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Abstract: Profiling of application memory consumption typically includes a trade-off between overhead and accuracy.
We present a new approach for memory usage accounting which has a comparatively low overhead and still
provides meaningful results. Our approach considers the structure of modern applications by introducing
the notion of memory accounts where application modules get “charged” for memory allocations. We have
applied this approach to Java application servers and discuss important implementation aspects as well as
experimental results of our prototype.

1 INTRODUCTION

Memory consumption is often a bottleneck of large
object-oriented applications. System operators can
often merely observe the total amount of memory
consumed and have to cope with ever-increasing de-
mand for more main memory. Various layers of ab-
stractions, such as communication middleware, XML
processing, and persistency layers, contribute to the
system’s intricacy from a memory management point
of view: users of upper layers often have no knowl-
edge what amount of memory is allocated by what
specific operation. We have primarily experimented
with Java application servers, which are a common
source of these issues today. Thus, we will draw our
examples from that domain, although we believe that
the results are valid for any Java application, and can
be applied to other object-oriented systems as well.

In order to deal with the complexity of the appli-
cations, analysis of resource consumption is an im-
portant issue. Performance indices must be related to
specific parts of the applications in order to identify
relevant points for optimization. The according tools
are typically calledprofilers. A particular category of
such tools arememory profilers.

Many memory profilers today have one major
flaw, which is the correlation of a specific memory al-
location and the responsible piece of source code. In
cases where memory profilers are able to report such
information, they usually cause a very high runtime
and memory overhead due to the continuous storage
of stack trace information for each object allocation.

Large software is usually organized intomodules.
A module encapsulates a set of tasks sharing a com-
mon goal such as SOAP message processing, servlet
containment or business logic implementation. In
Java, modules can be identified and structured with
varying degrees of abstraction, e.g. on the class level,
the package level, or the Java archive (jar) level. At-
tributing resource allocation costs to the correct mod-
ule of an application is in all cases an important task,
because the allocation of one object may cause subse-
quent allocations of other objects.

Furthermore, the calling of methoda() in mod-
uleA may cause the execution of another methodb()
in moduleB. Both methods might cause object alloca-
tion and therefore memory allocation to be accounted.
It might be “unfair” to attribute the cost to the initial
call since it originated in another module.

As an example, consider an application server
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hosting a Web service implementation. This appli-
cation uses a third party library for XML processing.
If all memory allocation costs that are caused by the
XML processing are charged to the server implemen-
tation, the usage of a different XML processing li-
brary might wrongly indicate a better or worse per-
formance of the server implementation. A misuse of
the XML parser library implementation leading to a
memory leak should not be accounted to the library
itself, but to the originating source of the allocation
request.

Therefore we defined theprincipal-agent rela-
tionshipas one module “asking” another module di-
rectly or indirectly to perform a memory allocation,
whereas traditional profilers capture the full stack
trace for an allocation which contains information
about principal-agent relationships. We introduce a
novel scheme to perform the relevant accounting of
memory allocation capturing only principal-agent re-
lationships without unnecessary information and un-
necessary effort spent.

The rest of this paper is structured as follows. In
the next section we give a short explanation about
the problem at hand. The following section 3 intro-
duces theprincipal-agentrelationship. In section 4
we present the concept of thememory accountin de-
tail and give reasons for its necessity and advantages.
Section 5 covers the implementation strategy of our
memory profiler. It is followed by section 6 where an
experimental evaluation using standard benchmarks
of the profiler is portrayed. The paper concludes with
a discussion of related work, section 7, and closing
remarks in the last section 8. Source code examples
can be found in the appendix.

2 STATEMENT OF THE
PROBLEM

To perform an analysis of memory consumption (i.e.
memory profiling) in an object-oriented language, it
is necessary to keep track of object creation and de-
struction, and possibly also to keep track of how ob-
ject references pass through the system. Memory pro-
filing can focus on various aspects, such as frequency
of allocations, redundant allocations, etc.

We focus on ”garbage” objects, i.e. objects that
are not any longer used. In Java, many of these ob-
jects will be automatically released by the garbage
collector. Unfortunately, the garbage collector can-
not determine whether objects are unused, but only
whether they are unreferenced. A common pitfall in
Java and similar systems is that objects remain ref-
erenced even though the software developer believes

that the last reference to the object should have been
released. Even in cases where such references get
released eventually, they may consume a significant
amount of memory over some period of time.

Our objective is to detect such cases and to help
developers and operators to adjust the system appro-
priately. For this analysis we have to determine three
pieces of information:

• How many objects of what type are still allocated?

• Why had the objects been allocated originally?

• Why are they still referenced?

From this list we only support the first two aspects.
We expect that users study the total number of objects
per type, and the amount of memory that these objects
consume, and then compare the numbers with their
expectations. If they find that there are more objects
of a certain type than they had expected, they will next
need to find out where they came from. Once they
have found out why the objects got allocated in the
first place, they can then study why they had not been
released.

It is important to note that the first two aspects
in the above list can be represented in an aggregate
manner. For the total number of objects and the to-
tal amount of memory the approach to aggregation is
obvious. For the second question, we found a way of
computing an aggregated number. For the last ques-
tion, aggregated answers are typically not possible: to
find out why a specific object is still referenced, one
needs to find the specific container object (or objects)
that still holds a reference. There are various debug-
ging techniques available to find such ”backwards ref-
erences”; this issue is out of scope of our research.

3 PRINCIPALS AND AGENTS

To answer the second question, various profiling tools
record the complete stack trace at the point of object
allocation (Pauw et al., 1999; Dmitriev, 2003; Pearce
et al., 2006), making it easier to investigate the con-
ditions under which the allocation had originally oc-
curred, even after the methods performing the alloca-
tion have already completed. Of course, recording the
stack trace does not allow one to replay the full system
state at the point of allocation, as access to various
global and instance variables may have contributed
to the parameters of the object allocation; these data
might have changed at a later replay. The fact that
tools often record the call stack indicates an impor-
tant aspect of the problem: To understand an object’s
role, it is often sufficient to know the place in the code
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where it was created – access to the fields of the ob-
ject at the point of creation is often not necessary. At
the same time, analysis of the existing tools1 demon-
strates that mere recording of the code line containing
thenew-expression is considered insufficient – devel-
opers need to inspect the call stack at allocation time
to see which of the callers ”actually” caused the allo-
cation to happen.

Definition 1. An agent module is a module that per-
forms the allocation of an object on behalf of another
object, theprincipal module.

Within an application server the principal may be
the server implementation and the agent may be a cer-
tain servlet implementation. The servlet in turn may
be a principal for the XML processing library.

An agent which allocated some object for some
principal might itself act as the principal with respect
to another agent module, in the context of the allo-
cation of another object, so the relationship between
principals and agents is defined in the context of the
allocation of a single object.

Notice that the principal-agent relationship is not
necessarily an instance of an immediate caller-callee
relationship. Instead, there might be several interme-
diary modules which delegate the object creation to
another, until eventually agent code is invoked.

4 MEMORY ACCOUNTS

The principal-agent relationship, as described in the
last section, denotes a situation where one module
commissions another module to perform some task
and the commissioned module allocates additional
memory to perform this task. In order to align mem-
ory consumption to modules, we define:

Definition 2. A module isaccounted if it is marked
for memory profiling during a program run.

Definition 3. A memory account represents the
amount of all memory allocated within an accounted
module. An object is allocatedwithin a module if the
module is accounted and no other intermediary mod-
ule is accounted.

Imagine the scenario of a Web service request pro-
cessing within a Java EE application server. A SOAP
request is received on a TCP network socket. The
contained message payload is extracted and passed
to the servlet container. The container determines
the responsible servlet implementation and relays the
SOAP request to an instance of this servlet. In order

1See section 7 for details

to provide a Java representation of the incoming pack-
age, it calls the currently registered XML processor
for parsing the message’s contents. Also the servlet
container itself and the application server networking
stack process the message’s XML information, since
relevant SOAP header entries might need to be con-
sidered. Typical examples are security or routing in-
formation.

In this particular example, severalprincipal-agent
relationshipscan be identified. In all cases, the XML
parser allocated Java objects for the representation of
XML data. The incoming package triggers memory
allocation in the application server, which itself indi-
rectly triggers memory allocation by the servlet im-
plementation.

Different levels of abstraction of memory ac-
counts can be chosen for this example. The network
core and the servlet container can be mapped to one
memory account. Thus, allocations of the whole ap-
plication server implementation and a servlet imple-
mentation can be cleanly separated. This is especially
useful if one wants to detect possible memory leaks in
a servlet implementation, regardless of the XML pro-
cessing library or the application server. Each time
the execution enters the XML processing, all alloca-
tions should be attributed to its corresponding mem-
ory account. When the execution returns allocations
need to be charged to the previously active memory
account. The execution context determines the previ-
ously active memory account.

In the Java virtual machine, all calls are syn-
chronous unless an exception occurs. In the ideal
case, all memory account states are maintained on a
stack in sync with the Java execution stack. When a
call leaves one module, the memory account needs to
be saved and when the call returns it needs to be re-
stored. Exceptions need to be handled appropriately
as their processing may cause object allocation, e.g.
the exception object itself.

When objects are deallocated by the garbage col-
lector of the Java runtime, the corresponding memory
account needs to be refunded. Therefore, every Java
object must be mappable to the memory account its
allocation cost was charged to.

The next section describes how the basic idea of
memory accounts can be implemented in a Java run-
time environment.

5 IMPLEMENTATION

We have named our memory profilerASGMemProfas
it was created in the context of the Adaptive Service
Grid (ASG) project.
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ASGMemProf is based on the notion of Java pack-
ages and classes. These are the primary mechanisms
for modularization of Java code; code that is from a
single author or which fulfills a single function is of-
ten concentrated into a single class or package. As
a consequence, by attributing memory allocation to
classes and packages, we can typically identify the
“culprit” for a memory allocation: the software func-
tion that caused the object to be allocated.

Possibly contrary to intuition, it is not necessary
to record the exact line of code within the principal
module that caused the memory allocation. When
the developer finds that a certain package has caused
the allocation of a number of objects of class X, the
developer will often know what part of the package
(class/method/line) caused the allocation. Only when
a class has many instances that are allocated in many
places (e.g. String objects), might the developer want
to know where exactly the object has been allocated.
However, such objects often form a part of a larger
structure, so that the developer would want to track
theroot object of the structure instead.

Consequentially, a memory account is identified
by a package name or by a package pattern. We im-
plemented a pattern matching which allows the us-
age of a wildcard (*) allowing definition of different
memory accounts for different sub packages. A sin-
gle package name without a wildcard, e.g.a.b, will
create a memory account fora.b and will attribute all
costs to classes withina.b. The patterna.b.* will
match all classes in this package (direct match) and all
subpackages (wildcard match) Therefore, definition 3
means that an allocation is accounted within the mem-
ory account whose package pattern matches the pack-
age of the allocating method the closest in the order in
which they appear in the allocation’s stack trace. Be-
fore profiling, memory accounts need to be defined by
appropriate package names or package name patterns.

As a general implementation strategy we have em-
ployed on-the-fly code-rewriting (also known as dy-
namic bytecode instrumentation) based on the Java
Virtual Machine Tool Interface (JVM TI)2 and the
Java Instrumentation API3. As a Java class is loaded,
where and whether modifications of its bytecode need
to take place in order to employ our memory account-
ing is determined automatically.

As we have previously mentioned the currently
active memory account needs to be maintained in
sync with the execution stack. For our scheme only
those methods are of interest which reside in (sub-)

2http://java.sun.com/javase/6/docs/
platform/jvmti/jvmti.html

3http://java.sun.com/javase/6/docs/api/
java/lang/instrument/package-summary.html

packages for which a memory account has been de-
fined.

The current memory account is stored in athread
local variable. Upon method entry it is saved into
an added local variable, updated with the method’s
memory account and restored upon exit. The memory
account a method “belongs to” is determined at load
time, identified via an integer ID and added as a con-
stant to the method’s class. Methods outside of the de-
fined memory accounts do not alter the current mem-
ory account. Therefore, allocations will be charged
correctly to the memory account closest to the top of
the execution stack.

We have implemented our own thread local stor-
age which is based on the thread ID (added in Java
1.5.0) as an index into an array ofThreadInfo ob-
jects. The size of that array is static and currently
1,000,000. This should be sufficient even though in
Sun’s JVM the thread ID is a consecutive number.

This implementation strategy avoids the expensive
capture of a stack trace upon each allocation event.
The combination of a thread local variable and lo-
cal variables implicitly constitutes a stack where the
thread local variable always shows the top element of
the stack and the elements below are entailed within
the normal execution stack frames of the VM.

Concerning the allocation and deallocation events
the following aspects need to be considered: measur-
ing object size, accounting object allocation, account-
ing object deallocation and association with the cor-
rect memory account.

Measuring Object Size.We define an object’s al-
location costs as the objects size in contrast to the ob-
ject graph it may refer to, i.e. the object graph is only
implicitly considered as the sum of all monitored ob-
jects. The size of an object can be measured based
on its class definition. The Java Instrumentation API
offers a method which is implemented this way, but
it needs an object as parameter. It would be desirable
to know the size of an object based on its class before
an instance is ever created. The implementation of
getObjectSize() iterates over all fields and adds up
the size based on the field’s type. Since a call to that
method upon every object allocation is very costly, the
result is cached in a weak hash map.

Accounting Object Allocation. Object alloca-
tions are tracked by instrumenting the constructor
of java.lang.Object with a global guard condi-
tion which when true will relay the control to a
static method in the profiler along with thethis
reference. This method records object allocations
(trackAllocs(Object)). This idea came from the
documentation of the JVM TI reference. The object
constructor will be called for all created Java objects
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including objects created via reflection and native
code excluding array objects andjava.lang.Class
objects. Therefore, eachnewarray bytecode of all
loaded classes will be instrumented with a call to a
corresponding profiler method passing along the ar-
ray object reference, the array’s length and the array’s
content type.

Accounting Object Deallocation. There are
several options for accounting object deallocation:
(1) finalizers, (2) usage of reference objects from
java.lang.ref and (3) JVM TI object tagging.
Using finalizers for object deallocation account-
ing means adding or instrumenting thefinalize()
method forevery class. This approach was tested
and degraded the performance of the JVM drastically.
Since our implementation is in pure Java we decided
for reference objects. There are two types of refer-
ences that can be used for accounting object deallo-
cation, i.e.weakandphantomreferences. Reference
objects can be registered with a reference queue. They
need to becleared., i.e. their referent needs to be set to
null. When the garbage collector reclaimes a garbage
object the referring weak and soft references, if any,
will be cleared automatically and added to a reference
queue, if any. Phantom references are not cleared au-
tomatically and are only enqueued when the object’s
finalizers have been run. In our opinion, weak ref-
erences are least intrusive into the garbage collector,
and do not prevent the garbage collection of an object,
although in the case of reviving finalizers (which are
rare), these are less accurate than phantom references.
Nevertheless, we decided to use weak references.

Association with the correct Memory Account.
The accounting methods will use the currently active
memory account stored in the thread local variable of
the currently executing thread as the account to which
the costs are to be attributed. Allocation cost data
for each class, thread and memory account need to
be maintained. We have implemented this mainly by
using two or three layers of weak hashmaps. They are
weak in the sense that the value reference is a weak
reference. This is important for example in the case
of threads. If a thread terminates the profiler must not
prevent the thread object from being reclaimed.

ASGMemProf can be set to periodically dump the
collected data to disk (snapshot). The snapshot is in
parsable text form so as to allow easier post process-
ing. We employed a non-blocking scheme to create
a snapshot. A shutdown hook ensures a final data
dump.

For a more detailed explanation of the profiler im-
plementation please refer to (Bouché, 2007).

5.1 Detecting Memory Leaks

Before each snapshot a full GC ensures the clearance
of garbage objects and the recharging to the corre-
sponding memory accounts. Although we focused
our work on Java EE server side components such as
Servlets or EJBs ASGMemProf can be used to profile
Java SE applications as well.

Servlets or EJBs do not have a classic main
method, but several entry points. Adding to that is the
more complex life cycle of these components. There-
fore, it is harder to define a point in time when all used
memory for a given task should have been released.
If it has not been, this is a strong hint at a memory
leak. On the other hand Java SE applications have
one main method and it is reasonable to say that when
that method has finished all used memory should be
freed or at least be eligible for reclamation. Yet, static
variables complicate this as well.

In any case we detect memory leaks by analyzing
the difference between two or more profiling snap-
shots. Currently this is done manually. For this to
work memory accounts for different subsystems or
areas of interest have to be carefully defined. Each
account will list the live and total number of cre-
ated objects for each class optionally grouped by the
method(s) causing the allocation. Usually a memory
leak is indicated by a rising number of live objects
over time. A time correlation of events in the applica-
tion and the time stamp of the snapshot is necessary.
For example, the execution of a certain Servlet may
cause a memory leak by misuse of another subsys-
tem or third party library leaving the memory account
of the Servlet engine clean, but causing a sustained
raised number in another memory account.

As a practical application we needed a feasi-
ble memory profiler for the ASG execution platform
which is implemented in Java EE. Under certain con-
ditions there was an out of memory error, i.e. we had
a memory leak. Employing available memory pro-
filers to find the leak was practically impossible how-
ever, because either the system slowdown was making
it unresponsive or the amount of data collected num-
bered several gigabytes. Certainly the great size of the
ASG platform contributed to this.

We profiled the ASG execution platform with AS-
GMemProf and though there was a significant slow-
down it was bearable and the amount of profiling data
was greatly reduced through the employed aggrega-
tion. After analyzing the profiling snapshots we were
finally able to identify the memory leak. It was caused
by a server management subsystem using the API of
the data abstraction library Hibernate4 wrongly.

4http://www.hibernate.org/
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6 DISCUSSION AND
EVALUATION

It is important to quantify the memory and runtime
overhead of a profiler experimentally in order to pro-
vide a basis for a prediction of the overhead it incurs
on average. This is also a measure of quality for a pro-
filer implementation. We present the overhead mea-
surements of our implementation in this section.

6.1 Runtime Overhead Measurements

To measure the additional runtime an application re-
quires when instrumented we used two benchmark
suites. The DaCapo (Blackburn et al., 2006) bench-
mark suite v2006-10-MR2 was used to measure Java
SE performance and SpecJBB 2005 v1.075 was used
to measure server side performance.

All tests ran on Sun’s Java HotSpot VM version
1.6.0-b105 in mixed, client mode. The computer
hardware was a 2 GHz AMD Athlon processor with
1 GB of RAM running Microsoft Windows XP with
Service Pack 2. The test results were computed from
an average of three consecutive runs for each bench-
mark. The DaCapo benchmarks were executed with
input size small and SpecJBB 2005 was carrying out
Warehouses one through four each measuring 240
seconds. The results can be found in table 1.

The table shows how long each benchmark took
without the profiler (plain) and with the profiler ap-
plied. Additionally, we measured the performance
of the JFluid profiler (Dmitriev, 2003), whose tech-
nology has become part of the NetBeans6 Java IDE
which we used in version 6.5., as a comparison. This
profiler works with similar technology to our pro-
filer though it takes a stack sample upon each alloca-
tion event. In order to be fair we disabled this fea-
ture. For the SpecJBB2005 benchmark ASGMem-
Prof was set to create a memory account for the pack-
agespec.*. For the DaCapo benchmarks, allocations
were charged to an overall memory account.

For each of the profilers the table shows two
columns: the time the benchmark took to complete
and the incurred overhead given as a factor of the orig-
inal execution time. For SpecJBB 2005 the overhead
was computed by dividing the original throughput by
the profiled throughput.

5Standard Performance Evaluation Corpora-
tion, SPECjbb2005 (Java Server Benchmark),
http://www.spec.org/jbb2005/

6Sun Microsystems Inc. and NetBeans contributors,
http://www.netbeans.org/kb/index.html

6.1.1 Discussion

Generally speaking, the overhead incurred with our
current implementation makes it only feasible for de-
velopment uses, but not applicable for production use.
An acceptable overhead for production use is cited
in the literature to be approximately 0.3 (Pauw et al.,
1999) or less which our profiler clearly does not de-
liver. But in comparison with a competitive profiler
implementation the results are more than encourag-
ing.

The advantage of our implementation is clearly
visible. In all cases ASGMemProf incurs overhead
less than or equal to JFluid. In most cases ASGMem-
Prof is twice as fast as JFluid.

The benchmarkantlr incurs the least overhead,
1.72 which is getting into the region of acceptable
overhead (1.3). This rather low overhead is due to
the fact thatantlr does not create many objects and
those which are created live until termination. There-
fore, much less time is spent in the profiling methods.
Especially the rather expensive slow down of the GC
via weak references is reduced due to its inactivity.

We have done preliminary tests of a worst case
scenario in an application which continually creates
a lot of objects with a very short life time. Creat-
ing a weak reference object for each allocated object
already degrades the performance significantly - not
to speak of the time needed to account object deal-
location. The GC must treatWeakReference objects
specially and obviously the implementation in Sun’s
JVM for this is only of average quality. All our at-
tempts to further reduce the profiling overhead failed
because most overhead is incurred when creating and
trackingWeakReferences which is VM implementa-
tion dependent.

This can clearly be seen in benchmarkjython
where a lot of short living objects are created over
a sustained amount of time. Hence, the expensive
operations of weak reference creation, maintenance
and notification upon referent reclamation occur of-
ten. Preliminary test with themtrt benchmark of the
SpecJVM98 suite showed a slowdown of 25, respec-
tively 60 for JFluid. This is obviously not feasible
even for development circumstances.

SpecJBB 2005 models typical server side Java
behavior by emulating users accessing a rather big
in-memory database inserting, updating and deleting
records. The database is implemented as binary ob-
ject graphs. Here the negative GC behavioral in-
fluence of weak references comes into play as well.
They still perform a lot better than the native imple-
mentation of JFluid via JVM TI object tagging, but
are very unacceptable for the production use of the
profiler. Yet, the advancement of our implementation
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Table 1: Runtime Overhead of ASGMemProf vs. JFluid/NetBeans.

DaCapo plain (ms) ASGMemProf (ms) (factor) JFluid/NetBeans (ms) (factor)

antlr 813 1406 1.72 2750 3.38
bloat 2609 25813 9.89 49703 19.05
chart 2812 27062 9.63 60844 21.63
eclipse 10531 40171 3.81 67938 6.45
fop 1218 7688 6.31 26484 21.74
hsqldb 3406 10531 3.09 13641 4.00
jython 532 8860 16.65 9375 17.62
luindex 781 5047 6.46 5422 6.94
lusearch 2938 12625 4.29 27985 9.52
pmd 500 1172 2.34 8703 17.40
xalan 3343 17078 5.10 26594 7.95

SpecJBB 2005 (bops) (bops) (factor) (bops) (factor)

warehouse 1 4895 608 8.05 294 16.64
warehouse 2 4854 615 7.89 336 14.46
warehouse 3 4833 545 8.86 237 20.39
warehouse 4 4754 520 9.14 274 17.35

strategy is clearly visible in SpecJBB 2005 as well.
Weak reference or phantom reference objects still

seem to degrade the performance drastically under
heavy load. Yet, they remain the only viable option to
do exact memory profiling apart from a native JVM
TI agent implementation. Maybe another mechanism
to track object deallocation in a standard manner for
the Java platform needs to be found.

One optimization remains. Short run, often called
methods cause a lot of unnecessary runtime overhead,
especially if the calling code is from within the same
memory account. This could be optimized by using
static code analysis and only updating the account
when necessary. Additionally, only those methods
that (could) cause object allocation are to be instru-
mented. It is not insignificant to determine this at load
time.

6.2 Memory Overhead Measurements

In order to measure the space overhead our profiler in-
curs we recorded the peak value of thePrivate Bytes
performance indicator of the VM process during a
benchmark suite run on the same hardware as previ-
ously mentioned. The reported result is an average of
three runs for each benchmark. The results are listed
in table 2.

Table 2 shows two columns for each ASGMem-
Prof and JFLuid/NetBeans and one column for the
benchmark without the profiler. The peak private byte
size is given in kilo bytes. The overhead factor is de-
termined as a factor of the plain value.

6.2.1 Discussion

The memory overhead does not vary as much as the
runtime overhead.

In SpecJBB2005 both profilers incur practically
the same amount of overhead. The main factor con-
tributing to the space overhead is each reference ob-
ject that has to be allocated for each newly allocated
object in order to track its deallocation. These refer-
ence objects are allocated on the Java heap and in the
current implementation weigh 40 bytes. If an appli-
cation creates a lot of small objects, the overhead will
be very high.

For the DaCapo benchmarks JFluid gives a better
performance than our profiler, though the difference
is relatively low. NetBeans produces slightly lower
space overhead than ASGMemProf. This is proba-
bly due to the fact, that the NetBeans profiler imple-
mentation is in native code and instead of weak ref-
erence objects for deallocation accounting it uses the
tag mechanism of the JVM TI which must require less
space than a weak reference object.

7 RELATED WORK

Profiling of Java applications is an ongoing research
topic. Additionally, there are several commercial
and open source profilers available. Several publi-
cations address the usage of CPU and time measure-
ment of single methods. Among them are ProfBuilder
(Cooper et al., 1998), JaViz (Kazi et al., 2000), JIn-
sight (Sevitsky et al., 2001), JFluid (Dmitriev, 2003),
J-Seal2 (Binder et al., 2001), JSpy/JPaX (Goldberg
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Table 2: Space Overhead of ASGMemProf vs. JFluid/NetBeans.

benchmark plain (KB) ASGMemProf (KB) (factor) JFluid/NetBeans (KB) (factor)

SpecJBB2005 242,420 549,212 2.26 599,696 2.47
DaCapo 183,456 356.416 1.94 225.792 1.23

and Havelund, 2003), JBOLT (Brear et al., 2003),
JPMT (Harkema et al., 2003), Twilight/Aksum (Sera-
giotto and Fahringer, 2005), JP Tool (Binder and Hu-
laas, 2006) and eDragon/JIS (Carrera et al., 2003).

These works are concerned with researching, dis-
cussing and evaluating different concepts and im-
plementations for measuring the CPU time usage of
methods, threads and whole modules. Some em-
ploy bytecode instrumentation (JPMT, Twilight/Ak-
sum, ProfBuilder J-Seal2, JP Tool) and others use the
provided profiling interface functions.

Much less attention has been given to memory
profiling. J-Seal2 which is concerned with account-
ing and enforcing restriction on mobile code execu-
tion environments has a memory profiling subsystem.
Their implementation also uses memory accounts and
employs bytecode instrumentation. Techniques for
associating context information with an allocation are
similar. Yet, a memory account is not based on mod-
ules, but on predefined execution environment restric-
tions which are valid for a whole application. We em-
ploy a more refined model and J-Seal2 does not cap-
ture principal-agent relationships. A more recent pub-
lication in conjunction with that research is JP Tool
where an expensive sampling of the stack is likewise
avoided by extending a method’s signature with a ref-
erence to the memory accounting object. Binder notes
that this technique cannot be applied to Java core
classes, whereas our rewriting scheme allows profil-
ing of core classes as well.

The JFluid profiler which has been integrated
into the NetBeans development environment employs
memory accounting techniques similar to those we
have used. The implementation uses weak refer-
ences for object deallocation notification as well. Re-
sults are aggregated into a calling context tree (CCT)
(Ammons et al., 1997). This aggregation technique
is very common among profilers. While informa-
tion for memory accounts can be extracted from a
CCT, unnecessary stack trace data has been collected
and effort expended. The NetBeans profiler contains
a very interesting technique for detecting memory
leaks. The object generation metric for a class which
is the number of different ages for all objects. An ob-
ject age is the number of garbage collections it has
survived.

DJProf (Pearce et al., 2006) which is a profiler
based on aspect oriented programming (AOP) using

AspectJ (Kiczales et al., 2001) is employed to per-
form the bytecode instrumentation (the defined as-
pects arewoveninto the code). It uses phantom ref-
erences to capture object deallocation. The goal was
to test the suitability of AOP for profiler implementa-
tions. There is a short discussion on where to attribute
allocation costs to using the example of a constructor
allocating other objects. It is decided to take the same
direction as we do, but not generalized into the notion
of a memory account.

There are several commercial tools which allow
memory profiling such as YourKit, JProbe, JPro-
filer, Borland OptimizeIt, Intel VTune, IBM Rational
Quantify and Wily Introscope.

Furthermore, attempts are being made to reduce
the overhead of exact profiling with sampling tech-
niques for the cost of accuracy. There are sev-
eral works that discuss this issue (Arnold and Ry-
der, 2001; Factor et al., 2004; Ammons et al., 1997;
Dmitriev, 2003). Arnold points out a scheme for re-
ducing the overhead cost of instrumented code and
presents data showing that recording only every 10th
event will still yield an accuracy of 98%. This is
something we can investigate for ASGMemProf in the
future. Yet, a sampling technique is not feasible for
finding memory leaks.

8 CONCLUSIONS AND FUTURE
WORK

We have presented a novel model for memory pro-
filing: the principal-agent relationship, and the con-
cept of a memory account. These concepts attempt
to reduce the overhead of exact memory profiling by
performing a sensible aggregation of data. In partic-
ular, even though each individual object is accounted
for, we can avoid computing and preserving the stack
trace that lead to the allocation of a specific object.

Our approach inherently avoids taking a stack
sample for each allocation and therefore delivers less
information than traditional memory profilers. As we
have explained this is in effect not a loss but a gain.
Although this constitutes less accuracy in terms of
amount of information. Optionally the profiler can
be set to record the top stack frame for the allocation
at no additional cost.

While initial results obtained from the approach
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are promising, end-user experience from a variety of
applications still needs to be obtained and studied, to
find out whether the presented approach is practical
for analyzing memory consumption. Analyzing the
memory and run-time overhead is feasible, as we have
demonstrated above. Analyzing the value of our tools
to developers is more difficult; based on past publica-
tions in this field, we expect that any report on utility
and viability of this approach will remain anecdotal.

We envision two application areas for this ap-
proach: development and operations. Our applica-
tions of the tool had primarily been in the field of de-
velopment – helping the developer to find out mem-
ory leaks in the application, so that the code can be
improved.

In operations, the application of the approach
would be different. For example, the operator might
apply memory accounting to different services run-
ning in the same service container, and then take ser-
vice management decisions based on the amount of
memory used by each service (e.g. to migrate a ser-
vice with high memory consumption to a different
machine). As another example, the approach could
be used for the self-policing of application containers:
the container could enforce an upper limit on memory
consumption, and let allocations from a principal fail
if the principal’s memory account is overdrawn.

Further implementation details can be found
in (Bouché, 2007). The profiler is available at
sourceforge.net.
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