
IMPLICATIONS FOR PRACTICAL WIRELESS
SENSOR NETWORKS

Unique Operating System Architecture and Transceiver Standards

David A. Border
College of Technology, Bowling Green State University, 1000 E. Wooster Avenue, Bowling Green, Ohio, U.S.A.

Keywords: Wireless sensor networks, Motes, Event driven, Multithreaded, Zigbee.

Abstract: Hallmarks of Wireless Sensor Networks (WSN) include their use in demanding environment, autonomous
and untethered operation, low power requirements, miniaturization and low costs. Such hallmarks led to the
understandable requirement that WSN sensors contain a specialized microprocessor unit; an innovative
microcontroller unit which is strikingly dissimilar to general purpose CPUs found in the marketplace today.
This paper examines two important aspects of current sensor node development work, that of
microcontroller Operating System (OS) architectures and transceiver standards. The choices of OS designs
are intended to match and complement the usefulness of the sensor node itself, while meeting hardware
constraints (e.g. memory limitations). The paper details these design choices and how they are being met.
Of equal interest, the paper discusses how the choice of transceiver standards for the WSN is determined by
the overall design goal of device autonomy. One such “device autonomy discussion topic” relates to the
reader how device power consumption levels are being reduced through the use of a newly developed
transceiver standard.

1 INTRODUCTION

Consumer electronics, military and aerospace
industries have driven a demand for increased
miniaturization of electronic devices for many
decades. The basic dynamics of the miniaturization
push is understood by most. It is not difficult to cite
examples in terms of improvements to the weight,
size, and power consumption of new device families.
More often than not, such improvements are often
accompanied by significantly lower per unit cost-
pricing. While electronics miniaturization is
obviously pervasive throughout the industry and an
obvious marketplace phenomenon, it is the
prediction of and enumeration of new application
concepts for these families, that is more difficult.

The miniaturization of sensors, computing and
wireless (radio) networking and the ability of
computers to analyze data from such devices in real
time or near real time has opened a number of rather
unique computing applications. Use of Wireless
Sensor Networks built on miniaturized, often
untethered, lower price devices have been actualized
or suggested for a large number of application types
(Zhao, F., et al., 2004). Here is a sampling of such
types: conservation and habitat monitoring, airborne

toxic chemical discharge monitoring, structural
monitoring, and armament industry applications
(e.g. intelligent minefields).

There are a number of design problems that need
to be addressed when developing WSNs. Most stem
from a single demand: device autonomy. From this
condition power consumption limitations follow
(Dutta and Culler, 2005). Power constraints affect
the choice of processor families. Power constraints
limit rate of sensor data block transmissions and
block size. Power constraints dictate the need for
special features, such as a processor and radio sleep
states. Quite a number of design problems can be
listed. This paper considers two design problems of
the WSNs: the OS architecture and the transceiver
standards.

2 PROCESSOR BACKGROUND

In 1971 Intel released the 4004, an IC typically
acknowledged as the first commercial
microprocessor. Matched to the microprocessor
were a number of support chips. These formed a
microprocessor development family. Since that time,

38
Border D. (2009).
IMPLICATIONS FOR PRACTICAL WIRELESS SENSOR NETWORKS - Unique Operating System Architecture and Transceiver Standards.
In Proceedings of the International Conference on Wireless Information Networks and Systems, pages 38-44
DOI: 10.5220/0002244700380044
Copyright c© SciTePress

Intel microprocessor families have gain complexity,
functionality, and speed. The functionality-price
ratio has also improved. This microprocessor
maturation process has fit well to a market whose
product scope consists of servers, workstations,
desktop computers and laptops. Microcontrollers
and Digital Signal Processors have served a separate
computer market consisting of devices (typically
classified as dedicated task processors or real time
machines) with sufficient special I/O functionalities,
instruction/bus speed and memory capacities to
perform critical tasks. Some microcontroller families
have followed a development path similar to that of
Intel, i.e. development of larger and larger data bus
widths, larger and larger address spaces, and more
complex instruction sets, however this is not true of
all microcontroller families.

An example of the class that has adopted a “non
Intel” approach is illustrated by a number of
microcontrollers that implement RISC architecture.
The instruction set design is not the only difference,
the accumulator/bus sizes also differ, with the RISC
machines available in 4-bit, or 8-bit or 16-bit
processor denominations. Further, some of these
RISC microcontroller families have implemented
low-power architectures that are suitable for non-
AC, battery-only, applications. These families are
reminiscent of the early Intel families, that is, they
have modest bus sizes and reduced memory address
spaces (such as 1K of memory space). However,
unlike the old Intel processors, these devices have
very small physical dimensions, operate at lower
voltages and have much lower current draw. In
addition, unlike the old Intel microprocessors these
families contain features typical of some
microcontrollers, such as built in analog-to-digital
converters.

3 OS ARCHITECUTURE
BACKGROUND

Over a number of decades, certain computer design
practices or conditions have dominated for periods
of time. With respect to operating systems, as
manufacture of digital computers became more
common, proprietary hardware/software systems
enjoyed pre-eminence in the mainframe and
minicomputer market. However, this practice has
been eclipsed by other practices. With the advent of
the mature desktop computer market, hardware has
become more nearly a commodity piece for
computer manufacturers. In addition, in many cases
today operating systems kernel development is

detached from the computer manufacturers
themselves. For the most part, desktop and laptop
operating systems are proprietary software
enterprises of one company, Microsoft.

Microsoft has achieved a tremendous
commercial presence and has sought enterprises
with significant vertical and horizontal market
integration. Microsoft has tuned a subset of its
desktop OS and marketed it for small computing
device applications, named Windows CE. This
smaller footprint OS distribution has allowed
Microsoft penetration of a segment of the wireless
sensor network world, the Gateway WSN device.
Other small computing device OS companies market
proprietary OS software besides Microsoft. This
includes Symbian with its mobile phone OS,
SymbianOS.

Apart from Windows, a number of other OS
systems vie for market share. Principally, these are
found in the server market, although some are in the
desktop, media and graphics markets. Among these
are OSes are Unix, and Unix-like OSes. Examples
are: Sun Microsystems and Apple. Sun uses a
proprietary Unix version called Solaris. Apple uses
the proprietary Unix version MacOS X. Linux, a
Unix-like OS, is also found in this market.
Interestingly, through virtualization software
products (e.g. VMware) many of these OSes can
jointly reside as guest OSes on the same server.

Concerning Linux, in a somewhat less than
obvious OS creation mechanism, certain software
development entities (foundations, groups,
universities, commercial ventures and so forth) take
its open source kernel and integrate a very needed
software tool set (e.g. GNU) to it and produce a
Linux distribution. This distribution base is made
possible because of its kernel’s public licensing
scheme. Also, unlike Microsoft, Linux distributions
have been ported to other CPU architectures (note,
this is also true with a number of other Unix-like
OSes). Thus, Linux is better poised to exploit a
variety of hardware platforms than Microsoft. A
number of Linux distributions are used in small
computer and embedded computer applications.

While Linux has gained a widespread interest
within the software development community in past
years through public licensing, other OSes have also
exploited this licensing, sometimes referred to as
“free open source software” (FOSS). Some of these
are real time operating systems, such as RTLinux
and RTEMS.

IMPLICATIONS FOR PRACTICAL WIRELESS SENSOR NETWORKS - Unique Operating System Architecture and
Transceiver Standards

39

4 PLATFORMS FOR OS
ARCHITECTURE

Wireless Sensor Networks contain two basic
computing device types: the sensor node and the
gateway device. Since the gateway device may have
relaxed power and size constraints when compared
to the sensor node devices, its OS architecture will
not be considered here. All attention will be given to
the sensor nodes.

The sensor node by design consumes low power
amounts, well under 1W. This restriction eliminates
from consideration the Intel families (x86) found
today within desktops, laptops, and servers. It also
eliminates the microcontroller families that have
grown in size and complexity from consideration for
selection as the CPU of a sensor node. What remains
are low power microcontrollers. Appropriate WSN
low power microcontrollers include: Motorola
AT90LS8535, ATMELS AVR series processors
(specifically named: ATmega163 and ATmega128),
and the Texas Instruments MSP430 (Polastre et al.,
2005). The newer system-on-chip (SoC) architecture
is stated to be preferable to non-SoC architectures
for WSN work (Beck and Johnson, 2007). The SoC
design is a practical way to achieve truly
inexpensive, miniature, sensor nodes.

Some SoC computer architectures begin by
realizing a CPU core based on well known non SoC
chips. An example of such a device is:
MC9RS08KA2 Series Microcontroller. This
microcontroller is manufactured by Freescale and is
based on their low power small dimension RS08
CPU core, a core modeled on their venerable HCS08
microcontroller family. Another example of such a
device is the CC1010 Series Microcontroller. This
microcontroller is manufactured by Chipcon (Texas
Instruments) and is based on an 8051 compatible
processor. An important point to consider for
extreme miniaturization of CPUs for sensor
applications is capability of the SoC to perform
radio functions. A number of SoC computer
architectures do integrate an on-chip radio
transceiver. This section must be in one column.

5 OS ARCHITECTURE FOR WSN

The low wattage mandate coupled with the low cost
and miniaturization goal for sensor WSN devices
require that they have very low memory (RAM and
ROM) capacities. This constrains OS design
significantly (Gay et al., 2007). This disallows the
use of a proprietary OSes such as Windows CE and

non-proprietary OSes such as Linux for these
devices since their OS features consume these finite
resources. Instead the OSes found in the smaller
market of embedded realtime or near realtime
microcontrollers are considered the model to be
followed when designing an OS to accomplish the
tasks of program and memory management,
hardware and data flow management.

To conserve resources, popular memory-
constrained embedded systems OS architectures
often rely on the “event driven” programming model
rather than a multithreaded programming model
(Dunkels et al., 2006). One expression of the event
driven model is realized by implementing an OS
program scheduler that posts “event specific tasks”
to a program queue once an event happens. The
program queue is emptied in a first in, first out
fashion. They are executed in a single thread
manner, with the thread itself being uninterruptible
by other tasks or the scheduler (although tasks may
include internal code to allow interrupts to
programmatically affect their execution). This
greatly simplifies memory architecture and memory
demand. The scheduler, user applications and code
components are all compiled into a single
executable. Thus, all code (OS and user) shares the
same memory addressable memory space. This
single memory space design concept has its
advantages, for instance, program debugging is
much more straightforward. This OS architecture
style has been adopted by the WSN OS “TinyOS”
(Hill, et al., 2000). TinyOS (TinyOS v1 and TinyOS
v2) is commonly cited as a standard for WSN OSes.
To optimize OS performance, some embedded
systems use specialized programming languages; for
example, TinyOS is coded in nesC, a “C” style
language extension. TinyOS first uses the nesC
compiler to generate program code that is
compatible to Gcc, the “C” compiler. A Gcc
microcontroller compatible compiler then creates the
output executable code.

The TinyOS architecture can be viewed as
grouping of four software functionalities:

1. Scheduler and User Application
2. High Level Components
3. Synthetic Hardware Components
4. Hardware Abstraction Components

The components are the primary element in a
TinyOS application. Each has interfaces that allow
interactions with other components. Hence they are
“wired” elements and can be put together to
accomplish various sensor operations. They are
named based on their function or device name.

WINSYS 2009 - International Conference on Wireless Information Networks and Systems

40

Examples of TinyOS components by name include:
Temperature, UART, I2C_bus, and RFM (RF
Monolithics radio device).

One factor that separates WSN OS models from
a number of other OS models in the embedded OS
design community is the nature of the underlying
hardware task. In many embedded OS applications,
the OS seeks to service hardware that is primarily
composed of non-communication intensive devices.
In WSN, a primary service is to provide intensive
data communication. This is reflected in TinyOS
component structure, with a number of components
devoted to transport of packets, bytes and bits within
the OS. In general, sensor data can originate at the
sensor or it can result from a transit operation (a
“hop”) from another WSN device. Data throughput
is paramount to system performance. Blocking of/or
waiting on I/O is not desirable. Loss of events
because of scheduler program queue overflow is also
not desirable (Decker et al., 2006). If an OS can
justify a new native feature based on its benefits to
I/O reliability, it will likely be accepted by the WSN
community.

The consequence of the OS architecture using
(generally) uninterruptible tasks, as in the case of
TinyOS, can result in the un-expected blocking of
subsequent event handling. A number of OS variants
seek to remedy the lack of task prioritizing and task
multithreading present in TinyOS. These include
TinyMOS, Contiki, Mantis OS, t-kernel, and Nano-
RK (Bhatti et al., 2005; Eswaran et al., 2005).
Specifically, the OS features that these seek to
achieve or improve on are:

1. Multithreading of user tasks
2. Assignable task priorities
3. Expanding task pre-emption abilities

(implementation of time-slicing etc.)
4. Facilitating different operation on different

hardware platforms (portability)

A negative consequence of coding multithread-
ding capability into the OS is the adverse effect on
memory and processor resources. In all cases,
inclusion of multithreading will cause more
overhead because of the need to implement OS
thread switching actions. Additionally, dedicated
stack memory assignments are needed for the thread
management. Program debugging is also made more
difficult in a multithreaded environment.

Besides the complexity associated with
multithreading itself, the multithreaded approach
creates unintentional deficits that must be corrected
with new programming features (hence more OS
complexity). An example of this is a critical energy

savings features in event driven systems that are
incidentally lost in multithreaded systems.
Specifically, in TinyOS energy savings is assured
because a task runs until completion and once all
tasks are complete, the OS can invoke a simple
hardware sleep state to conserve energy until the
next event. It provides for a straightforward energy
savings algorithm. In multithreading as program
execution is switched from task to task, the trick is
not to wait until all the tasks have ended to
implement a sleep state. Rather to gain energy
conservation in multithreading, it is desirable for the
existing threads to invoke the sleep state
programmatically, during, say, blocked I/O
transactions. Thus the OS must be expanded to
efficiently accommodate programmatic sleeps, as in
the “usleep” C function.

Advantages can exist for the programmer who
uses a more complex multithreaded WSN OSes as
compared to simpler OS designs, such as the
TinyOS. Consider the case of a user requiring a
rather long-lived routine, say execution-to-
completion in the 100 ms range in an event driven
OS based system. To avoid overflows of bounded
buffers, for operational reliability the programmer
should recode the larger program into a cluster of
smaller segments, each with shorter lifetimes; each
whose design works against the ill effectives
exhibited by long-lived routines. It can be argued
that for this case the required programming skill
level well exceeds the abilities of an average
programmer. A more complex, interruptible, OS
allows the programmer of average experience to
code programs without worrying about whether
he/she has written a long-lived program. If a long-
lived program results from their work, the OS will
seamlessly interrupt that code as needed to meet
system needs and events thereby avoiding
catastrophic outcomes. However, if long-lived tasks
are not required in an application, then the
usefulness of TinyOS as a sensor platform is
undiminished. Further, development work
performed using TinyOS benefits from its robust
library of ready made program components.

Regardless of OS scheduling and threading
designs, much of the OS development work is
performed for the hardware dependency level. For
WSN sensor devices typical hardware includes:

1. Clock (timers)
2. Serial Interface (e.g. I2C to temperature

sensor)
3. ADC (to analog devices, e.g. light sensor)
4. Bitwise output (e.g. LEDs)

IMPLICATIONS FOR PRACTICAL WIRELESS SENSOR NETWORKS - Unique Operating System Architecture and
Transceiver Standards

41

5. Radio Module
6. Interrupt(s)

While the amount of work is significant, its
scope is adjustable. By choice, the OS can invest in
a less expansive hardware interface and put the
burden of device initialization, control and command
with the programmer, or alternately it can perform
these functions nearly transparently through well
written supporting routines.

In WSN deployment, sensor devices network
traffic is concentrated at a network edge in Gateway
devices. Gateway devices are responsible for
matching two different network standards, the
transceiver wireless standard of the sensor nodes,
and the network standard of the high level system
(e.g. IEEE 802.3 or IEEE 802.11). If the sensors are
deployed in a redundant manner, the gateways may
be responsible for managing the sensor network (i.e.
issuing startup-shutdown commands to the sensors),
and managing data flow (Ilyas 2004).

Gateway devices, unlike sensor node devices, do
not suffer the extreme constraints on size, cost and
energy consumption.With x86 devices being offered
in industrial form factors, such as the PC/104 form,
its CPUs are suitable for use in WSN installations.
In turn, this allows incorporation of a Windows or
Linux OS into the device. Somewhat surprisingly
however, commercial WSN gateway manufacturers
have chosen to skip use of x86 devices, in favor of
RISC machines, such as that of Advanced RISC
Machine architecture (ARM, Xscale) machines. The
choice of these RISC machines leaves the OS
selection process open to a small set of Linux OS
variants and Windows CE. Since the RISC machines
have a long history of use in handheld battery
powered computers, they are well suited for the
WSN environment.

6 BACKGROUND WIRELESS
RECEIVER STANDARDS

There are a number of ways wireless transceiver
standards can be categorized. One way is to group
them by spatial coverage, another by intended
market. Classifying wireless into spatial coverage
yields three distinct groupings by area of service:

1. Wide
2. Local
3. Personal

Classifying into market type yields three
categories:

1. Mobile Telephony
2. Mobile Internet
3. Personal Devices

The within the categories standards will vary
with respect to the frequency band used, the
communication techniques and data rates employed,
message syntax and data protocol. Between the
categories, the energy consumption requirements are
likely to differ. For example, in some desktop
deployments schemes mobile internet (WiFi) is used
so that the tasks of running cables and installing
jacks are minimize; in this example energy
consumption is not critical. This is in contrast to
mobile telephony where minimization of energy
consumption is always desirable.

7 WSN TRANSCEIVER
STANDARDS

The same constraints that exist during the
determination of a WSN OS architecture exist for
determination of a WSN Transceiver Standard. A
primary consideration is power; the transceiver
standard must consume low levels of power. WSN
sensors do not have the luxury of an AC-based
recharge as do mobile cellular phones. A secondary
consideration is the protocol complexity, where
complexity is assumed to correspond directly to
length of program code. The second consideration is
interrelated to the first since long programs consume
more energy than short programs. For these reasons,
the ideal WSN transceiver standard is a low power,
low complexity network protocol.

The power constraint and complexity constraint
can be used to eliminate certain transceiver
standards from consideration. Consider the IEEE
802.11b standard. Its power consumption would
drain a few AA batteries in a matter of hours. Its
protocol complexity would require a significant
increase in program code and program memory. The
rather quick data rate of the standard (11 Mbps
max), while attractive, is overkill for sensor nodes
recording temperatures, performing light sensing,
and other low speed acquisition and reporting tasks.

The power constraint can be used to eliminate
other existing transceiver standards as well. In
discussions of digital communication systems, a
primary design concern cited is the maximizing the
Bits/s/Hz figure. With power constraints, the
importance of the Bits/s/Hz figure is discarded in
favor of J/Bits/s/Hz. When considering power issues

WINSYS 2009 - International Conference on Wireless Information Networks and Systems

42

three regions of power consumption are considered,
the transmitter, the power amplifier, and the
receiver. A common mobile low power device, the
cellular phone, uses transceiver standards that
provide for transmission distances greater than 1000
meters. At these distances, much of the energy
consumed is consumed by the analog power
amplifier section. The power levels consumed in this
section are well above those levels that are
acceptable in WSN work. Therefore WSN
applications restrict themselves to ranges under
200m or so.

While the energy per bit associated with cellular
transmissions standards eliminate them for
consideration in WSN applications, certain cellular
phone standards are of value. For example, cellular
phone units mitigate the power amplifier
consumption by use of power management schemes.
These schemes minimize “on” time in favor of low
power idle states or equivalent states. Additionally,
newer cellular devices seek to minimize the analog
circuitry in favor of lower power CMOS digital
devices. Energy-aware transceivers make use of
these concepts (Schurges, C., 2002).

Finally, the choice of signaling scheme is also
critical. Here, low power devices can choose to
sacrifice spectrum for power efficiencies. Thus
highly spectral efficient signaling schemes such as
QAM and M-ary modulation are rejected in favor of
power efficient schemes. Certain schemes that are
constant envelope modulation (e.g. Frequency Shift
Keying - FSK) or near constant envelope modulation
(e.g. Offset Quadature Phase Shift Keying -
OQPSK) are well matched for use with the power
efficient direct modulation transmitter architecture

(Otis, et al., 2004). Data rates for WSN sensors are
intended to be modest, running well under 1 Mbps.
It is assumed that higher rate devices such as
realtime video would require specialized solutions
outside the WSN norm.

8 TOWARDS A TRANSCEIVER
STANDARD SOLUTION

The wireless communities’ standards for wireless
personal network (WPAN) are lead by the IEEE
802.15 standards. This is the standards group that is
most likely to attract placement of specialized low
power, low range, and low firmware/software
complexity data communication standards. Indeed
this is the case; IEEE 802.15.4 is one such new
standard that has risen to meet these requirements.
Interestingly, while being a standard, it is

simultaneously a fee-based supported membership
organization named the Zigbee Alliance. The
practice of an alliance operating in conjunction with
a standard is not uncommon.

Zigbee is a low cost device specification that
operates in the industrial, scientific and medical
(ISM) radio band. It implements energy conserving
modulation schemes (e.g. FSK, OQPSK). It supports
network topologies and network operation in a
fashion that avoids the software and firmware
complexities found in standards such as IEEE 802.3
and IEEE 802.11. It supports sleep states that are
important to meeting WSN energy requirements. Its
overall energy requirements are modest due to its
reliance on CMOS digital circuits and minimization
of analog components. This combined with
programmatic use of sleep states (etc.) allows
Zigbee transceiver devices to operate over extended
periods using batteries.

Recently (summer 2007), through the work of
Nokia, the existing Bluetooth standards, the IEEE
802.15.1 standard, has been expanded to include an
ultra low power separate Bluetooth communication
definition, called Wibree. One point of
differentiation between the two standards is the
device range. Zigbee indoor range is about 30m,
while Wibree has a lower range value of 10m.
Another point of difference is their method of their
implementing network topologies. Also, Zigbee has
already been incorporated into existing WSN nodes
(e.g. MicaZ, Telos sensors), while Wilbree hasn’t.
Finally, despite Zigbee’s status as a new device, it
already exhibits a certain maturity as its radios have
already been combined with microcontrollers to
produce a SoC device suitable for WSN
applications. An example of a SoC device used in
academic studies of sensor node operation is TI’s
CC2430 (Leopold, et al., 2007). The future of
Wibree’s use in WSNs is not clear at this time.

9 SUMMARY

The needs of the wireless sensor network
community are being met through innovative
developments in microcontroller operating systems
and wireless personal networks. In each case the
existing models and architectures have been adjusted
to meet energy constraints, size constraints, and cost
constraints unique to WSN work. For the
transceiver, modulation schemes and transmitter
architectures have been selected to minimize power
consumption. For designers from other backgrounds,
some of these selections are somewhat surprising

IMPLICATIONS FOR PRACTICAL WIRELESS SENSOR NETWORKS - Unique Operating System Architecture and
Transceiver Standards

43

since they reject commonly sought after goals, such
as maximum bit throughput, and radio range.

Considering the operating system, an OS
designer from another background might be
surprised by the issues at hand. Gone are the
incentives for large scale memory addressing
capabilities, incorporation of parallel processing for
dual core machines and other such features. In
contrast, the WSN sensor node OS and application
task(s) is accomplished by TinyOS in a single
address space and as a single piece of code.
Programmers with a background of embedded
systems are more likely to be comfortable with the
size constraints of the WSN development than
others. But as discussed for WSN sensor nodes, both
power constraints and good data throughput are
critical to OS success. Not all embedded
applications has this set of constraints.

From what has been identified in this discussion
it is evident that the existing WSN solutions will be
challenged to improve as time progresses. In terms
of OS development, developers will continue to test
and improve the “event driven” model and the
“multithreaded” model approaches. Additionally,
developers will continue to work towards
determining the best host programming language for
their particular OS (e.g. nesC, C). Developers will
also continue to port WSN OS solutions from one
hardware platform to another. However, regardless
of future improvements it can be stated that to date
the unique architectural challenges for both the OS
and transceiver of wireless sensor networks have
been successfully met.

REFERENCES

Zhao, F., Liu, J., Cheong, E., Dutta, P., and Whitehouse,
P., 2004. Wireless Sensor Networks: Seamless
Computing across the Physical and PC Worlds. In
Talk at Microsoft Research Faculty Summit 2004,
Redmond, WA,
http://research.microsoft.com/~zhao/talks/Zhao_Facult
ySummit04_p.pdf.

Dutta, P. K., and Culler, D. E., 2005. System Software
Techniques for Low-power Operation in Wireless
Sensor Networks. In Proceedings of the 2005
International Conference on Computer-Aided Design
(ICCAD’05) 2005, pp. 925-932. ICCAD’05.

Polastre, J., Szewczyk, R., and Culler, D., 2005. Telos:
Enabling Ultra-low Power Wireless Research. In
Proceedings of the Fourth International Conference
on Information Processing in Sensor Networks:
Special Track on Platform Tools and Design Methods
for Network Embedded Sensors (IPSN/SPOTS), April
2005. IPSN/SPOTS.

Beck, N., and Johnson, I., 2007. Shaping TinyOS to Deal
with Evolving Device Architectures: Experiences
Porting TinyOS-2.0 to the Chipcon CC2430. In
Proceedings of the 4th workshop on Embedded
Network Sensors (EmNets ’07), June 2007, pp. 83-87,
ISBN 978-1-59593-694-3. EmNets ’07.

Gay, D., Levis, P., and Culler, D., 2007. Software Design
Patterns for TinyOS. In ACM Transactions on
Embedded Comput. Syst. 6, 4, Article 22, September
2007, 39 pages. ACM.

Dunkels, A., Schmidt, O., Voigt, T., and Ali, M., 2006.
Protothreads: Simplifying Event-driven Programming
of Memory-constrained Embedded Systems. In SenSys
'06: Proceedings of the 4th International Conference
on Embedded Networked Sensor Systems, 2006, ISBN
1-59593-343-3, pp. 29-42, Boulder, Colorado, USA.
ACM, New York, NY, USA.

Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., and
Pister, K., 2000. System Architecture Directions for
Networked Sensors. In SIGPLAN Not. 35, 11, Nov.
2000, pp. 93-104. SIGPLAN.

Decker, C., Riedel, T., Peev, E., and Beigl, M., 2006.
Adaptation of On-line Scheduling Strategies for
Sensor Network Platforms. In 2006 IEEE
International Conference on Mobile Adhoc and Sensor
Systems (MASS), Issue, Oct. 2006, pp. 534–537. IEEE.

Bhatti, S., Carlson, J., Dai, H., Deng, J., Rose, J., Sheth,
A., Shucker, B., Gruenwald, C., Torgerson, A. and
Han, R., 2005. Mantis OS: An Embedded
Multithreaded Operating System for Wireless Micro
Sensor Platforms. In ACM/Kluwer Mobile Networks
and Applications (MONET), Special Issue on Wireless
Sensor Networks, 2005. ACM.

Eswaran, A., Rowe, A., and Rajkumar, R., 2005. Nano-
RK: An Energy-Aware Resource-Centric RTOS for
Sensor Networks. In Proceedings of the 26th IEEE
International Real-Time Systems Symposium
December 5-8, 2005, RTSS. IEEE Computer Society,
Washington, DC, pp. 256-265. IEEE Computer
Society.

Ilyas, M., 2004. Handbook of Sensor Networks:
CompactWireless and Wired Sensing Systems. CRC
Press.

Schurges, C., 2002. Energy-aware Wireless
Communications, In Ph.D. thesis. University of
California Los Angeles.

Otis, B.P., Chee, Y.H., Lu, R., Pletcher, N.M., Rabaey
R.M., 2004. An Ultra-Low Power MEMS-Based Two-
Channel Transceiver for Wireless Sensor Networks. In
Symposium on VLSI Circuits, 2004. Digest of
Technical Papers, June 17-19, 2004, pp. 20- 23. ISBN:
0-7803-8287-0. IEEE.

Leopold, M., Chang, M., Bonnet, P., 2007. Characterizing
Mote Performance: A Vector-Based Methodology. In
Technical Report no. 07/06 Dept. of Computer Science
University of Copenhagen Universitetsparken 1 DK-
2100 Copenhagen, Denmark, ISSN: 0107-8283, 2007.
University of Copenhagen.

WINSYS 2009 - International Conference on Wireless Information Networks and Systems

44

