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Abstract. An application of simultaneous perturbation stochastic approximation
(SPSA) algorithm with two measurements per iteration to the problem of object
tracking on video is discussed. The upper bound of mean square estimation er-
ror is determined in case of once differentiable functional and almost arbitrary
noises. Weak restrictions on uncertainty allow to use random sampling instead of
full pixelwise difference calculation. The experiments show significant increase
in performance of object tracking comparing to the classical Lucas-Kanade algo-
rithm. The results can be generalized to improve more recent kernel-based track-
ing methods.

1 Introduction

Object tracking on video is an important problem for security surveillance systems.
One of possible approaches to this problem is to look for a disparity vector h between
object’s locations in consequent frames In and In+1 of the video stream. Disparity vec-
tor h can include object size and other properties as well. Well known algorithm of
B. Lucas and T. Kanade [1] uses the functional of pixelwise differences in consequent
frames. Fn+1(x) =

∑
p∈On

1
w(p) ((In+1(x + p) − In(xn + p))2, where On is a set of

object’s pixels p in the n-th frame,
∑

p∈On
w(p) = 1, xn is a center of previous object’s

location, p represents the relative position of a pixel woth respect to the object’s center.
The functional needs to be minimized to find real disparity x∗n+1 = argminFn+1(x).
If the object’s locations on consequent frames have significant intersection, then the
algorithm of minimum tracking based on convex optimization can be applied to this
problem. Stochastic optimization allows to use not all the pixels of the object’s im-
age On, but some random sample Rn ⊂ On to compute the functional each iteration,
because the convergence of the algorithm can be proved in this case. This property
allows to descrease the amount of pixelwise difference measurements per algorithm it-
eration. The experiments’ results in the end of the paper show significant increase in the
performance of the method. The same approach of randomization of the pixel sample
combined with srtochastic optimization can be used in more recent kernel-based object
tracking algorithms, described in [2].

More specifically, in this article the convergence of the SPSA (simultaneous pertur-
bation stochastic optimization) algorithm of stochastic optimization class will be proved
in case of minimum tracking. The functional measurement yn = F (xn, wn) depends
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on two arguments, one of which is the actual point of measurement (in case described
above, xn = hn) and the second one is the uncertainty presented by random variable
w,

∫
P (dw) = 1. The minimization is understood in average risk setting, such that

fn(x) = EwF (x,w, n) → min.
In case of object tracking on video, we consider F (x,w, n+1) =

∑
p∈Rn

(In+1(x+
p)− In(xn + p))2, f(x, n) =

∑
p∈On

1
w(p)F (x,w, n). The average risk setting is per-

fectly suitable here, since we would like to evaluate a pixelwise difference on a ran-
domly chosen subset of pixels. We demonstrate this approach in the example provided
below, where the pixelwise difference is computed only 2 times per iteration.

Problem of functional optimization arises in many practical cases. While in some
cases extreme points could be found analytically, many engineering applications deal
with unknown functional, which can only be measured in selected points with possible
noise. In some cases functional itself could vary over time and its extreme points could
drift. In this case problem setting could be different, depending on goals of optimization
and possible measurements. In general, there are two different variants of a function
behavior over time - it has a limit function, to which it tends when time goes to infinity,
or there is no such function [3]. In this paper we consider the second variant.

Non-stationary optimization problems can be described in discrete or continuous
time. In our paper we consider only discrete time model. Let f(x, n) be a functional
we are optimizing at the moment of time n (n ∈ N). In book [4] Newton method and
gradient method are applied to problems like that, but they are applicable only in case
of two times differentiable functional and l < ∇2fk(x) < L. Both methods require
possibility of direct measurement of gradient in arbitrary point.

In real world measurement always contains noise. Sometimes the algorithms that
perfectly solve the problem on paper do not provide good estimates in practical cases.
Robustness is important in engineering applications. For problems with noise the Robbins-
Monro and Kiefer-Wolfowitz stochastic approximation algorithms were developed in
1950s. The history of development of such algorithms is described in [5, 8]. Common
approach used in these algorithms can be formalized in a following way:

θ̂n+1 = θ̂n − αnĝn(θ̂n), (1)

where {θ̂n} —is the sequence of extreme points estimates generated by algorithm, gn

— pseudo-gradient (replacing the gradient from Newton method). Pseudo-gradient has
to approximate the true gradient. The important properties of algorithms described in
this form are simplicity and recurrence. Because of these properties they are often ap-
plied in different areas.

Kiefer-Wolfowitz algorithm with randomized differences is also known as SPSA
(Simultaneous perturbation stochastic approximation). Algorithms of this type with one
or two measurements on each iteration appeared in papers of different researchers in
the end of the 1980s [9–12]. Later in the text we will refer to this class of algorithms
as SPSA for simplicity. These algorithms are known for their applicability to prob-
lems with almost arbitrary noise [8]. The measurement noise should be bounded and
only slightly correlated with perturbation on each iteration. Moreover, the number of
measurements made on each iteration is only one or two and is independent from the
number of dimensions of the state space d. This property sufficiently increases the rate
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of convergence of the algorithm in multidimensional case (d >> 1), comparing to algo-
rithms, that use direct estimation of gradient, that requires 2d measurements of function
in case if direct measurement of function gradient is impossible. Detailed review of
development of such methods is provided in [8, 13].

Stochastic approximation algorithms were initially proven in case of the stationary
functional. The gradient algorithm for the case of minimum tracking is provided in [4],
however the stochastic setting is not discussed there. Further development of these ideas
could be found in paper [3], where conditions of drift pace were relaxed. The book [5]
uses the ordinary differential equations (ODE) approach to describe stochastic approx-
imation. It addresses the issue of applications of stochastic approximation to tracking
and time-varying systems in a following way: it is proven there that when the step
size goes to zero in the same time as the number of the algorithm’s iterates over a fi-
nite time interval tends to infinity, then the minimum estimates tend to true minimum
values. This is not the case here, since we consider the number of iterates per unit of
time to be fixed. In this paper we consider application of simultaneous perturbation
stochastic approximation algorithm to the problem of tracking of the functional mini-
mum. SPSA algorithm does not rely on direct gradient measurement and is more robust
to non-random noise than gradient-based methods mentioned earlier. The most closely
case was studied in [6], but we do not use the ODE approach and we establish more
wide conditions for the estimates stabilization. In the following section we will give the
problem statement that is more general than in [3, 4], in the third section we provide
the algorithm and prove its estimates mean squared stabilization. In the last section we
illustrate the algorithm, applying it to minimum tracking in a particular system.

2 Problem Statement

Consider the problem of minimum tracking for average risk functional:

f(x, n) = Ew{F (x,w, n)} → min
x

, (2)

where x ∈ Rd, w ∈ Rp, n ∈ N, Ew{·} — mean value conditioned on the minimal
σ-algebra in which w is measurable.

The goal is to estimate θn — minimum point of functional f(x, n), changing over
time:

θn = argminxf(x, n).

Let us assume that on the iteration we can do a following measurement:

yn = F (xn, wn, n) + vn, (3)

where xn — arbitrary measurement point chosen by algorithm, wn — random values,
that are non-controlled uncertainty and vn — observation noise.

Time in our model is discrete and implemented in number of iteration n.
To define the quality of estimates we will use the following definition:
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Definition 1. [7] A random matrix (or vector) sequence {Ak, k ≥ 0} defined on the
basic probability space {Ω,F , P} is called LP -stable (p > 0) if

sup
k≥0

E‖Ak‖p < ∞.

We will use the definition 1 in case of p = 2.
Further we will consider generation of sequence of estimate {θ̂n} for problem (2),

satisfying the definition 1 for p=2, in following conditions.
We will assume that drift of the minimum point is limited in following sense:

(A) ‖θn − θn−1‖ ≤ A.

Function f(·, n) is a strictly convex function for each n:

(B) 〈∇f(x, n), x− θn〉 ≥ µ‖x− θn‖2.
Gradient ∇F (·, w, n) is Lipschitz with constant B, ∀n,∀w:

(C) ‖∇F (x,w, n)−∇F (y, w, n)‖ ≤ B‖x− y‖.
Average difference of function F (x, ·, n) in any point x for moments n and n + 1

is limited in a following way:

(D) Ew1,w2 |F (x,w1, n + 1)− F (x,w2, n)| ≤ C‖x− θn‖+ D.

(E) Local Lebesgue property for the function ∇F (w, x): ∀x ∈ Rd ∃ neigbour-
hood Ux such that ∀x′ ∈ Ux ‖∇F (w, x)‖ < Φx(w) where Φx(w) : Rp → R is
integrable by w:

∫
Rq Φx(w)dw < ∞

The last condition is necessary for the commutation of differentiation and integra-
tion operations, that is used to change order of expectation and gradient in the proof of
the theorem. For more discussions about such properties see [18].

(F) For the observation noise vn the following conditions are satisfied:

|v2n − v2n−1| ≤ σv,

or if it has statistical nature then:

E{|v2n − v2n−1|2} ≤ σ2
v .

Here we should make several notes:
1). Sequence {vn} could be of non-statistical but unknown deterministic nature. 2).

Constraint (A) allows both random and deterministic drift. In certain cases Brownian
motion could be described without tracking. Tracking is needed when there is both
determined and non-determined aspects of drift. Similar condition is introduced in [4],
it is slightly relaxed in [3]. For example it could be relaxed in a following way:

(A′) θn ≤ A1θn−1 + A2 + ξn,

where ξn is random value.
In this paper we will only consider drift constraints in form (A). Mean square sta-

bilization of estimation under condition (A) implies its applicability to wide variety of
problems.
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3 Algorithm and Stabilization of Estimates

In this section we are introducing a modification of SPSA algorithm provided by Chen
et al [16], which takes one perturbed and one non-perturbed measurement on each step.

Let perturbation sequence {∆n} be an independent sequence of Bernoulli random
vectors, with component values ±1/

√
d with probability 1

2 . Let vector θ̂0 ∈ Rd be
the initial estimation. We will estimate a sequence of minimum points {θn} with se-
quence {θ̂n} which is generated by the algorithm with fixed stepsize:





x2n = θ̂2n−2 + β∆n, x2n−1 = θ̂2n−2,

yn = F (xn, wn, n) + vn,

θ̂2n = θ̂2n−2 − α
β ∆n(y2n − y2n−1),

θ̂2n−1 = θ̂2n−2.

(4)

(G) We will further assume that random values ∆n generated by algorithm are
not dependent on θ̂k, wk , θ̂0 and on vk (if they are assumed to have random nature) for
k = 1, 2, . . . , 2n.

Let us define H = (α2B + α2

β2 D + α2

β2 σv)(βB + C) + αAB + αβB + A. Let K
and δ > 0 be constants satisfying following condition:

K = 1− 2αµ +
α2

β
B +

α2

β2
C + δ < 1.

Denote L = H2

δ + A2 + 2αβAB + α2

β2 ((β2B + D)2 + σ2
v + 2(β2B + D)σv).

Theorem 1. [15,19] . Assume that conditions (A)–(G) on functions f , F and ∇F and
values θn, θ̂n, vn, wn, yn and ∆n are satisfied. Let us further assume that constants
α, β > 0 satisfy the inequality:

0 < δ < 2αµ− α2

β
B − α2

β2
C. (5)

Then estimates provided by the algorithm (4) stabilize in mean squares and follow-
ing inequality holds:

E{‖θn − θ̂n‖2} ≤ Kn‖θ0 − θ̂0‖2 +
L(1−Kn)

1−K
. (6)

Note that Theorem 1 provides asymptotically effective value for the estimates:L̄ =
L/(1−K).

Conditions (A)–(C),(E)–(G) are standard for SPSA algorithms [8]. Earlier the proof
of the similar theorem was given in [15] with more strict conditions. See the proof of
Theorem 1 in appendix.

70



The condition (5) on α can be satisfied only when inequality 0 < α < 2µ β2

Bβ+C is

true. It follows from the result of the Theorem 1 that E{‖θn−θ̂n‖2} ≤ O(A2

α ) (α → 0)
which leads to a simple decision rule: to presume the upper bound α should tend to zero
with the same pace as A2. α can be arbitrarily close to 0, which diminishes the effects
of the gradient approximation bias and the noise.

To build the upper bound of the algorithm’s estimates error using Theorem 1, it is
needed to find α and β satisfying the condition (5), then to find δ which gives minimum
value of the fraction L

1−K . Using the resulting bound obtained, it is possible to reduce
it by applying the ideas concerning the relation of α and dreif parameters such as A
and the function parameters such as B or µ. The resulting estimates behavior will be
the trade-off between the tracking ability and noise sensitivity. The similar problem of
algorithm parameters choosing was studied in [17] for the same algorithm but in the
linear case.

4 Application to Object Tracking

Here we would like to present the derivation of the basic convergence conditions (A)-
(F), which is done considering the application of the theorem to the object tracking
problem. The problem itselkf was descibed in the beginning of the article. The condi-
tions should be true in some neighbourhood of the object.

(A) ‖xn − xn−1‖ ≤ A.

That is a constraint on the speed of object’s movement.
Function f(·, n) is a strictly convex function for each n:

(B) 〈
∑

p∈On

1
w(p)

2(In(x + p)− In−1(xn−1 + p)), x− x∗n〉 ≥ µ‖x− x∗n‖2.

This condition is about the difference between the object and the background.
Gradient ∇F (·, w, n) is Lipschitz with constant B, ∀n,∀w:

(C) ‖2In(x + p)− 2In(y + p)‖ ≤ B‖x− y‖.

This describes the local proximity of pixels in the picture.
Average difference of function F (x, ·, n) in any point x for moments n and n + 1

is limited in a following way:

(D)
∑ 1

w(p1)w(p2)
|(In(x + p1)− In−1(x + p2) + In−1(x + p1)− In−2(x + p2))

(In(x + p1)− In−1(x + p2)− In−1(x + p1) + In−2(x + p2))| ≤ C‖x− x∗n‖+ D.

This condition means that the object’s pixels are similar to each other, and in the same
time different from the background.

(E) Local Lebesgue property for the function ∇F (w, x): ∀x ∈ Rd ∃ neigbour-
hood Ux such that ∀x′ ∈ Ux ‖∇F (w, x)‖ < Φx(w) where Φx(w) : Rp → R is
integrable by w:

∫
Rq Φx(w)dw < ∞
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The last condition is necessary for the commutation of differentiation and integra-
tion operations, that is used to change order of expectation and gradient in the proof of
the theorem. For more discussions about such properties see [18].

(F) For the observation noise vn the following conditions are satisfied:

|v2n − v2n−1| ≤ σv,

or if it has statistical nature then:

E{|v2n − v2n−1|2} ≤ σ2
v .

The noise boundary depends on the light conditions and camera properties.

5 Object Tracking Example

The application of the algorithm to the problem of object tracking on video is demon-
strated by the following example. We took an image presented at the Fig. 5 as a second
image, In+1. The object is a rectangle with a picture of butterfly, of size 208x120=24960
pixels. The image In contains the object in tyhe lower-right corner. Vector h is 2-
dimensional.

Fig. 1. Experiment with tracking of an object on video.

The results are presented at the Table 1. We see significant increase in performance
gained from the application of more advanced optimization technique.

6 Conclusions

In our work we apply the SPSA-type algorithm to the problem of object tracking on
video. The novelty of the approach comes from the use of stochastic optimization in-
stead of standard pseudogradient technique to find a location of an object. SPSA does
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Table 1. The results of the experiment: amount of pixelwise difference calculation for Lucas-
Kanade and SPSA-based algorithms.

Characteristic Lucas-Kanade SPSA-based

Number of measurements per iteration 24960 2
Number of iterations 3 1201
Number of measurements 74880 2402

not require possibility of direct gradient measurement, needs only 2 function measure-
ment on each iteration and once differentiable function. Drift is only assumed to be
limited, which includes random and directed drift. It was proven that the estimation er-
ror of this algorithm is limited with constant value. The modeling was performed on a
multidimensional case.

The results show the potential performance gains of using the SPSA-type algorithms
for tracking of objects on video. Probably, more sofisticated algorithms based on op-
timization such as kernel-based methods of tracking [2] can also be improved by the
same technique. Authors want to try such application in future.
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