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Abstract. The use of heuristic algorithms in neural networks training is not a
new subject. Several works have already accomplished good results, however not
competitive with procedural methods for problems where the gradient of the error
is well defined. The present document proposes an alternative for neural networks
training using PSO(Particle Swarm Optimization) to evolve the training process
itself and not to evolve directly the network parameters as usually. This way we
get quite superior results and obtain a method clearly faster than others known
methods for training neural networks using heuristic algorithms.

1 Introduction

ANNs (Artificial Neural Networks) is a computational paradigm inspired in the opera-
tion of the biological brain, and seeks to explore certain properties present in the human
neural processing, that are very attractive from the computational view point[10]. In
this paper will be treated a specific type of ANNs, called MLP, a widely applied ANNs
model, for which is found a vast literature.

MLP ANNs training process are usually a non linear optimization process, fre-
quently based on the gradient of the ANNs error surface, which is calculated through
the backpropagation algorithm [18],[19]. Among the more efficient methods can be
mentioned, the quasi-Newton method: BFGS [1] and the conjugated directions method:
Scaled Conjugate Gradient [14],[15], all of them considered order 2 optimization meth-
ods.

The present document introduces a new approach for MLP ANNs training using
PSO [11],[17],[12],[6] (or another heuristic algorithm like genetic algorithms, however,
differing from others proposals founded in the pertinent literature [20],[16] [21],[7],[9]).
The proposed method: PG uses a sub-optimum gradient, and unit steps are taken in the
direction of this gradient. This proposal makes use of the full exploratory capacity of
the PSO, united with the efficiency of gradient descent methods.

2 The Particle Gradient Method

There are some works that try to optimize the ANNs vector of parameters using meta-
heuristic algorithms, in most cases genetic algorithm are implemented. This process
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is in general more onerous from the computational cost1 viewpoint, and shows poor
results (with respect to the process convergence rate) when compared to conventional
optimization methods, based on gradient descent. This scenario created the main mo-
tivation to this work, to create a meta-heuristic training method, that rivals procedural
training methods with respect to convergence rate, here understood as learning effi-
ciency, even when implemented in a digital machine.

The proposed method, represents an alternative solution inspired in the work of
Chalmers The Evolution of Learning: An Experiment in Genetic Connectionism[8], that
applied evolutionary processes to evolve the learning process itself, and not its solution.

In the PG: Particles Gradient method, the PSO algorithm is not used to optimize
the vector of parameters itself, but to optimize the learning process by finding a sub-
optimum gradient vector at each learning iteration (season).

2.1 Codification

The PSO algorithm applied in the proposed PG algorithm, uses a population of np

particles, with a real codification described as follows:

– Particle Position: Vector containing real values belonging to the space RN , repre-
sent the error gradient for an ANN.

– Fitness: e(x, θ − p) where p is a particle position, x is the ANN input and θ is its
vector of parameters.

– Speed Modulation: A method to control the particles speed to provide a faster con-
vergence rate [3].

2.2 The PG Algorithm

This algorithm is based on the gradient descent algorithm where steps are taken in the
direction of a gradient vector, however, here unit steps are taken in the direction of a
sub-optimum gradient found by the PSO algorithm.

To each iteration of the main algorithm, an initial gradient vector is calculated using
the Backpropagation method, or simply by setting it equals to origin, which is clearly a
good estimate, and than inserted in the population2. Later a vector representing a sub-
optimum gradient is evolved by the PSO algorithm by ni generations, and then an unit
step is taken in this new descent direction.

The use of the initial gradient seeks to accelerate the convergence of the PSO algo-
rithm, giving to him a reference point. However, the execution of the method without
the use of an initial gradient also obtains good results, even similar to ones found us-
ing an initial gradient, as can be seen in [4]. This procedure is useful when it is not
possible to accomplish the retro-propagation phase of the ANN, impeding the gradient
vector construction, and consequently the application of faster procedural optimization
methods.

1 Here the computational cost of a procedure is understood as the number of sum and multipli-
cation operations necessary to accomplish this

2 Inserting a simple point in a particle’s population consists of creating a new particle in the
point’s position
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The GP algorithm for MLP ANNs training is described in detail as follow.

Algorithm 1: Particles Gradient.
Determine: np, ni, nmax;
Initialize: θ;
for i=1 to nmax do

Calculate g0 by the retro-propagation of the error, or set g0 = 0;
Find the gradient: g = PSO(np, ni, g0) ;
Unit step: θi+1 = θi − g

end

where PSO represents a Particle Swarm Optimization algorithm.
The algorithm 1, is the result a exhaustive study of the training process, and the

functional analysis of the relations between the quantities of interest, taking into account
the dimensionality of the involved spaces and the characteristics a priori known about
the problem.

These studies converged to a method where the search blind is applied in a space
of same dimension of the vector of parameters. However, this choice brings a great
advantage with respect to the cost function to be optimized, or the surface where the
particles will be moved. This choice provides a condition very particular to the PSO
method, which is widely explored in this work.

In the application of a blind search method, as in case, the efficiency of the opti-
mization process may be considerably increased if the method is initialized near the
neighborhood of a local optimum point, which represents a good solution to the prob-
lem. However, this points are not known a priori, nor their neighborhoods.

The same happens in the ANNs training, the error surface is not complete known, so
nothing can be done to increase the training algorithm efficiency. Moreover, it is known
that a sufficient small step in a descent direction is ways a minimizing step. Therefore,
we conclude that a RN vector, representing a descent direction, will be certainly found
in a neighborhood of the origin.

This information is the main goal of the proposed method, given to blind search
method what it needs, a good initial condition. This approach gives the PSO method
a considerable efficiency increase, so the algorithm PG, presents a significantly higher
convergence rate when compared with others meta-heuristic methods in the same con-
text.

Another important feature of the PSO method, is the intrinsic parallelism of the al-
gorithm. Its implementation in a sequential machine, as a digital computer, will generate
a process computationally very onerous, however, in a completely parallel machine, still
hypothetical, is obtained a very faster and efficient process.

3 Examples and Comparisons

With the intention of determining the relative efficiency of the proposed method com-
pared with others founded in the literature, some ANN application examples are used,
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and the efficiency of the learning process is evaluated when the network is trained by
different methods.

In this document will be considered, as comparison bases, two quasi-Newton meth-
ods, two conjugated directions methods and one simple gradient descent method, all
described as follows:

– GRAD: Optimium Gradient [13]: Gradient descent method with super-linear con-
vergence, the fastest among methods with linear convergence rate.

– DFP: Davidson Fletcher Powell [13]: quasi-Newton Method with quadratic con-
vergence.

– BFGS:Broyden Fletcher Goldfarb Shanno [1]: quasi-Newton Method with quadratic
convergence, and with smaller sensibility to the bad numerical conditioning than
the DFP method.

– FR: Fletcher Reeves [1]: Conjugated directions method, with N-steps quadratic
convergence.

– SCG: Scaled Conjugated Gradient[15]: Conjugated directions method that do not
use unidimensional searches. It possesses N-steps quadratic convergence, and it is
the fastest among these methods from the computational cost viewpoint.

The process of unidimensional search used in the algorithms GRAD, DFP, BFGS
and FR is the golden section method, applied by 30 iterations on the initial interval.

3.1 Motor Currents

In theory, the current of a three-phase induction motor can be easily calculated on the
basis of motor voltage and power, as shown in equation (1).

I =
P√
3V η

(1)

where P and V represent the motor power and tension respectively. The variable
η takes into account the power factor and efficiency of the motor, that are based on
construction factors, the mechanical load and the rotation of the motor. Thus, it is clear
difficult to specify the variable η and so, the motor current.

The problem in question uses a neural estimator for the current calculation, based
on motor power, voltage and rotation, through a MLP network containing 3 neurons in
its sensorial layer, and with 1 neuron in its output layer.

The set used in the training consist on 300 samples obtained from manufacturers
catalogs, including motors that meet the following values ranges:

– Power: 0.1 a 330 KW.
– Rotation: 600,900,1200,1800 e 3600 rpm.
– Tension: 220, 380 e 440 V.
– Current: 0.3 a 580 A.

In a first analysis will be used in comparison to the proposed algorithm, a training
algorithm that uses the PSO technique directly applied to minimize the error surface
with respect to the vector of parameters.
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This method uses exactly the same meta-heuristic of the proposed algorithm, and
also the same implementation, differing only in the application approach.

The configuration of both methods are described as follows:
Neural Network:

– Topology: 3 neurons in sensorial layer, 9 neurons in hidden layer and 1 neuron in
output layer.

– Linear output.
– Hyperbolic tangent activation functions.

Particle Swarm Optimization: PSO

– 136 particles.
– 400 iterations.
– Speed modulation [3],[5].

Particles Gradient: PG

– 136 particles.
– 5 epocs.
– 80 iteration per epoc.
– Speed modulation.

Due the stochastic characteristics of both methods tested, it is necessary a statistical
analysis of the results. Has been chosen in this paper the completion of 20 repetitions of
the training process and subsequent analysis of average results, which are summarized
in figure 1.

Fig. 1. Average values for mean squared error
during the training process.

Fig. 2. Average values for diversity during the
training process.

The graph shown in Figure 1 represent the average error value obtained by each
method in each epoc of training process, whereas for PSO algorithm intermediate val-
ues, because it have accomplished 400 iterations, taken to give the same conditions for
the two methods.
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Is clearly to see that the proposed method is quite superior to the PSO algorithm.
Like both use the same heuristic, and more, they have the same implementation, be-
comes clear the fact that the proposed approach significantly increase the optimization
process efficiency, accomplishing the main objective.

An analysis also relevant in this study, is to verify the populations diversity in both
methods, what together with the results above, gives an more accurate understanding
about the optimization mechanism. The metric here chosen to measure the diversity
value, is the variance of the particles fitness. Figure (2) shows the average value of
diversity for both methods in each iteration3 of the training process.

Its is clearly in Figure 2 the great superiority of the proposed method with respect
to diversity preservation when compared to the PSO algorithm. This fact is due mainly
to restart of the population for each new epoc, which restores its maximum diversity4.

A joint analysis of both Figures 1 and 2 provides a more complete and mature under-
standing of the optimization mechanism used by both particles swarms. In the proposed
method, the high preservation of diversity, is providing mobility enough to swarm con-
tinues finding best solutions, while in the PSO algorithm, the drop in diversity cause a
rapid convergence at the beginning of the process, but after some time the population
loses its exploratory capacity and becomes incapable of improving its solution.

Thus, is clear that the design here proposed, creates a method with high convergence
rate and also high diversity preservation, what are not intrinsic of the PSO algorithm.

Now seeking to compare the efficiency of the PG with the previously mentioned
procedural methods, a ANN containing 3 neurons in its hidden layer was used, having
the configuration: 3-3-1. The result of the network training can be visualized in the
Figure 3 and Figure4.

Fig. 3. Average values for mean squared error
during the training process.

Fig. 4. Average values for diversity during the
training process.

3 Here iteration is used to describe the intermediate steps of training processes, and one iteration
of main process, of the proposed method, is referred as epoc

4 The reader may ask if restarting the population in the method PSO do not lead to the same
result, which clearly does not happen for obvious reasons, but these will not be discussed here
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Again, due the stochastic characteristic of the PG, these figures show its average
behavior for a total of 20 repetitions of the training process. For this example the PG
have presented quite superior results when compared with the procedural methods.

In spite of to providing a significant reduction of the network mean square error in
each epoc, the proposed algorithm is quite onerous from the computational cost view-
point, given that a search process should be completed at each iteration. In that way, the
execution of the algorithm may become too slow, depending of its configuration.

In [15], the author proves the superiority of the method SCG, in respect to compu-
tational cost and convergence rate, over the other methods here analyzed. This result is
based in the need of unidimensional search required by most methods, that has com-
putational cost O(N2) per iteration. The SCG method presents a computational cost:
O(2N2) per epoc, that is very inferior to the ones of the methods GRAD, DFP, BFGS
and FR that possess computational costs:5 O(31N2).

The proposed method presents a total cost O(ninpN
2), that can become quite su-

perior to the ones of the other methods depending on the choice of ni and np. However,
the fast convergence of the method compensate, in some cases, this high computational
cost.

Now, to build a efficient comparison, let us assume that the function O(·) is linear
with respect to the parameters 6 np and ni, we can write:

CSCG
t = CGP

t

nSCG
e O(N2) = nGP

e O(ninpN
2)

nSCG
e O(N2) = nGP

e ninpO(N2)
nSCG

e = nGP
e ninp

nGP
e =

nSCG
e

ninp

(2)

Therefore, if is selected a number of epocs for the algorithm SCG: nSCG
e ne =GP

ninp, it is estimated that both algorithms show a very similar computational cost, al-
lowing an analysis of the relative efficiency with respect to convergence rate × compu-
tational cost.

To accomplish this comparison, lets consider the following parameters set:

– Number of epocs: SCG: nSCG
e = 3200, GP: nGP

e = 4
– Iterations per epoc: ni = 60
– Number of particles: np = 30
– Number of repetitions: nr = 5

5 This value is due to the fact that the unidimensional search to makes 30 iterations for each
training epoc

6 This assumption is made to allow a brief analysis of the problem in order to consider the non-
linearity of this function to obtain an accurate result, would not add significant information to
present analysis, due the fact that this functions are affected by the methods implementation,
and not by its definitions
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The Figure 5 shows the ANN mean squared error, after been trained by both methods,
in each repetition.

Fig. 5. Comparison between the algorithms: GP and SCG.

In the Figure 5 we can easily see that despite of the proposed method present a
higher computational cost, its efficiency rivals the efficiency of SCG method, actually
considered one of the most efficient method.

3.2 Curve Fitting

In this example a group of 100 test samples of input-output pairs was used for a quadratic
function y = x2, where a white noise of width 10−4 was inserted in both signs (input
and output). The training was accomplished for various networks configurations, using
the proposed algorithm and the algorithms previously mentioned. The results can be
observed in Tables 1 and 2.

Table 1. Learning Results: PG SCG FR.

Architecture PG SCG FR
1-3-1 0.00016 0.00066 0.00030
1-6-1 0.00019 0.00069 0.00031
1-9-1 0.00018 0.00078 0.00033

1-18-1 0.00020 0.00082 0.00035
1-6-6-1 0.00024 0.01065 0.01395

1-12-12-1 0.00018 0.01135 0.01735
1-6-12-6-1 0.00017 0.00667 0.05779

1-12-18-12-1 0.00014 0.01764 0.06142

Table 2. Learning Results: BFGS DFP GRAD.

Architecture BFGS DPF GRAD
1-3-1 0.00032 0.00079 0.01012
1-6-1 0.00037 0.00529 0.01197
1-9-1 0.00039 0.00617 0.01207
1-18-1 0.00045 0.00657 0.01287
1-6-6-1 0.01161 0.00959 0.01342

1-12-12-1 0.00943 0.00993 0.01377
1-6-12-6-1 0.00070 0.01060 0.01398

1-12-18-12-1 0.00420 0.01254 0.01485

For this problem it is also possible to notice that the final errors obtained by the
proposed method, were also quite inferior to the ones of the others tested algorithms.
Another outstanding characteristic observed in the exposed results is the robustness of
the PG method with respect to variations in the ANN topology. Due the stochasticity of
the learning process, it is possible to infer that the PG method has presented the same
final errors results for the several tested configurations.
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Several other tests were also accomplished [2], based on different problems with
different network topologies, including comparisons with genetic algorithms. In all of
this tests was founded similar results to those here presented, confirming all conclusions
here taken.

4 Conclusions

The method proposed in this paper represents a new approach for MLP ANNs training
using meta-heuristic methods, with different features of others similar methods.

The use of a particle swarm optimization algorithms, as another meta-heuristic
methods like genetic algorithms, in ANN training was, until now, not competitive given
the inferior performance of these methods when compared to procedural optimization
techniques. This new approach, however, is competitive in this scenery, reaching results
sometimes comparable with the ones of the faster MLP ANN training methods, and still
preserving characteristics of the heuristic methods.

One of the main advantages of the PG method, is the possibility to train ANNs with
the same efficiency of methods as BFGS and SCG, without knowledge about the error
gradient, enlarging its application to several problems, as the one proposed in [4],[2],
where the ANN is trained to estimate the state of a dynamic system, and is not possible
to calculate the ANN error, and so, the error gradient is unavailable.

Another outstanding characteristic for the proposed method is the preservation of
the probability to converge to a global optimum, as in the particle swarm optimization,
that is superior from that observed in procedural methods, where it is very probable that
they will converge to an local optimum closer to where the method was initiated.

The high computational cost, characteristic of heuristic methods as the genetic al-
gorithms, also is present in the proposed method that is more onerous that the other
methods here discussed when implemented in a digital machine. However, it is clear
from the shown examples, that this high computational cost is compensated by the ac-
celerated convergence rate. Moreover, the intrinsic parallelism of the proposed method,
allows its an implementation in a parallel machine, that can be several orders of magni-
tude faster than the procedural methods here discussed, inherently sequential.

So we may conclude that the Particles Gradient method here proposed, represents a
viable alternative solution for ANNs training, in some situations even being the prefer-
able one, and in a more complex and unusual application, mainly when is difficulty or
even impossible the construction of the gradient vector, this method can be one of better
choices.
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