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Abstract. Residual brain function has been documented in vegetative state 
patients, yet early prognosis remains difficult. Purpose of this study was to 
identify by artificial Neural Network procedures the significant neurological 
signs correlated to, and predictive of outcome. The best networks test set 
accuracy was 70%, 72% and 70% for the entire patients’ group and the 
posttraumatic  and non-posttraumatic subgroups, respectively. The method 
accuracy does not reflect a perfect classification, but is significantly far from 
the random or educated guess and is in accordance with the results of previous 
clinical studies. 

1 Introduction 

The Vegetative State (VS) is a clinical condition characterized by the absence of 
awareness (of self and environment), voluntary or purposeful behavioral responses to 
external stimuli, and communication in the severely brain damaged. Subjects in VS 
are otherwise awake, often with wakefulness-sleep cycles [1, 2, 3, 4, 5, 6]. Recovery 
(with varying residual disabilities) occurs only in a portion of patients; resources, 
staff, logistics and costs requirements for the care of these subjects are imposing 
irrespective of outcome. Purpose of this study was to identify by artificial intelligence 
procedures a significant model supporting decision in the early prognosis of VS 
subjects [7, 8]. It should be noted in this regard that evidence-based neurology 
indicates significant neurological signs correlated to, and predictive of outcome. 
Prognosis can be modeled as a regression, classification or survival analysis problem 
by traditional statistics or machine learning techniques [9]. This study is purposed to 
demonstrate that reliable classification models predictive of the vegetative state 
outcome prognosis can be obtained by Artificial Neural Networks (ANN) techniques. 
Section 2 of this paper outlines dataset and pre- processing; Section 3 describes the 
experimentation protocol for the training of classification models; Sections 4 and 5 
summarize and comment the results. 
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2 Data Collection and Pre-processing  

2.1 Data Collection 

Three hundred and thirty three subjects in VS consecutively admitted to the dedicated 
semi-intensive care unit of the S. Anna – RAN Institute (Crotone, Italy) over a 9-year 
period (April 1998–March 2006) were considered retrospectively. The VS was 
clinically defined in all subjects compliant to the criteria suggested by the Multi-
Society Task Force and the guidelines of the London Consensus Conference (Multi-
Society Task Force, 1994). 

For each patient, were entered in the dataset: age, sex, etiology of brain injury 
(posttraumatic or non-posttraumatic), rating at the Glasgow Coma Scale (GCS) [10] 
at admission, and twenty-two neurological signs of established relevance in coma and 
VS [11] (Tables 1) assessed by the attending physician at two-week intervals 
following procedures and criteria predefined as intrinsic to the UNI ENI ISO 
9001:2000 quality standards. Each sign was present or absent (binary attribute). The 
subjects’ condition at discharge was measured by the Glascow Outcome Scale (GOS): 
GOS1=death; GOS2=vegetative state exceeding 1 year in duration; GOS3=recovery, 
with severe disabilities; GOS4=recovery, with mild disabilities; and GOS5=full 
recovery or recovery with minimal disabilities not interfering with the everyday life 
[12]. The GOS is widely used in the evaluation of the VS outcome, but the subject’s 
assignment to any GOS class is subjected to misclassification [13] which could affect 
the training of classification models. Therefore, the first two classes and the latest two 
classes of GOS were combined into the GOS1-2 and GOS4-5 classes respectively, with 
a resulting sharper separation among classes. The prediction of outcome was 
estimated at admission and after 50, 100 and 180 days after admission. 

Table 1. Clinical signs assessed at two-week intervals and entered into the artificial neural 
network processing as potential prognostic factors. 

Decerebration 
Decortication 
Conjugated gaze deviation  
Skew eye deviation 
Blink reflex 
Cilio-spinal Reflex 
Tactile-oral Reflex 
Optic-oral Reflex 
Bulldog Reflex 
Grasping reflex 
Corneal Reflex 
Corneal-mandibular reflex 
Threat reflex 
Myotactic-cervical reflex 
Chewing reflex 
Sucking Reflex 
Oculo-cephalic reflex (with disappearance of the doll’s head phenomenon) 
Absence of spontaneous motility 
Eye tracking 
Snout Rabbit sign 
Half-moon pucker sign 
Klippel sign 
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2.2 Pre-processing 

Etiology of brain injury and the pathophysiology underlying VS are known to 
influence the outcome. The dataset inclusive of all patients and two data sub-sets of 
the posttraumatic (n=213) and non-posttraumatic patients were considered. 
Continuous numerical attributes (such as age and GCS level) were normalized in the 
interval [0;1] for each dataset; remaining attributes were binary and did not require 
pre-processing. 

3 Experimentation  

3.1 Parameter Configuration 

The classification models were structured as classical feed-forward ANN , with one or 
two hidden layers and sigmoid function activation [14, 15]. The number of neurons 
was varied among 1, 2, 4, 6, 10, 15, 20, 25, 30 and 40 for both the first and second 
hidden layer. The Stuttgart Neural Network Simulator (SNSS) was used for all the 
experimentations [16] 

The training of the ANN was performed by using the standard Back Propagation 
algorithm and the “Enhanced Back Propagation” algorithm. The latter introduces the 
previous arc weight change as a parameter for computing the new arc weight change. 
SNNS implements both algorithms with the Std_Backpropagation and 
BackpropMomentum functions. In particular, the Std_Backpropagation function 
requires the specification of the parameter η (learning rate) and dmax (maximal 
difference between expected and calculated output for each neuron). Besidea η, the 
BackpropMomentum function needs the momentum μ measuring the influence of the 
previous arc weight change on the current weight calculation. Table 2 shows the 
parameters configuration used for the training algorithms. 

Table 2. Training algorithms parameters configurations. 

Std_Backpropagation BackpropMomentum 

η dmax η Μ 

0.1 0.1 0.1 0.2 

0.3 0.2 0.3 0.8 

0.5  0.5  

0.7  0.7  

0.9  0.9  

3.2 Experimentation Protocol 

We used a Training–Validation–Test (TVT) procedure to select the best parameter 
configuration regulating both the network structure and the training algorithm 
operation. In particular, for each dataset the following steps were applied: 
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1. creation of training, validation and test set (see Table 3); 
2. for each combination of network and training algorithm parameters: 

a. execution of 200 training cycles; 
b. evaluation of network accuracy on the validation set; 
c. if the total number of  training cycles is 20000, then stop; otherwise, 

return to step a; 
3. selection of the network with the best accuracy on the validation set; 
4. evaluation of accuracy on the test set. 

At the end of the TVT procedure, we obtained three trained ANN (one for each 
dataset) with their respective accuracy on the test set. 

Table 3. Subdivision of instance among training, validation and test sets. 

Dataset Training Validation Test 

NPT Dataset 80 20 20 

PT Dataset 133 30 50 

Entire Dataset 200 53 80 

4 Results 

The best networks test set accuracy was 70%, 72% and 70% for the entire patients’ 
group and the posttraumatic  and non-posttraumatic subgroups, respectively. The best 
parameter configurations are reported in Table 4. 

Table 4. Configurations parameters of the best networks. BP: standard back propagation 
algorithm; EBP: enhanced back propagation; na: not applicable. 

Dataset 
Entire 

dataset 

PT 

dataset 

NPT 

dataset 

1st hidden layer 30 1 6 

2nd hidden layer 30 N.A. N.A. 

Training algorithm BP EBP BP 

η 0.7 0.1 0.7 

dmax N.A. N.A. 0.2 

μ 0.2 0.8 N.A. 
 

A better understanding of the classificatory performance can be obtained through 
the analysis of the confusion matrices (see Tables 5 and 6) indicating misclassified 
elements. We decided to assign instances with unclear evaluation to the 
“misclassified” class (e.g. the same instance was assigned to two classes at the same 
time with similar probability). 
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Table 5. Entire dataset confusion matrix. 

 predicted class 

Misclassified real 

class 
1_2 3 4_5 

1_2 16 1 3 2 

3 5 2 11 0 

4_5 1 0 38 0 

Table 6. Posttraumatic dataset confusion matrix. 

 predicted class 

Misclassified real 

class 
1_2 3 4_5 

1_2 6 0 0 3 

3 0 0 7 2 

4_5 0 0 30 2 

Table 7. Non-posttraumatic dataset confusion matrix. 

 predicted class 

Misclassified real 

class 
1_2 3 4_5 

1_2 8 2 0 0 

3 0 5 0 1 

4_5 1 1 1 1 

5 Comment 

The method accuracy does not reflect a perfect classification, but is significantly far 
from the random or educated guess and is in accordance with the results of previous 
clinical studies [11]. It should be noted that class GOS3 has a larger error estimate 
both in the entire dataset and in the posttraumatic sub-set. The higher 
misclassification depends on this class taking into account all patients with a severe 
motor outcome (e.g. paresis of one or more limbs), impaired consciousness (e.g. 
global amnesia) or both. GOS3 can therefore be heterogeneous and ANN are unable to 
identify a major labeling characteristic. Interestingly, test set patients with GOS3 in 
the non-posttraumatic dataset are well classified, while GOS4-5 subjects of the same 
dataset are poorly classified. The limited size of the non-posttraumatic sample does 
not allow further investigation of such phenomenon. 
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