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Abstract: Based on the theoretical model, a numerical method is usually necessary for obtaining the optimal 
preventive maintenance (PM) policy for a deteriorating system since the theoretical model becomes 
complicated when the system’s hazard rate function is changed after each PM.  It makes the application of 
the theoretical model not suitable for real cases.  Moreover, the theoretical model assumes using infinite 
time span to obtain the long-term expected number of failures.  Yet, in reality, the deteriorating systems 
always have a finite life time.  Hence, an optimal solution might not be resulted as compared to the infinite 
time span.  Therefore, we consider using the simulation method to obtain a range of the near-optimal PM 
policy.  The critical step of the simulation method for obtaining a near-optimal PM policy is the generation 
of the random variates (RV).  In this research, three methods are developed to generate the required RVs of 
the time-between-failures (TBF) for the finite-time-span preventive maintenance model with age reduction 
effect.  It is found that there are no significant differences among three proposed RV generating methods 
when comparing the dispersion of the generated RV’s.  However, the rejection method is the simplest 
method for obtaining the near-optimal PM policies.  Examples of the near-optimal PM policies are also 
presented in this paper. 

1 INTRODUCTION 

Based on the theoretical model, a numerical method 
is usually necessary for finding the optimal 
preventive maintenance (PM) policy for a 
deteriorating system since the theoretical model 
becomes complicated when the system’s hazard rate 
function is changed after each PM.  It makes the 
application of the theoretical model not suitable for 
real cases.  Furthermore, by the theoretical model, 
the optimal policy is obtained based on the long-

term failures occurrence under the assumption of the 
infinite time span.  Yet, in reality, the life time of a 
system is always finite.  Hence, the optimal solution 
from the theoretical model may not suitable for a 
single system with finite life time.  In practical, a 
near-optimal PM policy might be good enough for 
the real applications.  In order to obtain a near-
optimal PM policy for the real situations, the 
simulation method is applied to generate random 
variates (RV) of the time between failures (TBF).  
However, recent literature survey has shown that 
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little research has been done to obtain a near-optimal 
PM policy by using the simulation method. 

The critical step of the simulation method for 
obtaining a near-optimal PM policy is the generation 
of the random variates (RV).  In this research, three 
methods are developed to generate the required RVs 
of the time-between-failures (TBF) for the finite-
time-span PM model with age reduction effect.   

Based on the simulation method developed by 
Cheng (2005), the first proposed method applies the 
inverse transformation method to generate the 
random variates (RV) of the time between failures 
(TBF) for a PM model with age reduction effect.  
The algorithm assumes that the occurrence time of 
the last failure in the ith PM cycle is irrelative to the 
occurrence time of the first failure in the i+1st PM 
cycle.  This RV generating method for the TBF is 
called “the offset inverse transformation method” in 
this paper. 

Intuitively, however, the occurrence time of the 
first failure in the i+1st PM cycle is affected by the 
occurrence time of the last failure in the ith PM cycle 
since the failure occurrence of the system follows 
the non-homogenous Poisson process (NHPP) and 
the PM is imperfect (i.e., the PM will not renew the 
system to zero failure rate).  Therefore, in this 
research, we have developed a modified inverse 
transformation method for generating the RVs of the 
TBF which is called “the trace-back inverse 
transformation method”.  The second proposed 
method assumes the occurrence time of the first 
failure in the i+1st PM cycle is affected by the 
occurrence time of the last failure in the ith PM 
cycle. 

Furthermore, since the rejection method is often 
applied to generating RVs of complicated 
distributions, we also present the third proposed 
method, the rejection method, for generating the 
RVs of the TBF under the age-reduced PM model.  
In this paper, the algorithms and the simulation 
results for the above three RV generating methods 
are presented and compared.  An example of finding 
the near-optimal PM policy is provided by using the 
rejection method of RV generation. 

2 THE BACKGROUND FOR THE 
THEORITICAL MODEL 

2.1 Nomenclature 

L the finite life time span for the system or 
equipment 

T the time interval of each periodic PM 
 

N the number of PM performed in the finite 
life time span (L) 

ki the generated number of failures in the ith PM 
cycle, i = 0, 1, …, N 

xi,j the generated time between the j-1st and the 
jth failures in the ith PM cycle, i = 0, 1, …, N; 
j = 1, 2, …, ki 

ti,j the generated occurrence time of the jth 
failure in the ith PM cycle where ti,j = ti,j-1 + 
xi,j 

1, +ikix
 

the generated time between the last (ki
th) and 

the ki+1st failures (not existing) in the ith PM 
cycle 

1, +ikit the generated occurrence time of ki+1st 
failure (not existing) in the ith PM cycle, i.e., 

1, +ikit exceed the time of the ith PM cycle 

γ the reduced age after each PM  
wi,j the generated effective occurrence time (age) 

of the jth failure in the ith PM cycle where wi,j 
= ti,j -iγ 

Ui,j the random number required for the 
generation of xi,j 

λ(t) Original hazard rate function (before the 1st

PM action) 
λi(t) Hazard rate function at time t where t is in 

the ith PM cycle and λ0(t)=λ(t) 
F(t) the cumulated distribution function (CDF) of 

the TBF at age t 
R(t) the reliability at age t 
Cpm Cost of each PM  
Cmr Minimal repair cost of each failure 
TC The total maintenance cost function in the 

finite life time span 

2.2 Assumptions 

 The system has a finite useful life time L. 
 The system is deteriorating and repairable over 

time where the failure process follows the non-
homogenous Poisson Process (NHPP) with 
increasing failure rate (IFR).  Weibull distribution 
with hazard rate function:

1
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−

⎟
⎠
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⎝
⎛=

β

θθ
βλ tt  is used to 

illustrate the examples in this paper, where β is 
the shape parameter and θ is the scale parameter. 

 The periodic PM actions with constant interval (T) 
are performed over the finite time span L. 

 The system’s age can be reduced γ units of time to 
result in a younger age (called the effective age) 
after each PM.  Hence, the hazard rate function at 
time ti,j in the ith PM cycle can be written as 
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λi(ti,j) = λ(ti,j-iγ) = λ(wi,j). (1)

 Minimal repair is performed when failure occurs 
between each PM. 

 The time required for performing PM, minimal 
repair, or replacement is negligible. 

2.3 The Theoretical Model 

Based on the theoretical PM model with age 
reduction proposed by Cheng et al. (2004) and Yeh 
and Chen (2006), the optimal PM policy is obtained 
by the following steps.  The first step is to find the 
expected cost rate function for the PM model as 
shown below. 

( 1) ( , )
( , ) ,pm pr mrN C C C T N

C T N
NT

− + + Λ
=  (2) 

where Λ(T, N) is the expected number of failures 
occurred in the finite time span and is defined as 

1 ( 1)

0

( , ) ( )
N i T

iiT
i

T N t dtλ
− +

=

Λ =∑∫  (3) 

with λi(·) being defined in Eq. (1).  Second step is to 
obtain the time interval of PM (T) as a function of N 
by taking the partial derivative of T of the above 
expected cost rate function and letting it equal to 
zero, i.e., ( , ) 0C T N

T
∂

=
∂

 

Third, the optimal value T* and N* of the 
theoretical model can be obtained by numerically 
searching min ( , ),

N
C T N  N = 1, 2, … since the cost 

rate function is a convex function.  The hazard rate 
function of the PM model with age reduction is 
illustrated in Figure 1. 

 
Figure 1: The hazard rate function of the PM Model with 
age reduction. 

 

3 THE RV GENERATING 
METHODS OF THE TBF 

3.1 The Offset Inverse Transformation 
Method 

This RV generating method assumes that the 
occurrence time of the last failure in the ith PM cycle 
is irrelative to the occurrence time of the first failure 
in the i+1st PM cycle.  Thus, when the generated 
occurrence time of the ki

th failure is within the ith PM 
cycle but the occurrence time of the ki+1st failure 
exceeds the ith PM cycle, i.e., , 1ii kt + > iT, we discard 
the ki+1st failure and start to generate the occurrence 
time for the first failure of the i+1st PM cycle.   

According to the concept of the inverse 
transformation method, if x is the time between 
failures, then, we have 

U = F(x). (4) 

However, since the PM model assumes that the 
minimal repair is performed at each failure occurred 
between each PM.  Therefore, we can re-write Eq.(4) 
as  

Ui,j = F(xi,j|ti,j-1) = 1 - R(xi,j|ti,j-1). (5) 

Then, for the age-reduction PM model, we apply 
Eq.(1) to Eq. (5) and it can be resulted as the 
following equation. 

{ }, 1 ,

, 1
, , , -11 ( | ) exp ( ') '  

                            for 0,1,..., ;  1, 2,...,

i j i j

i j

t x

i j i j i j it

i
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i N j k

λ−

−

+
− = = −

= =

∫  
(6) 

which, according to Eq. (1), can be expressed as 
function of effective age as follows. 

{ }, 1 ,

, 1
, , , -11 ( | ) exp ( )

                         for 0,1,..., ;  1, 2,..., .
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i
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+
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where w0,j = t0,j, wi,0 = ti,0 – iγ = iT - iγ; wi,j = ti,j – iγ = 
ti,j-1 + xi,j – iγ.  When the TBF of a system is a 
Weibull random variable, based in Eq. (7), we can 
generate the TBF random variates by the following 
equation. 

{ }1/

, , 1 , 1ln(1 )

                               for 0,1,..., ;  1, 2,..., .

i j ij i j i j

i

x U t i t i

i N j k

βββθ γ γ− −⎡ ⎤= − − + − − +⎣ ⎦

= =

 
(8) 

The algorithm for the offset inverse 
transformation method is presented as follows. 
(1) Specify the values of the following parameters: β, 

θ, γ, N, T, L and let i = 0.  
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(2) Let ti,0 = iT. 
(3) Let j = 1. 
(4) Generate random number Ui,j. 
(5) Obtain the value of xi,j according to Eq.(8);  

let ti,j = ti,j-1+xi,j. 
(6) If ti,j < iT, let j = j + 1 and go back to (4) 

else go to (7). 
(7) If ti,j < L, let i = i + 1 and go back to (2) 

else stop. 
It can be seen that the occurrence time of the first 

failure in the i+1st PM cycle does not relate to the 
occurrence time of the last failure ( , ii kt ), i.e.,  

ti+1,1 = ti+1,0 + xi+1,1 = (i+1)T + xi+1,1. 

3.2 The Trace-back Inverse 
Transformation Method 

The proposed second method is modified from the 
offset inverse transformation method.  For the 
following reasons: (1) the failure occurrence of the 
system follows the non-homogenous Poisson 
process (NHPP); (2) the PM is imperfect (i.e., the 
PM will not renew the system to zero failure rate), 
this generating method assumes that the occurrence 
time of the first failure in the i+1st PM cycle is 
affected by the occurrence time of the last failure in 
the ith PM cycle.  Hence, the theoretical concept for 
the generation of xi+1,1 is shown below. 
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It turns out that 
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Then, let 
+1,1 , 1 1,1 ,= 1 ( )

i ii i k i i kU U R x t+ += − .  For the 

Weibull case, we can generate the first TBF random 
variate of the i+1st PM cycle by the following 
equation. 
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(9) 

The algorithm for the trace-back inverse 
transformation method is provided below. 

(1) Specify the values of the following parameters: 
β, θ, γ, N, T, L.  

(2) Let i = 0, t0,0=0. 
(3) Let j = 1. 
(4) Generate random number Ui,j. 
(5) Obtain the value of xi,j according to Eq.(8);  

let ti,j = ti,j-1+xi,j. 
(6) If ti,j < iT, let j = j + 1 and go back to (4) 

else go to (7). 
(7) If ti,j < L,  

 obtain the value of xi+1,1 according to Eq.(9);  
 let ti+1,1 = , ii kt + xi+1,1; 
 let i = i + 1 and j = 2; 
 go back to (4) 
else stop. 
It can be seen that the occurrence time of the first 

failure in the i+1st PM cycle depends on the 
occurrence time of the last failure (

, ii kt ), i.e.,  
ti+1,1 = , ii kt + xi+1,1. 

3.3 The Rejection Method 

It can be seen from Eq.(4) or Eq.(5) that the hazard 
rate function is changed when performing a PM.  
This makes the formula for generating the TBF 
random variates shown in Eq.(6) and Eq.(7) very 
complicated.  Therefore, the rejection method is 
applied in this research. 

In the rejection method, two random numbers, 
say U1 and U2, are required for generating each RV.  
Suppose λi(t) is the hazard rate function of the ith PM 
cycle.  U1 is used to generate a RV from a hazard 
rate function with a simple formula, say λ(t) where 
λ(t) ≥ λi(t) for any t ≥ 0.  Then, the RV generated by 
using U1 is accepted if U2 < λi(t)/λ(t). 

In this research, we use the original hazard rate 
function λ(t) (i.e., the hazard rate function before the 
first PM) to generate the RV of the TBF 
corresponding to U1.  For the Weibull case, we can 
obtain the TBF formula as the following equation. 

1/

1 1 1ln(1 )+( ) .m m mx U t t
ββ βθ − −⎡ ⎤= − − −⎣ ⎦

 (10) 

The algorithm of the rejection method is 
presented as follows. 
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(1) Specify the values of the following parameters: β, 
θ, γ, N, T, L.  

(2) Let t0,0=0, t0=0. 
(3) Let m = 0, i = 0, j = 1. 
(4) Generate random number U1. 
(5) Obtain the value of xm according to Eq. (10);  

let tm = tm-1+xi,j. 
(6) If tm < iT, go to (7)  

else go to (10). 
(7) Generate random number U2  
(8) Calculate λ(tm) and λi(tm)=λ(tm-iγ). 
(9) If 

2 ( )/ ( )i m mU t tλ λ≤ , let ti,j = tm; j = j+1; m = m+1; 
go back to (4) 
else j = j; m = m+1; go back to (4). 

(10) If tm < L, let i = i + 1 and j = 1; go back to (7) 
else stop. 
It can be seen that the rejection method is easy to 

use since it does not need to derive the formula of 
Ri(t) for i = 1, 2, …, N.   

4 EXAMPLES AND DISCUSSION 

In the examples, let the finite life time period (L) be 
6 time units and the PM interval (T) be 1 time unit.  
The values of parameters are set as: θ = 0.4; N = 5; 
Cpm = a+bi = 5+100i for the ith PM; Cmr =3.1036.  
Then, we construct 25 experiments for each RV 
generating method, which consist of 5 different β 
values, each with 5 replicates.  There are 30 runs for 
each experiment.  We compare the differences 
between the mean number of failures obtained from 
Eq. (3) and the sample averages from the three RV 
generating methods. The analysis of variance 
(ANOVA) for the number of failures generated is 
also provided in Table 1.  It can be seen that the 
three RV generating methods do not have significant 
different.  Parameter β and the number of PM 
performed do significantly affect the number of 
failures generated, which demonstrates the validity 
of the simulation models. 

4.1 The Near-Optimal Solution  

Table 2 shows the parameter values used in the 
proposed simulation models as well as in the 
theoretical model of Yeh and Chen (2006).  By 
using the rejection method, Table 3 presents the 30- 
run simulation results for N = 1  to  6.    The smallest 
 
 
 

Table 1: The ANOVA of the generated number of failures. 

 

Table 2: Parameters applied in the PM model. 

β θ L h a b Cm 
3.2 0.4 2 0.19 5 100 3.1036

(best) total maintenance cost of each run is 
highlighted by shadow background.   

It can be seen from Table 3 that, for each N, the 
average value of TC from the 30-run simulation is 
very close to the value obtained by using the 
theoretical method based on Yeh and Chen (2006).  
Both methods (simulation and theoretical) provides 
the same optimal policy of N*=3 and γ*=0.4781.  
Again, it has demonstrated that the experiment 
results obtained by simulation methods are 
consistent with those obtained by the theoretical 
model when large sample runs are generated. 

It should be noted that the best solution of N, γ, 
and TC (marked with shadow) resulted from each 
simulation run are different from those obtained by 
the theoretical model.  It is because the optimal 
solution of the theoretical model is obtained by 
taking the expected cost rate over the infinite time 
interval or over the large number of systems in a 
finite time interval.  However, the simulation 
method considers the situations of a single system in 
a finite time interval.   

For a single system in a finite time span, 
according to Table 3, the best solutions of each run 
(with shadow) can be categorized into three near-
optimal policies: (N=2, γ=0.6667), (N=3, γ=0.4781), 
and (N=4, γ=0.3655).  Table 4 lists the simulation 
runs in each near-optimal policy and presents the 
average, the smallest, and the largest minimal TC of 
the near-optimal policy.  Among these best solutions, 
the average of the minimal TC (184.1143) is 
significantly different from the theoretical minimal 
TC (189.7280).  The results have demonstrated that 
the theoretical PM model might not be suitable for a 
single system over a finite time interval.   

Hence, in practical, when considering a single 
system to be preventively maintained in a finite time 
period, especially for short time period, more than 
one single near-optimal policy is suggested.  In this 
example, either (N=2, γ=0.6667) or (N=3, γ=0.4781) 
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or (N=4, γ=0.3655) may be chosen as the best (near-
optimal) PM policy. 

Table 3: The results of the 30 Simulation runs. 

Run#
N 1 2 3 4 5 6 
γ 1 0.6667 0.4781 0.3655 0.2957 0.2483

1 216.730 189.894 180.155 194.132 194.575 210.016
2 229.144 196.101 192.570 187.925 210.093 194.498
3 250.869 196.101 189.466 197.236 213.197 206.912
4 250.869 186.790 180.155 200.340 188.368 213.120
5 204.315 199.205 204.984 187.925 219.404 197.602
6 263.284 189.894 201.880 194.132 197.679 197.602
7 213.626 165.065 183.259 197.236 185.264 203.809
8 232.248 214.723 192.570 194.132 206.990 194.498
9 241.558 177.480 183.259 200.340 191.472 206.912
10 216.730 189.894 180.155 194.132 188.368 206.912
11 219.833 211.619 204.984 209.650 213.197 216.223
12 222.937 189.894 189.466 181.718 197.679 197.602
13 247.766 177.480 180.155 209.650 197.679 216.223
14 247.766 196.101 180.155 206.547 197.679 203.809
15 198.108 196.101 189.466 181.718 200.782 194.498
16 216.730 192.998 183.259 200.340 185.264 203.809
17 226.040 205.412 189.466 191.029 194.575 206.912
18 195.004 202.308 211.191 191.029 210.093 191.394
19 216.730 183.687 186.362 191.029 200.782 213.120
20 226.040 199.205 183.259 203.443 200.782 206.912
21 232.248 186.790 189.466 184.822 194.575 203.809
22 204.315 196.101 198.777 197.236 197.679 200.705
23 207.419 186.790 180.155 206.547 188.368 206.912
24 210.522 208.516 195.673 187.925 206.990 197.602
25 219.833 205.412 195.673 203.443 197.679 213.120
26 257.076 192.998 173.948 215.858 191.472 219.327
27 216.730 211.619 195.673 172.407 210.093 188.291
28 216.730 189.894 201.880 200.340 197.679 216.223
29 210.522 168.169 180.155 206.547 191.472 216.223
30 247.766 186.790 189.466 187.925 197.679 200.705
Avg. 225.316 193.101 189.569 195.891 198.92 204.843
Theo. 221.495 191.076 189.728 192.850 197.222 202.051

Table 4: The near-optimal Policies of the Simulation. 

Policy 1 
(N*=2, γ*=0.6667) 

Policy 2 
(N*=3, γ*=0.4781) 

Policy 3 
(N*=4, γ*=0.3655)

Run# Min. TC Run# Min. TC Run# Min. TC
6 189.8940 1 180.1552 2 187.9252
7 165.0652 3 189.4660 5 187.9252
9 177.4796 4 180.1552 12 181.7180
13 177.4796 8 192.5696 15 181.7180
19 183.6868 10 180.1552 18 191.0288
22 196.1012 11 204.9840 21 184.8216
28 189.8940 14 180.1552 24 187.9252
29 168.1688 16 183.2588 27 172.4072
30 186.7904 17 189.4660   

  20 183.2588   
  23 180.1552   
  25 195.6732   
  26 173.9480   

Runs 9 Runs 13 Runs 8 
Avg. 181.6177 Avg. 185.6462 Avg. 184.4337
Max. 196.1012 Max. 204.9840 Max. 191.0288
Min. 165.0652 Min. 173.9480 Min. 172.4072

Overall average of min. TC: 184.1143 

5 CONCLUSIONS 

The proposed three simulation methods are not 
significant different in generating the time-between-
failure RVs .for the PM model with age reduction.  
The rejection method seems simple and easy to use 
in practical. 

For the infinite time span, the results from the 
simulation method are very close to those obtained 
by the theoretical model.  However, for a finite time 
span, more than one near-optimal policy can be 
obtained by the simulation method.  Each of the 
near-optimal solution can be the best PM policy for 
any single system having a finite life time period.  
The simulation results have demonstrated that the 
theoretical PM model might not always suitable for 
a single system in a finite time span.   

The simulation method can be applied in solving 
more complicated real world situation, such as the 
consideration of the random shock in a PM model, 
which is difficult to be solved by the theoretical 
model. 
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