
JAAF-S: A FRAMEWORK TO IMPLEMENT AUTONOMIC
AGENTS ABLE TO DEAL WITH WEB SERVICES

Baldoino F. dos S. Neto, Andrew D. da Costa, Carlos J. P. de Lucena
PUC-Rio, Computer Science Department, LES, Rio de Janeiro, Brazil

Viviane T. da Silva
Universidade Federal Fluminense, Computer Science Department, Niterói, Brazil

Manoel T. de A. Netto
PUC-Rio, Computer Science Department, LES, Rio de Janeiro, Brazil

Keywords: Agent, Self-adaptation, Semantic web service and Framework.

Abstract: Due to the widespread interest and deployment of web services and service-oriented architectures in
industry, it is necessary to develop systems able to, at run-time, discover, reason and select services.
Considering that agents present properties like reasoning, autonomy, pro-activity and self-adaptation, the
multi-agent system is a paradigm that fits these concerns. Agents can be used to autonomously and pro-
actively discover services, decide about the most appropriate service and adapt themselves if they face a
problem while using the selected service. In this paper we focus on a framework (Java self-Adaptive Agent
Framework for Service – JAAF-S) to implement self-adaptive agents able to adapt themselves while
searching and using web services. The framework also provides support to three main agent-related
properties: autonomy, pro-activity and reasoning. JAAF-S extends the JADE framework that already gives
support to autonomy and pro-active agents, provides reasoning methods based on rules, cases and genetic
algorithms as well as mechanisms to discover and select web services.

1 INTRODUCTION

As mentioned in (Huns, Singh et. al., 2005), service-
oriented computing (SOC) has taken hold in
business in, for instance, the use of shipping services
in e-commerce transactions; the aggregation of
hotel, car rental, and airline services; or the book-
rating services for libraries, consumers and
bookstores. Given the widespread interest and
deployment of web services and service-oriented
architectures in industry, SOC represents a
fundamental shift in the way web applications are
developed.

Therefore, it is necessary to provide techniques
to discover, invoke, compose and monitor web
services. In this context, Semantic Web Service
(SWS) (McIlraith, Son,and Zeng 2001) has been
pointed as a way to address these issues. SWS
provides a way to capture the data and metadata

associated with a service together with specifications
of its properties and capabilities, the interface of its
execution, the prerequisites and consequences of its
use.

Although SWS can solve some of the mentioned
issues, the complexity of current systems has
directed the software engineering community to look
for systems able to adjust or adapt their behavior in
response to requirement changes. Considering that
adaptive agents present properties like: reasoning,
learning, autonomy and pro-activity, multi-agent
system is a paradigm that fits on these concerns.

In order to support the creation of agents with
such capabilities, the Java Autonomic Agent
Framework for Services (JAAF-S) was proposed. It
provides mechanisms to develop self-adaptive
agents by the implementation of different self-
adaptation processes based on services. Nonetheless,
it provides reasoning methods based on rule-based

245
dos S. Neto B., da Costa A., de Lucena C., da Silva V. and de A. Netto M. (2009).
JAAF-S: A FRAMEWORK TO IMPLEMENT AUTONOMIC AGENTS ABLE TO DEAL WITH WEB SERVICES.
In Proceedings of the 4th International Conference on Software and Data Technologies, pages 245-250
DOI: 10.5220/0002259702450250
Copyright c© SciTePress

reasoning (Costa, Lucena et. al., 2008), case-based
reasoning (Amodt and Plaza, 1994) and genetic
algorithm (Mitchell, 1998), and also service
discovery and selection implementation that can be
used by the agents. JAAF-S can be instantiated to
implement, for instance, biological, ubiquitous
computing and autonomic computing systems.

This paper is organized as follow. Section 2
presents some related work. In Section 3 the Java
Autonomic Agent Framework for Service is
detailed, while Section 4 states a case study by
describing the use of the framework to help
implementation of agents capable of discovering and
selecting Web services and also able to adapt
themselves to changes in the requirement. Finally,
Section 5 concludes and presents some future work.

2 RELATED WORKS

Rainbow (Garlan, Cheng, Huang, Schmerl and
Steenkiste, 2004) uses an abstract architectural
model at runtime to monitor the properties of an
executing system, to evaluate the model for
constraint violation, and — if a problem occurs — to
perform global and module adaptations on the
running system. However, Rainbow presents two
limitations: (i) it uses mechanisms based on a fixed
self-adaptation process, based on (Dobson, S.,
Denazis et. al., 2006), to monitor and adapt the
system behavior at runtime, and (ii) it uses only
constraints (rules) to verify problems (or violations)
beyond utility functions (Petrucci and Loques, 2007)
to determine the most appropriate adaptation within
a set of applicable ones. Designed to treat these
limitations, the JAAF-S enables the elaboration of
different self-adaptation processes and provides not
only rule-based reasoning and utility functions, but
also case-based reasoning (CBR) mechanisms.
According to CBR is an efficient way to implement
some of the properties of autonomic systems. Beside
this, the JAAF-S provides support to discovery
services based on OWL-S (Martin et. al., 2009).
Such technology presents important properties to
perform automatic discovery, selection and
composition of services.

The Agent Building and Learning Environment
(ABLE) (Bigus, Schlosnagle, Pilgrim et. al., 2002)
provides an autonomic management in the form of a
multi-agent architecture; that is, each autonomic
manager is implemented as an agent or a set of
agents, thus allowing different autonomic tasks to be
separated and encapsulated into different agents.
Although ABLE provides different reasoning
mechanisms, it does not have the intention of

providing support to the elaboration of different self-
adaptation processes.

The work in (Poggi, Tomaiuolo and Turci, 2007)
proposes a framework with the aim of supporting
agent-based service oriented architecture. The
peculiar characteristic and strength of this work is
the integration of the agent technology with web
services, workflow, rule engine and semantic web.
Similar to this, the JAAF-S works with web
services, rule engine and semantic web. But in
addition our framework provides case-based
reasoning and different mechanisms to discover and
select web services.

3 JAAF-S

JAAF-S is a framework implemented by the use of
software agents and extends JADE (Bellifemine,
Caire, Trucco, Rimassa, Mungenast, 2007), a FIPA-
compliant framework to implement multi-agent
systems (MAS) developed in Java, in order to
represent four concepts: (i) agents that perform self-
adaptation, (ii) plans executed by agents
representing self-adaptation processes (or control-
loops), (iii) activities that are the steps of such
processes, and (iv) techniques that can be used to
discover and select services.

More details about the JAAF-S implementation
can be seen in the class diagram depicted in Figure
1, which illustrates the main JAAF-S classes. The
self-adaptive agents are represented by the
AdaptationAgent class and the self-adaptation
process by the PlanAdaptation class. The
PlanAdaptation class extends the JADE
FSMBehaviour class that provides support to the
implementation of finite automata composed of
activities (or behaviors) represented by the
Behaviour class. Therefore, in order to implement an
autonomic agent it is necessary to perform three
tasks: (i) create an agent by extending the
AdaptationAgent class, (ii) create new activities or
instantiate some default provided by the framework,
and (iii) create a self-adaptation process by
extending the PlanAdaptation class.
In order to work with services it is important to
instantiate MatchingSelection and SelectionStrategy
classes to give support to the discovery and selection
of services.
JAAF-S already provides a self-adaptation process,
mentioned on (Dobson, Denazis et. al., 2006),
represented by the ControlLoop class that is
composed of four activities: Collect, Analyze,
Decision and Effector, quickly introduced below.
Due to space limitations, we will detail in the

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

246

Figure 1: JAAF-S Class Diagram.

following sub-sections only the two most
important ones: analyze and decision.

Collect: It is responsible for receiving, filtering
and formatting the data provided by the sensor.
Therefore, when the sensor informs which data are
available, the agent that has received this
information should filter and format them in order to
be manipulated by others activities of the control
loop.

Analyze: The analyze activity is responsible for
providing methods to analyze the data collected in
the previous activity in order to detect problems (or
necessities) and suggest new solutions in OWL-S
description. Such descriptions provide data that are
useful in defining which services can be used in
different situations. Moreover, the framework gives
support to three reasoning mechanisms: rules, cases
and genetic algorithms. Details about this activity
are presented in Section 3.1.

Decision: This activity provides support to
automatically discover and select web services that
address the target problem (or requirement).
Initially, it receives the service descriptions
suggested by the previous activity and applies
matchmaking algorithms (Srinivasan, Paolucci,
Sycara, 2006) between such descriptions and a
semantic web service. It aims to meet services that
can be used to solve some request or problem.
Subsequently, the activity uses selection techniques
(reputation, utility function, etc.) to choose the best
services.

Effector: This activity receives the selected
services from the Decision activity, making them
understandable (for instance, by translating them) to
the application layer. The control-loop can be
executed again if any self-adaptation is necessary.

3.1 Analyze Activity

The analyze activity uses the reasoning mechanisms
provided by the AI module while analyzing the data
it collects. In order to provide a rule-based
mechanism, we use the AI module provided by
DRPMAS (Costa, Lucena et. al., 2008), which is
composed of three algorithms: fuzzy logic,
backward chaining and forward chaining. Therefore,
in order to develop these algorithms, the
ForwardChaining, BackwardChaining and
FuzzyLogic classes should be instantiated to
implement forward chaining, backward chaining and
fuzzy logic reasoning, respectively. The work of the
instantiation will be only to define the rules applied.

The second mechanism, case-based reasoning,
uses past experiences of similar problems to solve
the current problem. As past experiences can be
useful for performing self-adaptations, we have
incorporated this reasoning mechanism in the
framework. We provide an infrastructure (case-
base), which enables the storing of past experiences,
and algorithm implementations that makes it
possible to discover similar cases with the current
problem. It is necessary to instantiate the

JAAF-S: A FRAMEWORK TO IMPLEMENT AUTONOMIC AGENTS ABLE TO DEAL WITH WEB SERVICES

247

CaseBasedReasoning class and select the similarity
algorithm that will be used in order to implement
CBR.

The third mechanism, genetic algorithm,
provided by the framework, allows finding exact or
approximate solutions to optimization and search
problems. Such an approach uses techniques
inspired in evolutionary biology, such as inheritance,
mutation, selection and crossover (also called
recombination). The JAAF-S provides the
infrastructure necessary to perform such techniques.
In order to apply genetic algorithms it is necessary to
implement the GeneticAlgorithm class and elaborate
a fitness function (Mitchell, 1998).

3.2 Decision Activity

Service discovery and selection mechanisms have
played an important role in service oriented
architecture and JAAF-S provides such features.

In order to represent the discovery mechanism,
the SimilarityStrategy class implements the service
discovery matching algorithm shown in (Srinivasan,,
Paolucci, Sycara, 2006). Furthermore, the
framework also considers two attributes of the
OWL-S Profile: text description and service
parameter.

Text description briefly describes the service,
summarizes which service is offered, describes what
is necessary for the service to work and informs any
additional necessary information. The attribute
parameter represents a list of properties which
informs the quality being provided by the service.
This attribute is composed of two sub-attributes. The
first sub-attribute is the serviceParameterName,
which is the name of the current parameter, while
that the second sub-attribute, sParameter, represents
the value of the parameter.

In order to provide selection, two mechanisms
are offered by the JAAF-S: reputation and utility
function. Reputation of services is represented by
the Reputation class that is able to identify which
services are good or bad based on consumer
feedback about the quality of the service. While that
utility functions, represented by the UtilityFunction
class, it performs the selection of services based on
the quantitative level of desirability of each service.
To do so, it takes a set of OWL-S Profiles as input,
verifies the quantitative level of desirability of each
attribute in the OWL-S Profiles and outputs the
Profiles with the highest level of desirability.

3.3 Hot-spots and Frozen-spots

Since JAAF-S extends JADE, the JADE kernel is

also the kernel of JAAF-S and the hot-spots of the
JADE are the hot-spots of JAAF-S. For instance, the
process used by agents to communicate, and the
agents’ identifiers are examples of JAAF-S hot-spots
inherited from JADE.

The hot-spots specifically defined in JAAF-S
are:

Agent (AdaptationAgent Class). By extending this
class and implementing the executedPlan method, it
is possible to define different algorithms to execute
the plans of an agent.

Plan of self-adaptation (PlanAdaptation Class). It
is possible to define new control-loops (or plans)
and the sequence to execute the activities of the
control loops. JAAF-S already provides a default
control-loop implemented in the ControlLoop class.

Activities (Behaviour Class). It is possible to define
new activities to be called by the control loops by
extending the Behaviour class. JAAF-S already
offers four activities (Collect, Analyze, Decision and
Effector).

Intelligent Algorithm Module. JAAF-S offers three
kinds of algorithms: rule-based reasoning (forward
chaining, backward chaining and fuzzy logic), case-
based reasoning and genetic algorithm. These types
of algorithms can be used at any point of the system
to help with the self-adaptation.

The JAAF-S already provides one matching
algorithm based on (Srinivasan, Paolucci, Sycara,
2006) and two selection techniques one based on
reputation (Koogan and Houaiss, 1995) and other in
utility function (Petrucci and Loques, 2007).
However, we use the strategy pattern (Gamma,
Helm, Johnson and Vlissides, 1994) in order to
enable the addition of others algorithms and
techniques in the framework.

4 CASE STUDY:
SELF-ADAPTIVE PERSONAL
WEB PAGE

In this section we describe a service-oriented multi-
agent system that applies self-adaptation in order to
satisfy customers’ needs. Such needs are represented
by a user requirement ontology that is used to
discover and select the most adequate service for a
given situation.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

248

4.1 Main Idea

The implemented system provides three kinds of
services: hotel reservation, buy airline tickets and
car rental. The application begins with a customer
accessing a Web page in order to specify which
service he/she desires. Depending on the chosen
service, different information is requested. From the
data provided by the customer the system will
discover the most appropriate service to attend
him/her.

The agent responsible for receiving the
information is called Manager agent. It first
identifies the context of the desired service (hotel
reservation, buy airline tickets or car rental) and then
tries to find a Service agent able to provide the
desired service. Service agents are chosen according
to their reputations. Reputations are defined based
on feedback provided by the customers about the
quality of the services they have used.

Note that different Service agents can be used to
provide the same type of service and each agent is
responsible for managing a set of semantic web
services. Therefore, when a request is performed the
chosen agent will select which web service is the
most adequate in order to attend the customer. If the
selected web service is offline, the agent adapts to
meet another service. Otherwise, the Manager agent
is the one that should adapt in order to choose
another Service agent that can provide the requested
service.

 At the end, when a service is selected from a
Service agent, the customer executes it. After having
executed the service, the customer informs the
Manager agent whether he/she liked or not the
service provided. After the Manager agent receives
the feedback, it updates the reputation of the
executed service and forwards the feedback to the
Service agent.

 In order to clarify the tasks of the agents
provided by the application, each one is explained in
detail in following subsections.

4.2 Manager Agent

As mentioned previously, the Manager agent
receives the data provided by the customer,
identifies the context of the request and meets the
Service agent that can provide the desired service.
When a service fails while it is being provided, the
Manager agent receives the feedback from the
customer to search for another service. The Manager
agent uses the default control-loops provided by the
framework to perform these activities.

In the collect activity the agent receives the

information provided by the user. Next, in the
analyze activity the agent uses rule-based reasoning
to identify the context and send it to the decision
activity. This activity selects the Service agent that is
able to provide a service in the context required and
that has the service with best reputation. If a chosen
Service agent had a previous failure while providing
a service, its reputation is changed and compared
with the reputation of the other Service agents that
can attend the same request. Therefore, the Manager
agent adapts itself to select another Service agent.
Finally, in the effector activity the Manager agent
forwards the data provided by the user to the chosen
Service agent.

4.3 Service Agent

Each Service agent is responsible for selecting the
web service that best satisfies the customer’s
necessities. If the service selected cannot be
executed, the Service agent should perform a self-
adaptation to select another service. In order to
represent such self-adaptation, the agent applies a
control-loop composed of five steps: Collect,
Analyze, Decision, Test and Effector. Note that
different from the default control loop, the
framework JAAF was used to define another
control-loop composed of a new activity, the Test
activity.

In the collect activity the agent receives the
information provided by the Manager agent. Next,
in the analyze activity the agent uses case-based
reasoning to discover which services could be used.
The reasoner takes into account similar situations
where these services were used to select the service.
The services are then provided to the decision
activity by using the OWL-S ontology to describe
the service, by creating the profile of the desired
service

The decision activity applies matchmaking
algorithms between the OWL-S profile provided by
the analyze activity and the OWL-S profiles of the
available services also provided by the Service
agent. In the case of matching, the reputation of the
services is used to select the one that is most
reliable.

After selecting a service, it is tested in the tester
activity to assure that it is online. In the case the
service is offline, the information is stored in a
“Service with Problem” database and the decision
activity is executed again. However, when the
decision activity meets an online service, the
effector activity is executed. It is responsible for
communicating the chosen service to the application.

JAAF-S: A FRAMEWORK TO IMPLEMENT AUTONOMIC AGENTS ABLE TO DEAL WITH WEB SERVICES

249

5 CONCLUSIONS

This paper proposes a framework that provides
support to discover, reason and select web services
by the creation of self-adaptive agents, i.e., agents
able to adapt their behavior due to problems that
may occur while trying to access a service.
Nonetheless, it also provides reasoning methods
based on rules and cases algorithms that can be used
by the agents.

The applicability of such a framework can be
verified by the case study presented in Section 4.
The two different agents (Manager and Service
agent) illustrated in that section use different self-
adaptation processes while manipulating services.
One of them uses the adaptation process proposed as
default by the framework while the other instantiates
the framework by implementing another activity and
defining a different self-adaptation process in order
to test if the service is online before providing the
service to the user. Working together these agents
are able to keep the customer satisfied with the
services provided by the system.

We are in the process of defining new self-
adaptation control-loops and mechanisms able to
handle the control-loops. It is also our intention to
extend JAAF-S in order to provide a framework not
only for self-adaptation but also for self-organization
in a multi-agent environment. This framework
would guide the development of organizations
inspired by biological systems.

REFERENCES

Amodt, A. and Plaza, E., 1994, Case-based reasoning:
Foundational issues, methodological variations, and
system approaches. In AI Communications, volume
7:1, pages 39–59.

Bellifemine, F., Caire, G., Trucco, T., Rimassa, G., 2007,
Jade Programmer’s Guide.

Bigus, J. P.; Schlosnagle, D. A., Pilgrim, J. R.; et. al.
2002, .ABLE: A toolkit for building multiagent
autonomic systems. IBM Syst. J. 41, 3, 350–371.

Costa, A., Lucena, C. J. P.; Silva, V., Cowan, D.; Alencar,
P., A Hybrid Diagnostic-Recommendation System for
Agent Execution in Multi-Agent Systems, ICSOFT
2008 – 3rd International Conference on Software and
Data Technologies, Porto, Portugal, July 2008.

Dobson, S., Denazis, S., Fernández, A., Gaiti, D.,
Gelenbe, E., Massacci, F., Nixon, P., Saffre, F.,
Schmidt, N., and Zambonelli, F., 2006, A survey of
autonomic communications. ACM Transactions
Autonomous Adaptive Systems (TAAS),
1(2):223{259}.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1994,
Design Patterns : Elements of Reusable Object-
Oriented Software, Addison-Wesley Professional
Computing Series.

Garlan D., Cheng, S., Huang, A., Schmerl B. and
Steenkiste, P., 2004, Rainbow: Architecture-Based
Self Adaptation with Reusable Infrastructure. In IEEE
Computer, Vol. 37(10).

Huns, M., Singh, M., et. al., 2005. Research Directions for
Service-Oriented Multiagent Systems. IEEE Internet
Computing.

Koogan, A.,Houaiss, 1995, A.: Encyclopedia and
Dictionary. Delta Publisher.

Martin, D., et. Al. ,OWL-S: Semantic Markup for Web
Services, Last access at April 2009 ,
http://www.w3.org/Submission/OWL-S/.

McILraith, S., Son, T. and Zeng, H., 2001. Semantic Web
Services, IEEE Intelligent System.

Mitchell, M., 1998,An Introduction to Genetic Algorithms
(Complex Adaptive Systems), The MIT Press.

Petrucci, V. and Loques, O. 2007, Suporte a adaptação de
aplicações usando funções de utilidade. In 1st
Workshop on Pervasive and Ubiquitous Computing,
WPUC 2007, SBAC-PAD 2007.

Poggi, A., Tomaiuolo, M. and Turci, P. 2007, An Agent-
Based Service Oriented Architecture, WOA.

Srinivasan, N., Paolucci, M., Sycara, K., 2006, Semantic
Web Service Discovery in the OWL-S IDE,
Proccedings of the 39th Hawaii International
Conference on System Sciences.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

250

