cogsys/adate-report.pdf.

IJCCI 2009 - International Joint Conference on Computational Intelligence

202

Table 1: Overview of the solutions inferred by ADATE.

Rules Auxiliars # Rules
neither better than unassisted

addition 2 0 0
insert 3 0 0

only redefined better than unassisted
member 3 0 0
shiftR 2 2 (init, last) 4
switch2in3 4 0 0

only restricted better than unassisted
even peano 3 0 0
evenpos 3 0 0
lasts 3 0 0
length peano 2 0 0
multlast 2 1 (last) 2
reverse 2 2 (last, revbutlast) 4
shiftL 3 0 0

both redefined and restricted better than unassisted
even integer 3 0 0
last 2 0 0
length integer 2 0 0
swap 2 2 (last, sub) 4
swapalt 3 2 (ilast, take2nd) 4
switch 3 0 0

• an ADATE time evaluation of the inferred func-
tion. This is the total execution time taken by the
function for all the test examples as defined by
ADATES built in time complexity measure.
In most cases – with the exception of addition

and insert – presenting ADATE with seeds gener-
ated by IGOR2 resulted in faster inference times (see
Figure 2).

A closer look at the results shows that quite a few
problems benefited from both specification types – re-
definition of the goal function f with a program skele-
ton as well as restriction of ADATE’s search space by
introducing the skeleton into the main program (see
Table 1). In most cases, it is clear that the right speci-
fication assistance improves the inference time for the
best possible function. Gaining additional knowledge
from the provided information, even using automatic
analytical methods such as IGOR2, assists ADATE in
producing acceptable results quicker than otherwise
would be the case. Unfortunately, it is not clear which
characteristic clearly categorises the problems into
separate groups.

6 CONCLUSIONS

We presented experiments where we can show that
providing evolutionary programming with analyti-
cally constructed seeds constrains program synthe-
sis such that search time can considerably reduced.
We compared two possibilities for providing ADATE

with program skeletons constructed with our analyt-
ical system IGOR2 and we could show that both ap-
proaches can improve performance. However, up to
now we have not found a unique criterion to decide
when to prefer which possibility. In future work we
plan to combine ADATE and IGOR2 in such a way
that IGOR2 automatically can call ADATE to help for
problems where it cannot find a recursive program by
analytical means.

REFERENCES

Crossley, N., Kitzelmann, E., Hofmann, M., and Schmid, U.
(2009). Combining analytical and evolutionary induc-
tive programming. In Goerzel, B. et al., editors, Proc.
of the 2nd Conference on Artificial General Intelli-
gence (AGI-09), pages 19–24, Amsterdam. Atlantis.

Flener, P. and Yilmaz, S. (1999). Inductive synthesis of re-
cursive logic programs: Achievements and prospects.
Journal of Logic Programming, 41(2–3):141–195.

Hofmann, M., Kitzelmann, E., and Schmid, U. (2008).
Analysis and evaluation of inductive programming
systems in a higher-order framework. In Dengel, A.,
et al., editors, KI 2008: Advances in Artificial Intel-
ligence, number 5243 in LNAI, pages 78–86, Berlin.
Springer.

Kitzelmann, E. (2009). Analytical inductive functional pro-
gramming. In Hanus, M., editor, Proc. of the 18th In-
ternational Symposium on Logic-Based Program Syn-
thesis and Transformation (LOPSTR 2008), volume
5438 of LNCS, pages 87–102. Springer.

Kitzelmann, E. and Schmid, U. (2006). Inductive synthesis
of functional programs: An explanation based gener-
alization approach. Journal of Machine Learning Re-
search, 7(Feb):429–454.

Olsson, R. (1995). Inductive functional programming using
incremental program transformation. Artificial Intel-
ligence, 74(1):55–83.

Quinlan, J. and Cameron-Jones, R. (1995). Induction of
logic programs: FOIL and related systems. New Gen-
eration Computing, Special Issue on Inductive Logic
Programming, 13(3-4):287–312.

Summers, P. D. (1977). A methodology for LISP pro-
gram construction from examples. Journal ACM,
24(1):162–175.

Vattekar, G. (2006). Adate User Manual. Technical report,
Ostfold University College.

EVOLUTIONARY PROGRAMMING GUIDED BY ANALYTICALLY GENERATED SEEDS

203

