
Reflecting on Higher Order Transformations:
Challenges and Opportunities

Olaf Muliawan and Dirk Janssens

University of Antwerp, Middelheimlaan 1
2020 Antwerp, Belgium

Abstract. The area of Model Driven Engineering focuses on the transformation
of models into source code. However, large projects require complex transfor-
mation patterns which are difficult to implement and maintain. New language
features could represent often used transformation patterns. However, extending
a transformation language is not the preferred solution to keep the language con-
cise. Therefore we introduce the notion ofHigher Order Transformations that
manipulate these new language features and transform them back in the origi-
nal language. In this paper we will explain the challenges of using Higher Order
Transformations and the opportunities these techniques provide.

1 Introduction

Model Driven Engineering (MDE) has matured over the years, and current projects in-
volve complex model transformation patterns. The existing model transformation lan-
guages are quite low-level and basically support create, update and delete operations
on model elements. Common but more complex operations, such as copying a subset
of model elements or creating association links between UML classes, are a number of
examples which can be expressed using low level constructs. However, if these patterns
are numerous, their specification is cumbersome and time-consuming.

For the convenience of users, new language features representing these complex
patterns can be introduced. However, to avoid extending the original transformation
language, the features are transformed back into the original language. These actions
are calledHigher Order Transformations (HOTs). Sometimes there is no access to the
original source code of the transformation tool and HOTs provide a means of introduc-
ing new language features with the possibility of considering the transformation tools
black-box. More important, these transformations are done using existing transforma-
tion tools and do not incur extra development time to support HOTs. This is possible
if the transformations can be considered as transformation models. Since model trans-
formation tools can transform a model given its meta-model, a transformation model is
treated like a normal transformation.

We believe HOTs are useful in complex and large transformations to simplify their
specification and maintain transformations in a more efficient manner. However, chal-
lenges exist: a chain of HOTs creates the problem of dependencies and order of the
transformations. Another challenge is assuring that the mapping is possible and that a
HOT exists. Merely adding a new feature without providing automated support through
transformation is not a desired outcome.

Muliawan O. and Janssens D. (2009).
Reflecting on Higher Order Transformations: Challenges and Opportunities.
In Proceedings of the 1st International Workshop on Future Trends of Model-Driven Development, pages 52-55
DOI: 10.5220/0002203000520055
Copyright c© SciTePress



2 Simplifying Transformations: Case Studies

To illustrate the use of HOTs, we will focus on a few case studies that we already im-
plemented and presented in earlier papers. The case studiespresent problems where
the introduction of a new language feature improves the conciseness and readability of
the transformation. The transformation language employedin this paper is calledStory
Driven Modeling (SDM) implemented in MoTMoT [1]. This is a language based on
graph transformation techniques but with an explicit control flow determining which
graph transformations are executed. The basic functionality is limited to create, delete
and update operations on model elements although the control flow allows greater flex-
ibility to determine when and if transformations are performed.
Case 1: Creating and Deleting Associations in UML Class Diagrams. UML class di-
agrams are often used within MDE to create software working on databases or web ap-
plications. However the creation and deletion of association links involves more model
elements than just the association link itself. Observe figure 1(a): the association ends
with matching attributes have to be explicitly enumerated,and even multiplicities are
separate model elements.

A more concise manner which does not clutter the transformation diagram is draw-
ing an association with a new introduced stereotype<createAssociation>>or<<delete-
Association>>and putting the information about the association ends on the ends of
the drawn association, as seen on figure 1(b). The attribute values regarding the asso-
ciation still have to be filled in (in this example we omitted other possible elements on
the association such as tagged values and stereotypes whichwould further increase the
number of model elements without the use of the new language feature), however the
use of the language feature signals the transformation toolto create all necessary model
elements to represent the association in a correct manner.

<<create>>

UAERange

{motmot.metatype=MultiplicityRange}

-upper : int = 1
-lower : int = 1

<<create>>

AEndPointA

{motmot.metatype=AssociationEnd}

-navigable : boolean = true
-name : String = "next"

<<create>>

upAss

{motmot.metatype=UmlAssociation}

<<create>>

AEndPointB

{motmot.metatype=AssociationEnd}

-navigable : boolean = false

<<bound>>

classA

{motmot.metatype=Namespace}

<<create>>

UAEMult

{motmot.metatype=Multiplicity}

<<bound>>

classB

{motmot.metatype=UmlClass}

<<create>>

-connection*

<<create>>

-connection*

<<create>>

-multiplicity

1

<<create>>

-range*

<<create>>

-participant1

<<create>>

-participant1

(a) Representation with primitive constructs

<<bound>>

classA

{motmot.metatype=Namespace}

<<bound>>

classB

{motmot.metatype=UmlClass}

<<createAssociation>>

-next*

(b) HOT construct

Fig. 1. Creating a new UML association using HOT constructs.

Transformations regarding class diagrams are more readable because one can see
an explicit association between two classes instead of analyzing all model elements
pertaining the association to get an accurate view of which association is represented.
Case 2: Declarative Language Features in SDM.In this case we use the JDT2MDR
tool to produce an XMI-compliant model from Java source code[2] to implement three
refactorings: move method, pull up method and encapsulate field. Themove method
refactoring requires one step where references to the movedmethod are updated. Ac-
cording to the specification of the refactoring there are four possibilities, though only

53



one of them should be applied. Moreover, the order in which these possibilities are tra-
versed is not specified. MoTMoT is imperative, so an order is imposed, even if it is
not intentional. Each option which does not match leads to the following option being
evaluated until one (or none) is matched.

Meyers et al. introduced a new construct which is calledND-state (non deterministic
state) [3]. Transformation actions in this state are randomly chosen and in our case, if
one of the actions matches, the rest of the control flow is carried out. If it does not
match, the transformation tool keeps looking for other options until all are exhausted.
This language feature does not impose an order on the traversed possibilities which is
exactly the semantic meaning of this particular step in themove method refactoring. The
language feature is quite powerful and incorporates such notions as having exactlyn
number of options matched during evaluation (can also be none or all options), layered
evaluation (begin evaluating the first layer of options, then the second, ...).
Case 3: Support for ”Downcasting” in Model Transformations. The following exam-
ple is related to the transformation of visual process models (UML activity diagrams)
into low-level algebraic (CSP) programs that support formal verification [4]. In this case
a new language feature is introduced which mimics downcasting: a model element is
first recognized as of a general type. Only in a later stage this model element is estab-
lished as of a more specific type.

Nonetheless, SDM assumes strict static typing and the first type declared to be the
final and only possible type for the model element. The implementation in MoTMoT
does allow for downcasting, although it is not immediately supported through the SDM
language. The new language feature makes this functionality available for model trans-
formation specifications.

3 Challenges

Optimizing and analyzing HOTs are some of the challenges we will have to face. More
specifically the mapping problem for HOTs is more poignant because the model output
serves as input for the transformation tool. In this regard tools are necessary which
check the strict consistency of the output. The use of several new language features
introduces the problem of order of execution (preferably confluence is possible in which
case the order of execution is irrelevant).

4 Related Work

The idea of HOTs has been proposed by Varró et al [5]. In addition, Bézivin et al. have
also suggested treating transformations as models that aresubject to further transforma-
tions which reinforces our approach in this direction [6, 7]. Miguel et al [8] and Agrawal
[9] have both investigated complex model transformations.

5 Conclusions

We presented a few case studies wherein we encountered the need for new language
features. Each feature was implemented using Higher Order Transformations. We have

54



also illustrated that using our transformation tool, so no additional tool support is neces-
sary to achieve these goals. The introduction of language features increasing the trans-
parency, readability and understandability for model transformations is done without
adding bloat to the transformation tool. Using HOTs a given model transformation can
use selected new language features which are transformed back in the original language.

We laid out some challenges that require more research. However, we believe the
approach of Higher Order Transformations is promising to improve efficiency when
setting up the model transformations and providing new language features is done in a
non-intrusive manner without explicit extensions to the transformation language.

Acknowledgements

This work has been sponsored by the Belgian National Fund forScientific Research
(FWO) under project G.0422.05 on the ’Formal Support for theTransformation of Soft-
ware Models’ and the Belgian Science Policy (Belspo) under the project on ’Modeling,
Verification and Evolution of Software’ (MoVES) as part of the IAP-Phase VI Interuni-
versity Attraction Poles Programme.

References

1. Schippers, H., Gorp, P.V., Janssens, D.: Leveraging uml profiles to generate plugins from
visual model transformations. Electr. Notes Theor. Comput. Sci. 127 (2005) 5–16

2. Muliawan, O., Bois, B.D., Janssens, D.: Refactoring using jdt2mdr, an industrial based solu-
tion. In: 4th International Workshop on Graph-Based Tools (GraBaTs) on the 4th International
Conference on Graph Transformation (ICGT). (2008)

3. Meyers, B., Gorp, P.V.: Towards a hybrid transformation language: Implicit and explicit rule
scheduling in story diagrams. In: Sixth International Fujaba Days (FD08). (2008)

4. Muliawan, O., Van Gorp, P., Keller, A., Janssens, D.: Executing a standard compliant trans-
formation model on a non-standard platform. Software Testing Verification and Validation
Workshop, 2008. ICSTW ’08. IEEE International Conference on (2008) 151–160

5. Varró, D., Pataricza, A.: Generic and meta-transformations for model transformation engi-
neering. In Baar, T., Strohmeier, A., Moreira, A., Mellor, S., eds.: Proc. UML 2004: 7th In-
ternational Conference on the Unified Modeling Language. Volume 3273 of LNCS., Lisbon,
Portugal, Springer (2004) 290–304

6. Bézivin, J., Büttner, F., Gogolla, M., Jouault, F., Kurtev, I., Lindow, A.: Model transforma-
tions? transformation models! In: MoDELS2006. Volume 4199of LNCS., Springer (2006)
440–453

7. Jouault, F.: Loosely coupled traceability for atl. In: Proceedings of the European Conference
on Model Driven Architecture (ECMDA) workshop on traceability, Nuremberg, Germany
(2005)

8. de Miguel, M.A., Exertier, D., Salicki, S.: Specificationof model transformations based on
meta templates. In Bezivin, J., France, R., eds.: Workshop in Software Model Engineering.
(2002)

9. Agrawal, A., Simon, G., Karsai, G.: Semantic translationof simulink/stateflow models to
hybrid automata using graph transformations. In: Electronic Notes in Theoretical Computer
Science. Number 109, Barcelona, Spain (2004) 43–56

55


