
A SELF-CONFIGURING MIDDLEWARE FOR MANAGING 
CONTEXT AWARENESS 

Ionut Anghel, Tudor Cioara, Ioan Salomie, Mihaela Dinsoreanu and Anca Rarau 
Computer Science Department, Technical University of Cluj-Napoca, 15 Daicoviciu Street, Cluj-Napoca, Romania 

Keywords: Pervasive Systems, Self-Configuring, Middleware, Context Awareness, Autonomic Computing. 

Abstract: This paper introduces a self-configuring middleware that manages the context information acquisition and 
representation processes targeting the development of context aware applications. The context information 
is represented using three sets: context resources, actors and policies. The context model management 
infrastructure is constructed using BDI (Believe Desire Intentions) agents that generate and administrate the 
context model artefacts at run time. The self – configuring property is enforced by monitoring the real world 
context in order to detect context variations or conditions for which the context artefacts must be updated. 
The advantage of our approach is the transparency of the context management processes for the pervasive 
application developers, allowing them to focus on the application desired functionality. The middleware was 
tested and validated within the premises of our Distributed Systems Research Laboratory. 

1 INTRODUCTION AND 
RELATED WORK 

An important challenge in developing context aware 
applications is the dynamic nature of their execution 
environment which makes the process of context 
information acquisition and representation extremely 
difficult to manage. During the context information 
acquisition process, the sources of context 
information (e.g. sensors) can fail or new context 
information sources may be identified. The context 
acquisition and representation processes need to be 
reliable and fault tolerant.  For example, a pervasive 
application cannot wait indefinitely for an answer 
from a temporary unavailable context resource. On 
the other hand, many times the payoff for not taking 
into consideration the new available context 
resources can be very high. To provide an efficient 
context information management, it is necessary to 
introduce some degree of autonomy for the context 
acquisition and representation processes.  

Another important challenge in the context aware 
application development is to assign the context 
management responsibility. Current approaches put 
the pervasive system developers in charge with the 
context management process which makes 
developing a pervasive system extremely 
complicate. Our vision is that a third party context 
management infrastructure must deal with processes 

like context information acquisition and 
representation. 

This paper introduces a pervasive self-
configuring middleware that uses a context 
management infrastructure to gather context 
information from sensors and generate a run-time 
context representation. As a consequence, the 
context management processes are transparent for 
the context aware application developers, allowing 
them to concentrate on designing and implementing 
the application desired functionality. Also, the 
middleware supports dynamic configuration of the 
context elements used by the pervasive application. 

In order to achieve our goal we have identified 
three major problems: (i) context representation, (ii) 
context management and (iii) automatic discovery 
and setup the new context resources. In the 
following we discuss the state of research for each 
problem. 

For context representation, generic models for 
accurately describing the real context in a 
programmatic way are proposed. In (Rarau, 2006), 
the concept of multi-faceted entity is defined and 
used to model the set of context properties. A facet 
represents the effective values of context properties 
to which the context sensitive application has access. 
The main drawback of this approach is the lack of 
semantic information encapsulated in the facet 
concept. As a result, inferring new context related 

131
Anghel I., Cioara T., Salomie I., Dinsoreanu M. and Rarau A. (2009).
A SELF-CONFIGURING MIDDLEWARE FOR MANAGING CONTEXT AWARENESS.
In Proceedings of the International Conference on Wireless Information Networks and Systems, pages 131-138
DOI: 10.5220/0002233701310138
Copyright c© SciTePress



 

knowledge is difficult. An original approach to the 
context modelling problem is the use of parametric 
state machines for representing a context aware 
system (Chen, 2006). The context is modelled using 
context functions that modify the context aware 
system’s state. The complexity of a real system’s 
associated parametric state machine, in terms of the 
number of states and transitions, is the main 
disadvantage of this approach. The use of ontologies 
is a new context modelling direction. The context 
properties are represented as ontological concepts 
during design time and instantiated with run-time 
sensor captured values (Feruzan Ay, 2007), (Lee, 
2007). The main disadvantage of this approach is the 
high degree of inflexibility determined by the human 
intervention in the context representation phase.  

For the context management the researches 
concentrate on developing techniques for keeping 
the context representation consistent with the real 
context. In (Bellavista, 2006), models for capturing 
and updating the context information based on the 
information type are proposed. Fournier defines 
reusable components for updating the context 
specific data (Fournier, 2006). These components 
provide stable communication channels for 
capturing and controlling context specific data. In 
(Spanoudakis, 2007), the authors propose the 
development of context guided behavioural models, 
which allow context aware applications to detect 
only those context data variations that lead to the 
modification of their behaviour. 

For the automatic discovery and setup of new 
context resources self-configuring management 
systems that can automatically discover and react to 
the new identified context resources are proposed 
(Bahati, 2006). A context adaptive platform based 
on the closed loop control principle for managing 
the context representation is proposed in (Cremene, 
2007). The novelty of this proposal consists in 
defining and using the concept of application-
context description to represent context related 
system knowledge. The description is frequently 
updated and used for automatic reconfiguring and 
taking adapting decisions. 

The main contribution of our approach is the 
definition of a self-configuring middleware targeting 
the development of context aware applications. The 
fundamental element of this middleware is the 
context model which represents the context 
information using three sets: context resources, 
actors and policies. The context model management 
infrastructure is implemented by using BDI agents 
(Rao, 1995) that generate and administrate the 
context model artefacts at run time. The middleware 
self-configuring feature is implemented by 

monitoring and evaluating the environment changes 
in order to keep the context artefacts updated. The 
proposed middleware is tested and validated using 
our laboratory, Distributed Systems Research 
Laboratory (DSRL), as a smart space infrastructure. 

The rest of the paper is organized as follows: in 
Section 2, the middleware architecture is presented; 
Section 3 presents the self-configuring enhanced 
middleware; Section 4 shows how the middleware is 
used to manage the context representation of an 
intelligent laboratory environment while Section 5 
concludes the paper and shows the future work. 

2 A PERVASIVE MIDDLEWARE  

The pervasive middleware architecture defines three 
main layers (Figure 1): the acquisition layer that 
captures the context information from real world 
contexts, the context model layer which represents 
the context information in a machine interpretable 
way and the context model management 
infrastructure layer.  

 
Figure 1: The Pervasive Middleware Conceptual 
Architecture. 

In the following we detail each of the three 
middleware architectural layers. 

2.1 The Context Acquisition Layer 

The context information acquisition layer design 
takes into consideration the following aspects: (i) the 
sensor information retrieval mechanism and (ii) the 
visibility of the sensor information to middleware 
upper layers. From the middleware perspective we 

WINSYS 2009 - International Conference on Wireless Information Networks and Systems

132



 

have defined both push and pull types of sensor 
information retrieval mechanisms. The push 
mechanism uses event listeners gather the context 
information from sensors while the pull mechanism 
uses a query based approach which allows the 
context information to be provided on demand. To 
make sensor information visible, in an independent 
manner, to the upper layers, we used the web 
services technology. Each sensor has an attached 
web service through which it’s values are exposed. 
The context information retrieval process is shown 
in Figure 2.  

 
Figure 2: The context information retrieval flow. 

The structure of the Context Acquisition API is 
presented in Figure 3. The communication between 
a sensor attached web service and the Context 
Acquisition API is managed by the WSClient class. 
It provides methods that: (i) build a SOAP request, 
(ii) send the request to the web service and (iii) wait 
for the sensor value response. 

The pull information retrieval mechanism is 
implemented in the SensorTools class by defining a 
method that queries a specific web service to obtain 
the sensor value. For the push mechanism, the 
Observer design pattern is used. A SensorWSReader 
instance must be created first by specifying the URL 
of the web service and the time interval at which the 
sensor data will be updated. The SensorWSReader 
instance also contains a list of listeners that are 
notified when a sensor value has changed.The 
listeners are created from the middleware upper 
layers by extending the AbstractSensorListener 
abstract class. To verify the sensor value, separate 

threads that continuously send requests to the web 
service are created using the WSReaderThread. 

 
Figure 3: The Context Acquisition API class diagram. 

2.2 The Context Model Layer 

To represent a real world context in an 
programmatic manner (readable for the pervasive 
application build on top of the middleware) the RAP 
context model (Author paper reference) is used. In 
this model the context is defined as a triple: C = <R, 
A, P>   where R is the set of context resources that 
generates and / or processes context information, A 
is the set of actors which interact with context 
resources in order to satisfy their needs and P is the 
set of real world context related policies. The set of 
context resources R is split in two disjunctive 
subsets: (i) the set of context resources attached to 
the real world context environment RE and (ii) the 
set of context resources attached to the actors RA. 

In order to provide an accurate representation of 
the real world context, the following context 
representation artefacts are defined (see Figure 4): 
specific context model, specific context model 
instance and context – actor instance. 

The specific context model CS = <RS, AS, PS> is 
obtained by mapping the context model onto 
different real contexts and populating the sets with 
real context specific elements.  

A specific context model instance CSI = <RSI, 
ASI, PSI> contains the set of context resources with 
which the middleware interacts, together with their 
values in a specific moment of time t. The specific 
context model represents the context situation to 
which a pervasive application build onto the 
middleware must adapt. 

A SELF-CONFIGURING MIDDLEWARE FOR MANAGING CONTEXT AWARENESS

133



 

The context – actor instance CIa
t = <Ra

t, a, Pt> 
contains the set of context resources with which the 
actor can interact, together with their values in a 
specific moment of time t.  A context – actor 
instance represents the projection of the specific 
context model instance onto a certain actor.  

Beside the above presented set representation the 
RAP model offers an ontological representation of 
the context model artefacts which allows for 
learning and reasoning in order to obtain high-level 
context information. The relationships between the 
context model elements are represented in a general 
purpose context ontology core. 

 
Figure 4: The RAP context model. 

The specific context model concepts are 
represented as sub trees of the core ontology by 
using is-a type relation. The context situation or the 
context instance is represented by the core ontology 
together with the specific context model concepts 
and their instances in a specific moment of time. 

The two ways of representing the context (set 
based and ontology based) are equivalent and need 
to be kept synchronized. The set based context 
model is used to evaluate the conditions under which 
the context management agents should execute self* 
processes in order to enforce the autonomic 
properties at the middleware level (self-configuring, 
self-healing, self-optimizing and self-protection). 
The ontology based model will be used by the 
context aware applications for reasoning and 
learning purposes. 

2.3 The Context Model Management 
Infrastructure Layer 

The context model management infrastructure layer  

is based on four types of intelligent, cooperative BDI 
type agents (Salomie, 2008):  Context Model 
Administering Agents, Context Interpreting Agents, 
Request Processing Agents and Execution and 
Monitoring Agents. 

The Context Model Administering Agent 
(CMAA) is the specific context model manager. Its 
main goal is the synchronization of the context 
model specific artefacts with the system execution 
environment. This agent is also responsible for 
negotiating processes that take place when an actor 
or resource is joining the context. 

The Context Interpreting Agent (CIA) 
semantically evaluates the information of a context 
instance and tries to find the context instance 
“meaning” for the pervasive application. 

The Request Processing Agent (RPA) 
processes the actor requests. This agent identifies 
and generates the action plans that must be executed 
for serving an incoming request. The RPA agent 
uses the specific context model instance to identify 
the proper plan to be executed by the Execution and 
Monitoring Agent or for generating a new plan. 

The Execution and Monitoring Agent (EMA) 
processes the plans received from the RPA agent 
and executes every plan action using the available 
services. After mapping action plans onto services, a 
plan orchestration – smart workflow which can be 
executed using transactional principles is obtained. 

The context management infrastructure agents 
are implemented using the Java Agent Development 
Framework platform (Jade). When the middleware is 
deployed, CMAA is the first running agent. It 
instantiates the CIA, RPA and EMA context 
management agents and sends them the real world 
context representation.  

3 ENHANCING THE 
MIDDLEWARE WITH  
SELF-CONFIGURING 
CAPABILITIES 

The context acquisition and representation processes 
implemented by the middleware need to be reliable 
and fault tolerant because during run-time the 
context resources can fail or new resources may be 
identified. As a consequence, the context 
representation constructed by de middleware needs 
to accurately reflect the real world context. In order 
to provide an efficient context information 
management, we enhanced the middleware with 
self-configuring properties, thus allowing for 
dynamic configuration of the context artefacts. 

WINSYS 2009 - International Conference on Wireless Information Networks and Systems

134



 

The self – configuring property is enforced by 
monitoring the real world context in order to detect 
context variations or conditions for which the 
context artefacts must be updated. We have 
identified three causes that generate context 
variation: (1) adding or removing context elements 
(resources, actors, policies) to/from the real world 
context, (2) actors’ mobility within the real world 
context and (3) changes of the resources property 
values (mainly due to changing the sensors’ captured 
values). In the following sections we discuss each of 
these context variation causes targeting to determine 
(i) the context variation degree and (ii) the starting 
condition of the self-configuring process. 

3.1 Context Variation Generated by 
Adding or Removing Context 
Elements 

During the context information acquisition process, 
the sources of context information can fail or 
randomly leave / join the context. These changes 
generate a context variation are detected by the 
acquisition layer and sent to the Context Model 
Administration Agent which creates a new specific 
context model adapted to the new real world context. 
Next, we evaluate the context variation degree 
generated by context resources ΔR, context policies 
ΔP and context actors ΔA in relationship with a set 
of associated thresholds TR, TP, and TA

 respectively. 
The context resources set variation is generated 

by adding or removing a context resource r (sensor 
or actuator) to / from the pervasive application 
execution environment. The context resource set 
variation is calculated using the set difference 
operation applied in two consecutive moments of 
time: t and, t+1 where t+1 represent the moment 
when the resource r became available. The same 
reasoning can be applied when the resource r fails or 
becomes unavailable: 

 

ΔR = {RE
t+1  RE

t}  {RE
t  RE

t+1}
    

(1) 
 

In relation (1) RE
t+1 \ RE

t
  contains the set of context 

resources that become available and RE
t \ RE

t+1
 contains the set of context resources that become 

unavailable. If Card(ΔR) ≥ TR a new specific 
context model is generated by adding or removing 
the context resources contained in ΔR. 

The variation of the policy set is generated by 
adding, removing or updating an execution 
environment policy. The updating operation is 
always achieved by removing the old context policy 
followed by adding a new one. Using the same 

assumptions and conclusions as for context 
resources, the policy set variation is: 

 

ΔP = {Pt+1   Pt}  {Pt   Pt+1}              (2) 
 

The variation of the actors set is generated by the 
actors that enter or leave the pervasive application 
execution context. Each context actor has an 
attached context resources set during its context 
interactions. In a given context, an actor is 
characterized by a large number of actor-context 
interaction patterns, but only two of these patterns 
determine a variation of the actor context resources 
set RA: (i) the actor enters the context and (ii) the 
actor leaves the context. The actors related context 
variation is:  

 

ΔA = {At+1  At}  {At   At+1}  {RA
t  RA

t +1}    
{RA

t+1  RA
t}                                                                 (3) 

 

Overall, the real world context variation ΔENV is 
given by the union of all context elements’ variation 
as shown below: 

 

ΔENV = ΔR  ΔA  ΔP                                     
      Card(ΔENV) = Card(ΔR) + Card(ΔA) + Card(ΔP)   (4)  

The self-configuring threshold is defined as: 
 

TSelf-Configuring = min(TR, TA, TP)                                (5) 
 

The CMMA agent should start the execution of the 
self-configuring process and generate a new specific 
context model when Card(ΔENV) ≥ TSelf-Configuring . 

3.2 Context Variation Generated by 
Actors Mobility 

Due to their mobility, the actors are changing their 
environment location and implicitly the set of 
resources with which they interact. The Context 
Model Administration Agent (CMAA) identifies this 
variation and generates (i) a new context – actor 
instance and (ii) a new specific context model 
instance. 

In order to evaluate the context variation 
generated by actors’ mobility we use the isotropic 
context space concept, defined in (Author paper 
reference). A context space is isotropic if and only if 
the set of real world context resources is invariant to 
the actors’ movement. Usually, a context space is 
non-isotropic, but it can be split into a set of 
disjunctive isotropic context sub-space volumes in 
which the isotropy degree variation is the empty set. 
Such a volume is called context granule. For a given 
moment of time, an actor can be physically located 
in a single context granule. As a result, the space 
isotropy variation ΔIZ is non-zero only when an 

A SELF-CONFIGURING MIDDLEWARE FOR MANAGING CONTEXT AWARENESS

135



 

actor a moves between two context granules. The 
isotropy variation for a context actor is computed as: 

 

ΔIZa  = {RCG
t+1   RCG

t}  {RCG
t   RCG

t+1}           (6) 
 

The CMMA agent continuously monitors the actors’ 
movement in the real world context and periodically 
evaluates the space isotropy variation. If for an 
actor, the space isotropy variation is a non empty set, 
then the self-configuring process executed by the 
CMMA agent generates a new context – actor 
instance. It actually represents the specific context 
model instance projection onto a certain actor: 

 

CIa
t+1 = <Ra

t+1, a, Pt+1>,  Ra
t+1 = RCG

t+1               (7) 
 

The context variation generated by all actors’ 
mobility in a context space is given by: 

 

ΔCAM = a є A ΔIZa

                                   
(8) 

3.3 Context Variation Generated by 
Changes of Resources Property 
Values 

A context resource is a physical or virtual entity 
which generates and / or processes context 
information. The resource properties, K(r), specify 
the set of relevant context information that a 
resource can provide. For example, the set of context 
properties for a Hot&Humidity sensor is 
K(Hot&Humidity) = {Temperature, Humidity}. 

In order to evaluate the context variation 
generated by the changes in the resource property 
values, we define a function Kval that associates the 
resource property to its value: 

 

Kval(R) = {(k1,val1),…, (kn,valn)}  
with k1,…,kn є K                                                      (9)

  

If the values captured by the Hot&Humidity sensor 
in a moment of time are for temperature 5 degree 
Celsius and for humidity 60%, then 
Kval(Hot&HumiditySensor) = {(Temperature, 5), 
(Humidity, 60%)}. 

CMAA agent calculates the context variation 
generated by changes of resource properties’ values 
ΔRPV as presented below.  

 

ΔRPV = Kval(Rt+1) - Kval(Rt)= 
{(k1,val1

t+1- val1
t),…,(kn,valn

t+1-valn
t)}                   (10) 

 

As a result, a new specific context model 
instance should be created when Card(ΔRPV) ≥ 0. 

3.4 The Self-configuring Algorithm 

The self-configuring algorithm is executed by 
CMAA in order to keep the context model artefacts 

synchronized with the real context (Figure 5). The 
Context Model Administering Agent features ticker 
based behaviour by periodically evaluating the 
context changes. When a significant context 
variation is determined, the context model artefacts 
are updated using the updateOntology (owlModel, 
newContextElements) method.  

Algorithm CMAA_Self_Configuring  
input: (1) new real world context elements: Rn, An , Pn   
            (2) thresholds for context elements variation:  
                  TR, TA, TP 
output: new context artifacts CS

n , CIa
n , CSI

n  
resources: current context artifacts set representation 
                   CS, CIa CSI, current context artifacts ontology as  
                   owlModel 

begin 
// CMAA evaluates the context variation  
ΔR = {RE

n
  RE}  {RE  RE

n} 
ΔA = (An  AS}  {AS  An}  {RA

n
  RA}  {RA  RA

n}
ΔP = {Pn  PS} {Pn  PS} 
∆CAM = Ua є A ΔIZa

                                                 

 
∆RPV = Kval(Rn) - Kval(R) 

  
 TSelf-Conf = min (TR, TA, TP) 
 if  (Card (∆ENV) ≥ TSelf-Conf ) 

   begin 
     //CMAA tries to create a new specific context model 
     if  (Card (∆R) ≥ TR )  

           if (RS ∩ ∆R = Ø)  
         CS

n 
 = CS + ∆R = (RS, AS, PS) + ∆R = (RS  ∆R, AS, PS) 

       else CS
n 

 = CS - ∆R = (RS, AS, PS) - ∆R = (RS \ ∆R, AS, PS) 
     if (Card (∆A) ≥ TA ) 
       if (AS ∩ ∆A = 0) 

             CS
n

 = CS + ∆A = (RS, AS, PS) + ∆A = (RS, AS  ∆A, PS) 
   else CS

n
 = CS - ∆A = (RS, AS, PS) - ∆A = (RS, AS  ∆A, PS)

     if (Card (∆P) ≥ TP ) 
       if (PS ∩ ∆P = 0)  

     CS 
n = CS + ∆P = (RS, AS, PS) + ∆P = (RS, AS, PS  ∆P)

   else CS
n

 = CS - ∆P = (RS, AS, PS) - ∆P = (RS, AS, PS ∆P) 
       end 
     else    
       begin 
       // CMAA tries to create a new context-actor instance 
       TSelf-Conf  =  0 

  if (Card (∆CAM) > TSelf-Conf ) 
    foreach a € A   if (∆IZ a ≠ 0)   CIa

n
  =  <Ra, a, P> 

 else  
    // CMAA tries to create a new specific context model 
   //  instance 
  if (Card (∆RPV) > TSelf-Conf )   CSI

n
 = <Ra, a, P> 

        end 
 updateOntology (owlModel, ∆R  ∆A  ∆P) 

end  
Figure 5: The CMAA self-configuring algorithm. 

4 CASE STUDY – MANAGING A 
SMART LABORATORY SPACE 

For the case study we have used a real world context 
represented by our Distributed System Research 

WINSYS 2009 - International Conference on Wireless Information Networks and Systems

136



 

Laboratory. In the laboratory the students are 
marked using RFID tags and identified using a RFID 
reader. The students interact with the smart 
laboratory by means of wireless capable PDAs on 
which different laboratory provided services are 
executed (submit homework service, lesson hints 
services, print services, information retrieval 
services, etc.). A sensor network captures 
information regarding students’ location or 
orientation and also ambient information like the 
temperature or humidity. In the laboratory, a set of 
policies like “the ambient temperature should be 22 
degrees Celsius” or “the loud upper limit is 80 dB” 
should be respected. 

The DSRL infrastructure contains a set of 
sensors through which the real context information 
is collected: two Hot&Humidity sensors that capture 
the air humidity and the temperature, four Orient 
sensors placed in the four corners of the laboratory 
that measure the orientation on a single axis, one 
Loud sensor that detects sound loudness level and 
one Far Reach sensor that measures distances 
(Figure 6). The sensors are connected using a Wi-
microSystem wireless network produced by Infusion 
Systems (IS Ltd.). The middleware is deployed on 
an IBM Blade-based technology Server Center. The 
IBM Blade technology was chosen because its 
maintenance software offers autonomic features like 
self-configuring of its hardware resources. 

The context related data captured by sensors is 
collected through the Wi-microSystem that has an I-
CubeX WimicroDig analogue to digital encoder as 
its main part. It is a configurable hardware device 
that encodes up to 8 analogue sensor signals to MIDI 
messages which are real-time wirelessly transmitted, 
through Bluetooth waves, to the Server Center for 
analysis and/or control purposes. The Bluetooth 
receiver located on the Blade computer is mapped as 
a Virtual Serial Port (VSP). 

In order to read/write to/from the VSP we used 
two sensor manufacture applications: (i) BlueMIDI 
which converts the Bluetooth waves received on the 
VSP into MIDI messages and (ii) MIDI Yoke which 
creates pairs of input/output MIDI ports and 
associates the output MIDI port with the VSP. The 
MIDI message information is extracted using the 
Microsoft Windows API multimedia operations and 
published through web services (see figure 7). 

The Context Model Administering Agent 
periodically evaluates the context information 
changes at a predefined time interval (we use 1 
second time intervals for this purpose). If significant 
variations are detected, the context model artifacts 
are created or updated using the self-configuring 
algorithm presented in Section 3.4. 

 
Figure 6: The DSRL infrastructure. 

 
Figure 7: The context information data path form sensors 
to their attached web services. 

When the middleware is deployed and starts 
execution (t=0) there are no context model artefacts 
constructed, i.e. the R, P and A sets of the context 
model are empty. After one second (t=1), when two 
students John and Mary enter the lab, the Context 
Model Administering Agent receives the updated 
context information from the Context Acquisition 
Layer and calculates the context elements variation 
∆R, ∆P and ∆A as presented in Figure 8. 

RE
1 = {FarReachSensor, RFIDReader,   

           HotHumiditySensor1&2, LoudSensor,  
           OrientationSensor1&2&3&4} 
RE

0 = Ø 
∆R = (RE

1  RE
0)  (RE

0  RE
1)  

∆R = {FarReachSensor, RFIDReader, LoudSensor     
          HotHumiditySensor1&2, OrientationSensor1&2&3&4}
 
A1 = {StudentJohn, StudentMary} 
A0 = Ø 
∆A = (A1  A0)  (A0  A1)  
∆A = {StudentJohn, StudentMary} 
 
P1 ={LoudLimit, TemperatureLimit} 
P0 = Ø 
∆P = (P1  P0)  (P0  P1) 
∆P = {LoudLimit, TemperatureLimit} 
 
Card(∆ENV) = Card(∆R) + Card(∆A) + Card(∆P) = 13  
Card(∆ENV) > TSelf-Configuring  

Figure 8: DSRL context variation at t=1. 

A SELF-CONFIGURING MIDDLEWARE FOR MANAGING CONTEXT AWARENESS

137



 

By default the self-configuring thresholds are set 
to the value 1: TSelf-Conf = TR = TA = TP = 1. As a 
result of evaluating the context variation at t=1, the 
Context Model Administering Agent executes the 
self – configuring algorithm which adds new 
concepts/ populates the context model artefacts 
ontology. The new added concepts originate from 
the context elements set variations ∆R, ∆P and ∆A 
calculated in Figure 8. 

RE
61 = {FarReachSensor, RFIDReader,       

             HotHumiditySensor1&2, OrientationSensor2&3}
RE

60 = {FarReachSensor, RFIDReader, LoudSensor 
             HotHumiditySensor1&2,    
             OrientationSensor1&2&3&4} 
∆R = (RE

61  RE
60)  (RE

60  RE
61)  

∆R = {LoudSensor, OrientationSensor1&4} 
 
A61 = {StudentMary} 
A60 = {StudentJohn, StudentMary} 
∆A = (A61  A60)  (A60  A61)  
∆A = {StudentMary} 
 
P61 = {LoudLimit, TemperatureLimit} 
P60 = {LoudLimit, TemperatureLimit} 
∆P = (P61  P60)  (P60  P61) 
∆P = Ø 
 
Card(∆ENV) = Card(∆R) + Card(∆A) + Card(∆P) = 4  
Card(∆ENV) > TSelf-Configuring  

Figure 9: CMAA agent evaluates the DSRL context 
variation at t=61. 

In order to test the middleware self-configuring 
capabilities we have considered that after 60 seconds 
the following context changes occurred: (i) student 
John leaves the laboratory, (ii) Orientation Sensor1 
and OrientationSensor4 are disabled and (iii) 
LoudSensor is disabled.  

The CMAA agent calculates the variation in the 
new context at t = 61 (Figure 9), executes the self-
configuring algorithm and updates accordingly the 
context ontology. 

5 CONCLUSIONS 

This paper addresses the problem of managing the 
context information acquisition and representation 
processes in a reliable and fault tolerant manner. We 
define a self-configuring middleware that uses an 
agent based context management infrastructure to 
gather context information from sensors and 
generate a context ontology representation at run-
time. The self-configuring property is enforced at 
the middleware level by monitoring the execution 
context in order to detect context variations or 

conditions for which the ontology context artefacts 
must be updated / populated. 

For the future development we intend to provide 
algorithms and generic formalisms for all four self-* 
autonomic paradigms in order to enhance the 
proposed middleware with context / self aware 
capabilities. 

REFERENCES 

Anca Rarau, K. Pusztai. I.Salomie 2006. MultiFacet Item 
based Context-Aware Applications. In International 
Journal of Computing and Information Sciences. 

Irene Y.L. Chen, Stephen J.H. Yang, 2006.  Ubiquitous 
Provision of Context Aware Web Services. In IEEE 
International Conference on Services Computing. 

Feruzan Ay, 2007. Context Modeling and Reasoning using 
Ontologies. University of Technology Berlin. 

Ki-Chul Lee, Jung-Hoon Kim 2007. Implementation of 
Ontology Based Context-Awareness Framework for 
Ubiquitous Environment. In Int. Conference on 
Multimedia and Ubiquitous Engineering. 

Paolo Bellavista, Antonio Corradi, Rebecca Montanari, 
2006. Mobile Computing Middleware for Location 
and Context-Aware Internet Data Services. In ACM 
Transactions on Internet Technology, Vol. 6, No. 4. 

Damien Fournier, Sonia Ben Mokhtar 2006. Towards Ad 
hoc Contextual Services for Pervasive Computing. In 
IEEE Middleware for Service Oriented Computing 
Melbourne, Australia.  

George Spanoudakis, Khaled Mahbub 2007. A Platform 
for Context Aware Runtime Web Service Discovery. 
In IEEE International Conference on Web Services. 

Marcel Cremene, Michel Riveill, Christian Martel, 2007. 
Autonomic Adaptation based on Service-Context 
Adequacy Determination. In Electronic Notes in 
Theoretical Computer Science, Elsevier. 

Salomie I., Cioara T., Anghel I., Dinsoreanu M., 2008. 
RAP - A Basic Context Awareness Model. In Proc. of 
4th IEEE Int. Conf.  on Intelligent Computer 
Communication and Processing; ISBN: 978-1-4244-
2673-7, pp. 315-318. 

DSRL, Distributed Systems Research Laboratory, 
Technical University of Cluj-Napoca. dsrl.coned. 
utcluj.ro 

Jade, Java Agent DEvelopment Framework. http://jade. 
tilab.com. 

IS Ltd., Infusion Systems Ltd. http://www. 
infusionsystems.com. 

Raphael M. Bahati, Michael A. Bauer, 2006. Using 
Policies to Drive Autonomic Management. In Proc. of 
the Int. Symposium on a World of Wireless, Mobile 
and Multimedia Networks. 

A. S. Rao, M. P. Georgeff, 1995. BDI Agents: from 
Theory to Practice. In Tech. Rep. 56, Australian 
Artificial Intelligence Institute, Melbourne, Australia. 

WINSYS 2009 - International Conference on Wireless Information Networks and Systems

138


