
SELF-OPTIMIZATION PROPERTY IN AUTONOMIC
SPECIFICATION OF DISTRIBUTED MARF WITH ASSL

Emil Vassev1 and Serguei A. Mokhov2

1Lero - The Irish Software Engineering Research Center, University College Dublin, Ireland
2Computer Science and Software Engineering, Concordia University, Montreal, Quebec, Canada

Keywords: Self-optimization, Algorithms, Software engineering, DMARF, ASSL.

Abstract: In this work, we venture out to develop self-optimization features in the Distributed Modular Audio Recogni-
tion Framework (DMARF). Here, we use the Autonomic System Specification Language (ASSL) to specify a
self-optimization policy and generate the code for the same. This completes the first iteration of the autonomic
specification layer for DMARF and enables re-engineered autonomic DMARF system, which also includes
self-healing and self-protection, both developed earlier.

1 INTRODUCTION

We use the Autonomic System Specification Lan-
guage (ASSL) (Vassev, 2008) to integrate a self-
optimizing autonomic property into the Distributed
Modular Audio Recognition Framework (DMARF) –
an intrinsically complex system composed of multi-
level operational layers. This work complements our
related work on the self-protecting and self-healing
properties for the system.

Problem Statement. Distributed MARF (DMARF)
cannot be used in autonomous, partly or fully unat-
tended environments due to the lack of design pro-
vision for such a use by applications that necessitate
autonomic self-adapting requirements, such as self-
optimization. Extending DMARF to support those re-
quirements sustains a major development effort for an
open-source project.

Proposed Solution. We provide an initial proof-of-
concept ASSL specification of one of the three auto-
nomic requirements for DMARF – self-optimization.
Note that the other two, termed self-healing and
self-protection, were defined in the course of this
project (Mokhov and Vassev, 2009). Having the
ASSL specification completed would allow for the
automatic Java code generation of a special wrapper
application providing an autonomic layer to DMARF
to fulfill the stated autonomic requirements.

2 BACKGROUND

The vision and metaphor of autonomic computing
(AC) (Murch, 2004) is to apply the principles of
self-regulation and complexity hiding to software and
hardware. The AC paradigm emphasizes the reduc-
tion of the workload needed to maintain complex sys-
tems by transforming them into self-managing auto-
nomic systems. Today, a great deal of research effort
is devoted to developing AC development tools. Such
a tool is the ASSL framework, which helps AC re-
searchers with problem formation, specification, sys-
tem design, analysis and evaluation, and eventual im-
plementation.

2.1 Distributed MARF

The classic Modular Audio Recognition Framework
(MARF) (Mokhov, 2008) is an open-source research
platform and a collection of various algorithm imple-
mentations for pattern recognition, signal processing,
natural language processing (NLP), etc. written in
Java. It is purposefully arranged into a modular and
extensible framework facilitating addition or replace-
ment of algorithms for variou scientific and biometric
experiments and testing. A MARF-implementing sys-
tem can run distributively, stand-alone, or may just act
as a library in applications. The backbone of MARF
consists of pipelined stages that communicate with
each other in order to get the data they need for pro-
cessing in a chained manner. In general, the pipeline
consists of four basic stages: sample loading, prepro-

331
Vassev E. and A. Mokhov S. (2009).
SELF-OPTIMIZATION PROPERTY IN AUTONOMIC SPECIFICATION OF DISTRIBUTED MARF WITH ASSL.
In Proceedings of the 4th International Conference on Software and Data Technologies, pages 331-335
DOI: 10.5220/0002257303310335
Copyright c© SciTePress



cessing, feature extraction, and training/classification.
The classical MARF was extended (Mokhov,

2006) to allow the stages of the pipeline to run
as distributed nodes as approximately illustrated in
Figure 1. The basic stages and the front-end
were implemented without backup recovery or hot-
swappable capabilities at this point; just communi-
cation over Java RMI (Wollrath and Waldo, 2005),
CORBA (Sun Microsystems, 2004), and XML-RPC
WebServices (Sun Microsystems, 2006).

Figure 1: The Distributed MARF Pipeline.

There are a number of applications that test
MARF’s functionality and serve as examples of
how to use MARF’s modules. One of the most
prominent applications is SpeakerIdentApp – Text-
Independent Speaker Identification (who is the
speaker, their gender, accent, spoken language, etc.).
Its distributed extension is designed to support high-
volume processing of recorded audio, textual, or im-
agery data among possible pattern-recognition and
biometric applications of DMARF. Most of the em-
phasis in MARF was in audio, such as conference
recordings (Mokhov, 2007) with purpose of attribu-
tion of uttered material to speakers’ identities. Sim-
ilarly, a bulk of recorded phone conversations can
be processed in collaborating police departments for
forensic analysis and biometric subject identification.
Here through runs of MARF’s pipeline instances on
a remote machine an investigator has the ability of
uploading from, e.g., a laptop, PDA, or cellphone
collected voice samples to the servers constituting a
DMARF-implementing network.

DMARF Self-optimization Requirements

DMARF’s capture as an autonomic system primar-
ily covers the autonomic functioning of the dis-
tributed pattern-recognition pipeline and its optimiza-
tion, specifically its most computationally and I/O
intensive Classification stage. The two major func-
tional requirements applicable to large DMARF in-

stallations related to self-optimization are discussed
further:

• Training set classification data replication. A
DMARF-based system may do a lot of mul-
timedia data processing and number crunching
throughout the pipeline. The bulk of I/O-bound
data processing falls on the sample loading stage
and the classification stage. The preprocessing,
feature extraction, and classification stages also
do a lot of CPU-bound number crunching, matrix
operations, and other potentially heavy computa-
tions. The stand-alone local MARF instance em-
ploys dynamic programming to cache intermedi-
ate results, usually in the form of feature vectors,
inverse co-variance matrices, and other array-like
data. A lot of these data are absorbed by the clas-
sification stage. In the case of the DMARF, such
data may end up being stored on different hosts
that run the classification service potentially caus-
ing recomputation of the already computed data
on another classification host that did a similar
evaluation already. Thus, the classification stage
nodes need to communicate to exchange the data
they have lazily acquired among all the classifi-
cation members. Such data mirroring/replication
would optimize a lot of computational effort on
the end nodes.

• Dynamic communication protocol selection. An-
other aspect of self-optimization is automatic se-
lection of the available most efficient communica-
tion protocol in the current run-time environment.
E.g. if DMARF initially uses WebServices XML-
RPC and later discovers all of its nodes can also
communicate using say Java RMI, they can switch
to that as their default protocol in order to avoid
marshaling and demarshaling heavy SOAP XML
messages that are always a subject of a big over-
head even in the compressed form.

2.2 ASSL

The Autonomic System Specification Language
(ASSL) (Vassev, 2008) approaches the problem of
formal specification and code generation of auto-
nomic systems (ASs) within a framework. The core
of this framework is a special formal notation and a
toolset including tools that allow ASSL specifications
to be edited and validated. In general, ASSL consid-
ers ASs as composed of autonomic elements (AEs)
communicating over interaction protocols. To specify
those, ASSL is defined through the formalization of
tiers. The ASSL tiers (cf. Figure 2) are abstractions of
different aspects of any given AS. There are three ma-
jor tiers (three major abstraction perspectives), each

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

332



composed of sub-tiers:

• AS tier – forms a general and global AS perspec-
tive, where we define the general system rules
in terms of service-level objectives (SLO) and
self-management policies, architecture topology,
and global actions, events, and metrics applied in
these rules. Note that ASSL expresses policies
with fluents (special states) (Vassev, 2008).

• AS Interaction Protocol (ASIP) tier – forms a
communication protocol perspective, where we
define the means of communication between AEs.
The ASIP tier is composed of channels, commu-
nication functions, and messages.

• AE tier – forms a unit-level perspective, where we
define interacting sets of individual AEs with their
own behavior.

For more details on the ASSL multi-tier specifica-
tion model and the ASSL framework toolset, please
refer to (Vassev, 2008). Note that as part of the frame-
work validation and in the course of a new currently
ongoing research project at Lero, ASSL has been used
to specify autonomic properties and generate proto-
typing models for a few prospective autonomic sys-
tems such as the NASA ANTS concept mission (Vas-
sev et al., 2008) and others.

3 ASSL SELF-OPTIMIZATION
MODEL FOR DMARF

In our approach, we make DMARF autonomic (AD-
MARF) by adding an autonomic manager layer to the
system architecture. This layer strives to imply an au-
tonomic behavior over the entire system by imposing
self-management policies. Here, the DMARF Classi-
fication stage is augmented with a self-optimizing au-
tonomic policy. We use ASSL to specify this policy
and generate implementation for the same.

Appendix A presents a partial specification
of the ASSL self-optimization model for AD-
MARF. As specified, the autonomic behavior is en-
coded in a special ASSL construct denoted as the
SELF OPTIMIZING policy. The latter is specified at
two levels – the global AS-tier level and the level of
a single AE (the AE-tier). The algorithm behind is
described by the following elements:

• Any time when ADMARF enters in the Classi-
fication stage, a self-optimization behavior takes
place.

• The Classification stage itself forces the stage
nodes synchronize their latest cached results.

1. Autonomic System (AS)

• AS Service Level Objectives

• AS Self-Management Policies

• AS Architecture

• AS Actions

• AS Events

• AS Metrics

2. AS Interaction Protocol (ASIP)

• AS Messages & Negotiation Protocol

• AS Communication Channels

• AS Communication Functions

3. Autonomic Element (AE)

• AE Service-Level Objectives

• AE Self-Management Policies

• AE Friends

• AE Interaction Protocol (AEIP)

– AE Messages & Negotiation Protocol
– AE Communication Channels
– AE Communication Functions
– AE Managed Resource Interface

• AE Recovery Protocols

• AE Behavior Models

• AE Outcomes

• AE Actions

• AE Events

• AE Metrics

Figure 2: ASSL Multi-Tier Model (Vassev, 2008).

Here each node is asked to get the results of the
other nodes.

• Before starting with the real computation, each
stage node strives to adapt to the most efficient
currently available communication protocol.

What follows describe the ASSL specification of the
simple self-optimization algorithm revealed here.

3.1 AS Tier Specification

At this tier we specify a global system-level
SELF OPTIMIZING policy and the actions and events
supporting that policy. ASSL supports policy specifi-
cations with special constructs called fluents and map-
pings (Vassev, 2008). While the former are special
states with conditional duration, the latter simply map
actions to be executed when the system enters in such
a state.

Figure 3 depicts the AS-tier specification
of the SELF OPTIMIZING policy. As we see
the policy is triggered when the special fluent
inClassificationStage is initiated. Here, when
ADMARF enters the Classification stage at the
AS-level the enteringClassificationStage event
is prompted to initiate the inClassificationStage
fluent.

Further, this fluent is mapped to an AS-
level runGlobalOptimization action (cf. Ap-
pendix A). This action iterates over all the
Classification stage nodes specified as distinct

SELF-OPTIMIZATION PROPERTY IN AUTONOMIC SPECIFICATION OF DISTRIBUTED MARF WITH ASSL

333



AEs (cf. Section 3.2) and calls for each
node a special AE-level synchronizeResults ac-
tion (cf. Appendix A). In case of excep-
tion, the optimizationNotSucceeded event is
prompted; otherwise, the optimizationSucceeded
event is prompted. Both events terminate the
inClassificationStage fluent, and consecutively
ADMARF exits the SELF OPTIMIZING policy.

Figure 3: AS Tier SELF OPTIMIZING Policy.

To distinguish the AEs from the other AEs in
ADMARF, we specified the architecture topology of
the system. For this we used the ASARCHITECTURE
ASSL construct (Vassev, 2008). Appendix A presents
the specification of the ADMARF architecture topol-
ogy. Note that this is a partial specification depict-
ing only two AEs. The full ASARCHITECTURE spec-
ification includes all the AEs of ADMARF. As de-
picted, we specified a special group of AEs called
CLASSF STAGE with members all the AEs represent-
ing the Classification stage nodes. This group allows
the runGlobalOptimization action iterates over the
stage nodes.

3.2 AE Tier Specification

At this tier we specified the SELF OPTIMIZING pol-
icy for the Classification stage nodes. Here we spec-
ified for every node a distinct AE. Our specification
has the partial specification of two AEs, each repre-
senting a single node of the Specification stage. At
this level, self-optimization concentrates on adapting
the single nodes to the most efficient communication
protocol. Similar to the AS-level policy specification
(cf. Section 3.1), an inCPAdaptation fluent is speci-
fied to trigger such adaptation when ADMARF enters
in the Classification stage. This fluent is initiated by
the AS-level enteringClassificationStage event
(cf. Appendix A). The same fluent is mapped to
an adaptCP action to perform the needed adaptation.
This action is specified as IMPL, i.e., requiring further
implementation (Vassev, 2008). In ASSL, we specify
IMPL actions to hide complexity via abstraction. Here,
the adaptCP action is a complex structure, which ex-
planation is beyond the scope of this paper. Therefore,

we abstracted the specification of this action (through
IMPL) and provided only the prerequisite guard con-
ditions and prompted events.

4 CONCLUSIONS
We constructed a self-optimizing specification model
for ADMARF. To do so we devised an algo-
rithm with ASSL for the Classification stage of the
DMARF’s pattern recognition pipeline. When fully-
implemented, the ADMARF system will be able to
fully function in autonomous environments, be those
on the Internet, huge multimedia processing farms,
law enforcement, or simply even patter-recognition
research groups that can rely more on the availabil-
ity of their systems that run for multiple days, unat-
tended.

Future Work. Some work on both projects,
DMARF and ASSL is still on-going, that, when com-
plete, will allow a more complete realization of AD-
MARF. Some items of the future work are as follows:

• We plan on integration of the ASSL aspects such
as self-protection and self-healing with the work
to build a complete ADMARF.

• We plan on releasing the Autonomic Specification
of DMARF, ADMARF as open-source.

ACKNOWLEDGEMENTS

This work was supported in part by an IRCSET
postdoctoral fellowship grant (now termed as EM-
POWER) at University College Dublin, Ireland, by
the Science Foundation Ireland grant 03/CE2/I303 1
to Lero – the Irish Software Engineering Research
Centre, and by the Faculty of Engineering and Com-
puter Science of Concordia University, Montreal,
Canada.

REFERENCES

Mokhov, S. (2006). On design and implementation of dis-
tributed modular audio recognition framework: Re-
quirements and specification design document. [on-
line], http://arxiv.org/abs/0905.2459. Project report.

Mokhov, S. A. (2007). Introducing MARF: a modular audio
recognition framework and its applications for scien-
tific and software engineering research. In Advances
in Computer and Information Sciences and Engineer-
ing, pages 473–478. Springer Netherlands.

Mokhov, S. A. (2008). Study of best algorithm combina-
tions for speech processing tasks in machine learning

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

334



using median vs. mean clusters in MARF. In Desai,
B. C., editor, Proceedings of C3S2E’08, pages 29–43.
ACM.

Mokhov, S. A. and Vassev, E. (2009). Autonomic specifi-
cation of self-protection for Distributed MARF with
ASSL. In Proceedings of C3S2E’09, pages 175–183,
New York, NY, USA. ACM.

Murch, R. (2004). Autonomic Computing: On Demand Se-
ries. IBM Press, Prentice Hall.

Sun Microsystems (2004). Java IDL. Sun Microsystems,
Inc. http://java.sun.com/j2se/1.5.0/docs/guide/idl/in-
dex.html.

Sun Microsystems (2006). The java web ser-
vices tutorial (for Java Web Services Devel-
oper’s Pack, v2.0). Sun Microsystems, Inc.
http://java.sun.com/webservices/docs/2.0/tutorial/doc/
index.html.

Vassev, E., Hinchey, M. G., and Paquet, J. (2008). Towards
an ASSL specification model for NASA swarm-based
exploration missions. In Proceedings of the 23rd An-
nual ACM Symposium on Applied Computing (SAC
2008) - AC Track, pages 1652–1657. ACM.

Vassev, E. I. (2008). Towards a Framework for Specifica-
tion and Code Generation of Autonomic Systems. PhD
thesis, Department of Computer Science and Soft-
ware Engineering, Concordia University, Montreal,
Canada.

Wollrath, A. and Waldo, J. (1995–2005). Java RMI tuto-
rial. Sun Microsystems, Inc. http://java.sun.com/docs/
books/tutorial/rmi/index.html.

A ASSL SPECIFICATION
// ASSL self-optimization specification model for DMARF

AS DMARF {
ASSELF_MANAGEMENT {
// DMARF strives to optimize by synchronizing cached
// results before starting with the Classification Stage
SELF_OPTIMIZING {
// DMARF enters in the Classification Stage
FLUENT inClassificationStage {
INITIATED_BY { EVENTS.enteringClassificationStage }
TERMINATED_BY { EVENTS.optimizationSucceeded,

EVENTS.optimizationNotSucceeded }
}
MAPPING {
CONDITIONS { inClassificationStage }
DO_ACTIONS { ACTIONS.runGlobalOptimization }

}
}

} // ASSELF_MANAGEMENT

ASARCHITECTURE {
AELIST {AES.CLASSF_STAGE_NODE_1, AES.CLASSF_STAGE_NODE_2}
DIRECT_DEPENDENCIES {
DEPENDENCY AES.CLASSF_STAGE_NODE_1 { AES.CLASSF_STAGE_NODE_2 }
DEPENDENCY AES.CLASSF_STAGE_NODE_2 { AES.CLASSF_STAGE_NODE_1 }

}
GROUPS {
GROUP CLASSF_STAGE {
MEMBERS { AES.CLASSF_STAGE_NODE_1, AES.CLASSF_STAGE_NODE_2 }

}
}

}

ACTIONS {
ACTION runGlobalOptimization {
GUARDS { ASSELF_MANAGEMENT.SELF_OPTIMIZING.inClassificationStage }
DOES {

FOREACH member IN ASARCHITECTURE.GROUPS.CLASSF_STAGE.MEMBERS {
call IMPL member.ACTIONS.synchronizeResults

}
}
TRIGGERS {

EVENTS.optimizationSucceeded
}
ONERR_TRIGGERS {

// if error then report unsuccessful optimization
EVENTS.optimizationNotSucceeded

}
}
} // ACTIONS

EVENTS { // these events are used in the fluents specification
EVENT enteringClassificationStage { }
EVENT optimizationSucceeded { }
EVENT optimizationNotSucceeded { }

} // EVENTS
} // AS DMARF

AES {
AE CLASSF_STAGE_NODE_1 {

AESELF_MANAGEMENT {
SELF_OPTIMIZING {

FLUENT inCPAdaptation {
INITIATED_BY { AS.EVENTS.enteringClassificationStage }
TERMINATED_BY { EVENTS.cpAdaptationSucceeded,

EVENTS.cpAdaptationNotSucceeded }
}
MAPPING {

CONDITIONS { inCPAdaptation }
DO_ACTIONS { ACTIONS.adaptCP }

}
}

}

ACTIONS {
ACTION IMPL synchronizeResults {
GUARDS { AS.ASSELF_MANAGEMENT.SELF_OPTIMIZING.

inClassificationStage
}

}
ACTION IMPL adaptCP {
GUARDS { AESELF_MANAGEMENT.SELF_OPTIMIZING.inCPAdaptation }
TRIGGERS { EVENTS.cpAdaptationSucceeded }
ONERR_TRIGGERS { EVENTS.cpAdaptationNotSucceeded }

}
} // ACTIONS

EVENTS { // these events are used in the fluents specification
EVENT cpAdaptationSucceeded { }
EVENT cpAdaptationNotSucceeded { }

} // EVENTS
}
AE CLASSF_STAGE_NODE_2 {
AESELF_MANAGEMENT {
SELF_OPTIMIZING {
FLUENT inCPAdaptation {
INITIATED_BY { AS.EVENTS.enteringClassificationStage }
TERMINATED_BY { EVENTS.cpAdaptationSucceeded,

EVENTS.cpAdaptationNotSucceeded }
}
MAPPING {
CONDITIONS { inCPAdaptation }
DO_ACTIONS { ACTIONS.adaptCP }

}
}

}

ACTIONS {
ACTION IMPL synchronizeResults {
GUARDS { AS.ASSELF_MANAGEMENT.SELF_OPTIMIZING.

inClassificationStage
}

}
ACTION IMPL adaptCP {
GUARDS { AESELF_MANAGEMENT.SELF_OPTIMIZING.inCPAdaptation }
TRIGGERS { EVENTS.cpAdaptationSucceeded }
ONERR_TRIGGERS { EVENTS.cpAdaptationNotSucceeded }

}
} // ACTIONS

EVENTS { // these events are used in the fluents specification
EVENT cpAdaptationSucceeded { }
EVENT cpAdaptationNotSucceeded { }

} // EVENTS}
}

}

SELF-OPTIMIZATION PROPERTY IN AUTONOMIC SPECIFICATION OF DISTRIBUTED MARF WITH ASSL

335


