Robust Navigation for an Autonomous Helicopter
with Auxiliary Chattering-free Second Order Sliding
Mode Control

S. Vite-Medécigo, Ernesto Olguin-Diaz and Vicente Parra-Vega

Robotics and Advanced Manufacturing
Research Center for Advanced Studies—CINVESTAV, Saltillo, Mexico

Abstract. This paper presents a novel technic for autonomous flight and naviga-
tion control of AAVs, particularly useful for helicopters. Three servo-loop con-
troller are introduced to yield stable robust regulation. The inner control loop is
based on an LQR regulator designed over the linearized plant at hover to guar-
antee close-loop stability. The middle loop is a feedback linearization controller
based on the close-loop linearized system to cope with the underactuated nature
of the helicopter, by guaranteing an asymptotically stable zero dynamics. Finally
the outer control loop enforces a tracking second-order sliding-mode for cartesian
position and heading navigation outputs. The simplicity of this control proposal
allows easier and intuitive guidelines to tune feedback gains while the chattering-
free sliding-mode fulfills basic robustness properties, ideal for this complex sys-
tems subject to external disturbances like wind gusts.

1 Introduction

Automatic flying vehicles, also known as Autonomous Aerial Vehicle (AAV), repre-
sents a huge field of applications in particular for advanced automatic control techniques
because human intervention is considered difficult or dangerous. There are wide civil
and military interests in helicopters, like traffic surveillance, air pollution monitoring,
area mapping, agricultural applications, exploration, scientific data collection, search
and rescue.

Among the AAVS, the rotary wing AAVs such as the helicopter has the advantage
of having the ability to perform different flight regimes like hover, backward, lateral
of pure vertical flight, in contrast to fix wing such as typical airplanes. However, heli-
copters are underactuated mechanisms whose dynamic model exhibits high nonlinear-
ities with physical parameters hard to measure precisely. The operational versatility of
helicopters requires complex controllers to achieve such flight regimes.

We can classify two type of controllers. One uses the full dynamic modeling with
simple model-free controllers; the second assumes simple dynamic modeling used in
complex controllers design. In the former case, due to the complexity of the full dy-
namic model of helicopters and unknown aerodynamic/aeroelastic parameters, model-
based controllers are hard to implement and then simpler control laws based on lin-
earized plant are preferred. Since this approach is prone to instability due to the un-
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knowns of the dynamic plant, an auxiliarycontroller is added, typical PID-like con-
troller, which introduces limited performance becauseénefwell-known limitations of
these PID-like controllers. However this type of studies haen useful to understand
better the complexity and structural properties on realiegjions because they em-
ploy the full model with simple controllers providing cleatuitive understanding on
the stability properties of the closed-loop system. Thetatase uses simpler dynamic
models, based on restrictive academic assumptions, stick hslicopter is constrained
to move only in a subset @t%, exhibiting pseudo-flying conditions with model-based
controllers [4]. This approach guarantees very limitedqrenance in real conditions,
with limited scope of real applications.

In this paper, we focus our attention in the full dynamicaldaloof the scalar R/C
X-cell90 helicopter, and propose a novel auxiliary conénobased on a chattering-free
sliding modes, which increases the closed-loop perform&éecause it is a tracking-
designed controller with inherent robustness capalslifidnis allows to guarantee bet-
ter closed-loop performance in comparison to auxiliarytaulers based on PID-like
controllers. Simulations under external disturbances liknd gusts, wherein clearly
verifies the validity of the proposed approach.

2 Reevant Background

Complex helicopter models, [9, 12], based in the Newtoniadehof a free flying rigid
objet are restricted to measurements on the center of magsh imdeed can vary in
real conditions, neglecting at small velocities the Cdsi@ffects, thus this model is
not useful in aggressive maneuvers or wide range of opeedtitight conditions. More
over, dissipative effects on the fuselage are not takendawad that would be important
during the navigation. In [6] this Coriolis effects are taka account but simplifies the
6-DOF Inertia-Matrix to be completely diagonal. More ovegpring model is included
to describe the main rotor forces mapping to the main body ridpject modeling.
Nonetheless these models neglect the blade’s kinetic gnetdgch can be up to 20
times the one of the fuselage [1]. Thus, in hover regime thexgy must be taken in
account to give rise to a dynamic model of more than the 6 @ésgvéfreedom (DOF)
of arigid free flying object, showing the complexity of theimeotor itself. This model
is more relevant in practice since it includes this imparearergy.

On one hand the forces acted in the rigid free flying objee {tiselage) are given
mainly by the forces exerted at the main and tail rotors. Theds at the tail rotor is a
simple thrust in the direction perpendicular to the taibravhose magnitude changes
with the tail collective. On the other hand, the main rotaryides 3 Cartesian compo-
nents of the main rotor thrust given by the main rotor colecand two azimuth angles
also known as lateral and longitudinal cyclic. Then, evartlie most simplest model,
i.e.6-DOF, the full system is underactuated because the calitr@nsion is 4.

The problem of control design for this kind of systems evemcfamplex models
including all or some of the full main rotor dynamics as beddrassed extensively in
the literature, however the control of the underaction riesiapen, though it has been
addressed in [2, 13]. In particular, [14] proposes LQR-BRthniques a the linearized
model, concluding a robust regulator in a small neighbodafdhe linearized point.



LQR feedback control scheme plus an additional PID-likeutaprs loop is a pop-
ular choice because the unknown parameters and extermatkdiaces, like gust of
wind, deviates the operational point; however the popuitegral-loop may increase
the sensitivity of the system under commonly time-varyimgjutbances. In this paper,
the additional servoloop is based on a robust chatterieg€liding mode controller to
provide wider operational conditions, with better perfamoe.

3 Mathematical M odel

In contrast to the Lagrange method, the equations obtailaddemwton’s laws expressed
with velocities and acceleration measured at the bodytivelto the body’s frame and
not to the inertial one) result in a simpler representafidre difference in these repre-
sentations arise from the fact that the generalized coatelénneeded in the Lagrange
method, while having a physical meaning in the pose, the rgéimed velocity does
not have a physical meaning and neither the generalized f@ctor; at least part of
them. Equivalences between these two different reprets@msacan be obtained via the
kinematic equation, e. using the mapping operator that express the physical mganin
of velocity wrench used in Newton formulation out of the gexieed velocity vector
used in Lagrange one [5, 10].

The kinematic of a rigid single body in space is representdylloy the pose (posi-
tion and attitude) of the body with respect to an inertialgéixframeX, whereX’, is
the frame rigidly attached to the object. See Fig. 1.

Ri(6) € SO;
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Fig. 1. Inercial frameX;, and object framez,.

The rotation matrixRj € SO transfers a 3D vector from its representation in
frame X, to the inertial frameX,. The generalized position of the object, expressing
both position and attitude of the object is then defined as

02 () e ®)

whered = (z,y,2)T € R3 is the object inertial position with respect to the
Yo given by the inertial Cartesian coordinates of the origirframe X, and 6, =



(s Oy, 102)T € [—m, 7] x [-7/2,7/2] x [—m, 7] is the set of attitude parameters (in
this case the roll-pith-yaw Euler angles) bf, with respect ta¥,. For this very set of
attitude parameter the form of the rotation mafiikas a particular expression that can
be found in either [5, 10]. The vectorc R is the velocity twist which defines the lin-
ear and angular velocity of, expressed in the non-inertial framg, i.e. the velocity
measured from the object
a [V 6
v <w> e R 2)

wherev = RgTd € R is the lineal velocity of the object and € R is the angular ve-
locity of frame X, both vectors expressed in the non-inertial frateln strictly math-
ematical senséﬁgTéU #+ w, however there is a relationship given by= R};Tjgé@,
whereJg € #3%3 is a linear operator given by attitude parameters. Thenadioakhip
betweernv andq is found as follows

v=J,(q)d (3)

with J,(¢) € R6*6 being the linear operator of the kinematic equation. Thelioff
formulation for the equation of motion of a rigid object isthimg but the moment
conservation equations expressed in the non-inertialdiarterms of the kinetic energy
as
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wheref andn are the forces and torques respectively that acts over jeetpimcluding
gravity, dissipative forces and any external input forcengcon the object, and( is
the kinetic energy a& = s M, where matrix\/ € R6*¢ is thelnertia Matrix with
respect to the origin of fram&,, defined as follows:

mlz3 —mlre.x]
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which is by construction constant, positive definite andsyatricM = M” > 0. The
terms of this Inertia Matrix are the total mass of the object, the distance from the
origin of frameX, to the center of mass of the body, expressed in the body’s frame,
the inertia moment matrix, computed from the origin ot’,,, and the skew symmetric
matrix representation of the cross prodjct|b = a x b.

Equations (4)-(5), after proper algebraic manipulatiod asing the kinetic energy
expression above, can also be expressed in a single véetpuiation as

Mv +c(v) = F,

where matrixd/ € R6*6 is thelnertia Matrix with respect to the origin of framg,,,
the vectore(v) regroups all the nonlinear terms and is known as the Corielitor, and



F£(f7, nT)T = Fg + Fp + Fr is the force wrench consisting in gravity, dissipation
and thrust wrenches respectively.

Because of the quadratic nature in terms of velocity Cariedictor it can also be
expressed as product of a matrix and the velocity wreagh: = C(v)v. The matrix
C(v), referred as the Coriolis matrix may have many differentespntations, but at
last one of them fulffills the skew-symmetry propeftyv) + C(v)T = 0.

F¢, being the gravity force wrench in the objects frame, candreputed rotating
the gravity influence to the objects frarfig= mgRy” k. The gravity vector is defined

then asy(q) £ (f7; O)T. ThenFs = —g(q), where the negative sign comes from the
fact that the positiveness of the vertical axisis pointing downward, to the center of
the earth, due to convention in vessel engineering.

Fpp are the dissipation aerodynamic forces and these are byergatadratic and ho-
mogeneous to the velocity wrench. Then a possible approatiotiel these forces can
be given a¥F'r = —D (J|v||) v, where the damping matrix should be definite positive
D > 0 to fulfill passivity [10].

Finally, F;r are thrust aerodynamical wrench and are given by the infegeatthe
forces exserted by both rotors. There are 3 forces at thercefithe main rotor given
by longitudinal cyclic {:1), the lateral cyclic4-) and the collectives). Thereis also a
fourth force at the center of the tail rotar,) (See Figure 1). This mapping is given by
a constant operatds. € R¢** that can be computed from the geometry of the rotors
with respect to vehicle’s framg, asFr = Bou, with u = (u1, usg, ug, us) € R* and
B, a column full rank matrix.

The dynamic modeling of the helicopter without considetimg rotors dynamic is
then given by [10]:

My +C@)v+D(|lvl)v+g(q) = Beu (7)
v=Ju(q)q (8)

which can be expressed is state space form using the statéidefi = (¢7, v7)7.

4 Controller Design

A robust control law is necessary due to the environmentalraaf AAV, thenLQR
approach is preferred because it is an optimal criteriadbipsint control while min-
imizing energy consumption [8]. However this technic isdthen a linear model or
a linearized one, which means it works as supposed only ilopleeational pointz,,
where the linearization was computed with= x — z,,:

i = A% + Bu 9)
y=CZT (20)
In the case of the system (7)-(8) the state realization yitdd

Ay | 71U @) 7 a)
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c §R12X12 (11)
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B = {M—lB } € Ri2x4, C=[I 0]eR (12)

Remark 1.Clearly, (12) indicates that B = [0] € R6*4.

For the particular case where the operation poifhioger, i.e. x, = (qg; 0) andqg =
(x4, ya, 24, 0,0,0)T the state matrix becomes constant:

0

I
7M71 [dgqg(q)} 01 c §R12x12 (13)

A=

for the same pair®g, C). From (13) it can be seen that the linearized model at hover
operational point has all the eigenvalues at the origins ®due to the double integrator
nature of the system and the fact that the aerodynamic dissipforces are quadratic

to the velocity which becomes null at the steady state. Ttptadns the high degree of
instability of such systems.

Remark 2.Notice that the pair4, B) is controllable, then a linear state feedback
—Kz) would enforce a desired closed-loop system stability amdopmance at the
operation state:, [3].

Remark 3.The producCAB = M~ B, € ®6>4 is column full rank constant matrix,
and column full rank matrix elsewher€A(z)B = J, ! (x1)M 1B, € R*4.

4.1 Feedback Linearization

Stability of the equilibrium pointc, is only local and valid only in its very narrow
neighborhood. When the dynamic model deviates or the systeubject to bounded
unmodeled dynamics or bounded disturbances. To cope vettathauxiliary feedback
control is commonly proposed [2],

u=—Kz+wv (14)

whereK is computed via LQR feedback scheme arislan additional auxiliary control
input. Then, the linearized close-loop system can be write

t=[A—- BK]z+ Bv (15)
y=Cux (16)

wherey is only a part of the originally outpuy(= ¢), defined, as the Cartesian position
and heading only, excluding the roll and pitch attitude asgj = (z,v, 2, wz)T . The
output matrixC' = [C; 0] € R**12 with C; € R**6 has raw full rank. Notice that
CB = [0] € ®**4 still holds, consequently the first and second time dexeatof the
new output become

Ax 17)
A[A—-BK]x+ CABv (18)

Y =

<
I
Q Q)



Remark 4.Matrix CAB = C1yM~'B, € R*** is full-rank invertible matrix, thus
stable zero dynamics arise, that is the roll and pitch alitangles are stable, [7].

The Feedback Linearization controller (FL), issued from @®) would have the
form
v=[CAB]"" (v — CA[A - BK]x), (19)
yielding to a closed-loop system = @, as reported in [2]. However this is rather
awkward since the LQR state feedbaeki{ x) is canceled in (14) by this second loop.
Since it is preferable to maintain an optimal stabilizal@gulator such as the LQR in
the control loop a Partial Feedback Linearization (PFL)&psed as:

v=[CAB]™" (v — CA%) (20)
which delivers a second order coupled linearized close-fystem
y=v—CABKz (21)

Notice that dynamics C ABK z represents the a residual coupled dynamics introduced
by theoptimal LQR regulator and because of the underactuated naturesofytbtem.

4.2 Sliding-Mode Control

Let Ay = y4 — y be the output tracking error, whegg is the desired output signal, and
choosing the new second order sliding-mode controldayiven by

72 Gy — aAj + Bsoe P — Kitanh(os,) — Kas, (22)

for large enough gain& 4, K; and small error on initial conditions, with. = s, +
Ki [sgn(sy), 84 = s — sa, s = Ay + aAy andsy = soe P, 59 = s(ty). The
functiontanh(x) stands for a the sigmoid hyperbolic tangent function witt+ 0, not
necessarily large. Then, the complete control law is given b

U= [C_'AB] -1 [gd — aAjj + Bsge Pt — Kitanh(osq) — Kas, — CA2$] — Kz
(23)
Substituting (23) into (9) yields

$, = —Kys, — CABKz — K;Z (24)
for bounded?Z = tanh(os,) — sgn(sq). Finally, we can state the main result.

Theorem 1. Consider (23) into (9), then the closed loop (24) gives riseobust ex-
ponentially stable dynamics of tracking errors, under a tod¥éng-free second order
sliding modes for all time, with stable zero dynamics.

Proof. It follows closely [11],QED.

Remark 5.The state feedback stabilize locally the operation poitpdiples the close-
loop dynamics of the lateral, longitudinal, vertical, anebding navigation and pre-
serves stability of the zero dynamics. Additionally, th&ifiary control input enables a
wider operational region by adding robustness to the oMeladed loop control.



5 Results

Consider the nonlinear model of an X-cell90 R/C helicoptée linear model is com-
puted, for simulation simplification, at the operating goip = (0,0,0,0,0,0)7. In
Table 1 initial conditions and gain tuning for the outputdback sliding mode are
shown. For comparison purposed, simulation using Matlabaéso performed com-
muting the auxiliary control (14) for a properly tuned PD toh

Table 1. Initial conditions and tuning gains for the sliding-modentrol.

Initial conditions & SMC-Gains

T y z P
qo 2.1 1.05 0.11 0
do 0 0 0 0
« 3.15 3.15 4.5 15
8 1 1 1 1
ka 15.6 15.6 56.16 234
ki 3.51 3.51 27.8 52.65

Figure 2 shows the 3D trajectory and the tracking error ofilpafsition and attitude
for the helicopter when the control law is the two servo-losimilar to the one pre-
sented in [2] (FL-PD), consisting in a Feedback Linear@afjwhich also cancels de
LQR inner loop) and a PD controller. As it can be seen this Piredler cannot reject
constant disturbances as gravity. Figure 3 shows the sajeetory tracking with the
proposed Sliding-Mode robust controller in the place of i above (FL-SM). This
controller consist in a Feedback Linearization and a secoder Sliding-Mode output
feedback. It can be seen a good performance on the desirgidpascking, including
the heading (yaw angle), even in the presence of randonrli&tae forces (for gust of
winds). The roll and pitch angles, which define the zero dyinanare stable, which is
in accordance with the feedback linearization design. feigushows also the trajectory
tracking as in the previous Figures. The difference herbasih this case the middle
loop does not cancel the LQR inner loop, and the residual mijcsgare coped by the
outer second order Sliding-Mode loop. This controlleregivby (23), is called in this
work as LQR-PFL-SM. Evident differences in the performaatthe FL-PD and the
FL-SM can be seen mainly because the PD cannot overcomeaoconsgturbances as
the gravity effect. Small differences between the FL-SMesoh and LQR-PFL-SM
one can be seen at the magnitude level of the Cartesiangositicking error where
are smaller in the second, because the Sliding mode acts girdnitial conditions,
tracking almost perfectly the desired trajectory. In até there are no significative
differences founded.

6 Conclusions

Control of autonomous helicopters in the presence of enwiental and system un-
certainties is a challenging task. These uncertaintiesmigtmodify the dynamics be-
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Fig. 2. Space position trajectory tracking in 3D and pose trackingrs for a FL-PD control law.
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Fig. 3. Space position trajectory tracking in 3D and pose trackimgre for the FL-SM control
law.
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Fig. 4. Space position trajectory tracking in 3D and pose trackingre for LQR-PFL-SM control
law.



havior of the system, but also the trim inputs themselvesa\ith therefore needed
is a viable controller capable of simultaneously accomrtindall coupling features,
parametric uncertainties, and trim errors. State reptatien is necessary to perform
both tangent linearization for the design of an ideal Optistable State Feedback and
Partial Feedback Linearization for output decoupling andexaction restrictions. The
underactuated nature and the use of some part of the Feeldibaekization control in-
duce undesirable residual dynamics. A second order moeelSliding-Mode is used
to guarantee robust regulation, while preserving zero ayoatability. Representative
simulations provide appreciation of the validity of the posed approach.
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