Service Composition Based on Functional and
Non-Functional Descriptionsin SCA

Djamel Belaid, Hamid Mukhtar and Alain Ozanne

Institute TELECOM, TELECOM & Management SudParis
9, rue Charles Fourier, 91011 Evry Cedex, France

Abstract. Service Oriented Computing (SOC) has gained maturity and there
have been various specifications and frameworks for realization of SOC. One
such specification is the Service Component Architecture (SCA), which defines
applications as assembly of heterogeneous components. However, such assembly
is defined once and remains static for fixed components throughout the applica-
tion life-cycle.

To address this problem, we propose an approach for dynamic selection of com-
ponents in SCA, based on functional semantic matching and non-functional strate-
gic matching using policy descriptions in SCA. The architecture of our initial
system is also discussed.

1 Introduction

In order to provide their services to a large variety of clients, enterprises often manage
various contracts with other service providers. One problem faced by such enterprises is
the emergence of new competing service providers, with better, cost-effective solutions.
Thus, it would be natural that enterprises change partnerships in pursuit of better ones.
However, in reality, it is much more different than that.

When inter-enterprise applications are developed on top of the existing Informa-
tion System, they are created for particular service providers. This results in two major
problems. First, if a change of any of the service provider is required, a whole new
application needs to developed. Second, if only a part of the functionality of the ap-
plication is required to be reused, again a new application needs to be deployed. Such
problems arise due to the fact that most of the time, the description of service provider
is hard-coded in the application logic instead of the service description itself. Thus,
we can rightly call such applications as service-provider-dependent rather than service-
dependent.

To overcome such difficulties, Service-Oriented Computing (SOC) has emerged re-
cently. SOC is the computing paradigm that utilizes services as fundamental elements
for developing applications/solutions. Services are self-describing, platform-agnostic
computational elements that support rapid, low-cost composition of distributed appli-
cations [8]. Service providers procure the service implementations and descriptions,
and provide related technical and business support.

However, even after arrival of SOC based approaches, the aforementioned problems
have not been solved completely. The applications have started to become modularized

Belaid D., Mukhtar H. and Ozanne A. (2009).

Service Composition Based on Functional and Non-Functional Descriptions in SCA.

In Proceedings of the Joint Workshop on Advanced Technologies and Techniques for Enterprise Information Systems, pages 52-61
DOI: 10.5220/0002201900520061

Copyright © SciTePress

53

in terms of services, but the definition of services is stdpdndent on their imple-
mentation. One particular approach for realizing SOC bagxggdications, the Service
Component Architecture (SCA) avoids such obstacle by séiparthe service defini-
tion from its implementation. However, as we will exploretiis paper, SCA is also
limited by the fact that applications defined using SCA aaictOnce defined, services
and their implementation remain intact afterwards. Butrirideal situation, should a
service provider changes, the new implementation is to beee with minimum of
effort.

1.1 A Maotivating Example

Consider a fictitious travel agency based in Paris. The ggpravides services such
as flight, hotel and car booking as well as arranging for esions in a specific des-
tination city. To offer its services, the agency relies onumber of other specialized
service providers in France. In order to keep up with so manyice providers, the IT

personnel at the agency have set up an application that cesbiie various services
from different service providers but that hides this comjbjeto the travel agent using
the software. The selection of a service provider for a paldr service, according to
criteria such as availability etc, is managed automatidallthe application.

Now assume that our agency wants to open a new branch in Madratder to
provide their services for various destinations in Spdia ttavel agency settles up new
agreements with local service providers, which are regastmto the system. However,
for certain destinations no service provider offers exicursctivities. Thanks to the
development approach used by IT personnel of the agente dpplication finds that
a service provider is unreachable, it tries to find an alt@reaervice provider. If it
does not find any service provider for some service, it caigtioffering the rest of the
services.

As the reader can observe, the above example requires kpoars: first, the ap-
plication, whose composition defined in terms of servickeutd be deployable at dif-
ferentlocations with different service providers. Secardapplication designer should
be able to make its application work in a kind of degraded nibsieme of the service
providers required for its full fonctionalities can not lmeihd. Both of these points form
the basis of our approach for service composition used snhper.

The rest of this paper has been organized as follwing. In. @eate describe the
Service Component Architecture (SCA) upon which we build thst of the paper.
Sect. 3 discusses the notion of abstract and concrete caiopaand how it can be
applied to SCA. Sect. 4 describes the architecture of ouesysSect. 5 provides and
overview of related work and Sect. 6 concludes this paper.

2 Service Component Architecture

Service Component Architecture (SCA) [7] provides a pragrang model for build-
ing applications and systems based on a Service Orientddtécture (SOA). The main
idea behind SCA is to be able to build distributed applicagiovhich are independent

54

L]

Composite [4
>

l Component

Property ‘

0l.n
Service

0..n

Fig. 1. A basic view of SCA meta model.

of implementation technology and protocol. SCA extends @dplements prior ap-
proaches to implementing services, and builds on openatdaduch as Web services.
The basic unit of deployment of an SCA application is comigog\ composite is an
assembly of heterogeneous components, which implemetitydar business function-
ality. These components offer their functionalities thgbiservice-oriented interfaces
and may require functions offered by other components, talsugh service-oriented
interfaces.

TravelPlanner

TravelPlanner

SO CarBookingComponent

ExcursionBooking
5O HotelBookingComponent

Component
<BPEL> 3§73 S RestaurantBookingComponent

(@) ()

Fig. 2. The TravelPlanner application (a) SCA representationgpjesentation as composite tree.

SCA components can be implemented in Java, C++, COBOL, Welic8s or as
BPEL processes. Independent of whatever technology is esedy component relies
on a common set of abstractions including services, reé@®rproperties, and bind-
ings. A service describes what a component provides, s @xiternal interface. A ref-
erence specifies what a component needs from the other cemismr applications of
the outside world. Services and references are matchedametcted using wires or
bindings. A component also defines one or more properti¢sngally holding its con-
figuration. Fig. 1 shows the various SCA elements and th&tiomships in the SCA
meta-model. As shown, the SCA definition of a composite iangee, i.e., a composite
can contain another composite and so on.

SCA allows dependency injection by relieving the develdpan writing the code
to find the required references and do the appropriate kgn@h The bindings are
taken care of by the SCA runtime and can be specified at thedifrdeployment. The
bindings specify how services and references communid#ttesach other. Each bind-
ing, separating how a component communicates from whaei dets the components
business logic be largely divorced from the details of comimation.

55

Since SCA already has the notion of services and compongedtsiace it allows
dynamic binding of services to components, it is an ideablaate for realization of
our proposed approach and, hence, in the rest of the papeilvesplain our approach
using the SCA artifacts.

2.1 SCA Example Application

First, we show how we can represent our example applicati®CA. This has been
done in fig. 2(a). The application is described in the compasamedlravelPlanner,
which offers a single service to the user that is providedh®yTtavelBooking com-
ponent. However, théravelBooking component itself uses services provided by other
components namelglaneBookingCompnent, CarBookingComponent andHotel-
BookingComponent as well service provided by thexcusionBooking composite.
Finally, theExcursionBooking composite is also composed of one component namely
ExcursionBookingComponent. Note how the services provided by one component
are used as references by another component. For examplExe¢hrsionBooking-
Component references are connected to the services provided bydahehBooking-
Component and theRestaurantBookingComponent components.

The TravelPlanner application describes all the services required by theetrav
agent for a successful trip planning of a client. As mentibmeviously, the selection of
components implementing these services is made dynagnizsked on the availability
of service provider. However, since the procedure for bogla travel or an excursion
is known, such a procedure is already provided in the desanipf theTravelPlanner
composite. Let us assume that this process has been delseriB®EL. Our goal is,
thus, to find the components that match the references eshjor theTravelBooking-
Component andExcursionBookingComponent.

3 Abstract and Concrete Composition

We say that a composition is abstract when its descriptiokslaome of the informa-
tion that defines the composition implementation. Such apasition describes the
services participating in the composition, but does nadtaiebut how the services are
implemented.

When this concept is applied to SCA, we say that an applicatéscribed in SCA
is abstract if its description does not contain completd@mentation definition. How-
ever, since an SCA composite is defined recursively, we neelistinguish between
various levels of abstraction depending on whether all drqgfaa composite is abstract.
This notion can be better explained by using the compositaes.

3.1 SCA Applicationsas Composition Trees

The implementation of an SCA composite may be provided byaymaore compo-
nents. However, these components may themselves be defitedris of other com-
ponents and so on. This property can be explained easily teeatructure, where the

1 We assume the availability of the technical resources reduor instantiating and running
such a composition, and hence do not treat such aspects.

56

root is the application itself (i.e., the outermost compsand its children represent
the composites and components enclosed by it. With thistreeture, we observe that
the inner nodes of the tree represent the composites andathed represent the com-
ponents. The components, i.e., the leaves of the tree magune fat any level below
the root depending on the application composition strigctur

Figure 2(b) shows the tree representation of the example&gPhcation of fig. 2(a).
Note that while a composite knows about its contents endlbgat, it does not have
any information about the contents of the composites eadltry it. For example, in
fig. 2(b), the root node (at level 0) knows if its children (@tél 1) have known imple-
mentations or not, but it does not have this information ailoe nodes at level 2. To
know them, we need to query the composite at level 1.

Bearing such a tree structure in mind, we distinguish betwesious levels of
abstraction for an SCA application:

1) If any of the subcomponents of a composite have no definptementation, then
the composite ishallow abstract, e.g., the compositExcursionBooking at level
1 of the tree in fig. 2(b) is shallow abstract.

2) By recursive definition, if any of the composite enclosegdtiie root composite
is shallow abstract, the composite is caltistp abstract. For example, thdrav-
elPlanner composite is deep abstract because it encloseBxbersionBooking
composite, which is shallow abstract.

3) If all the subcomponents of a composite have known impteat®ons, then the
composite ishallow concrete.

4) By recursive definition, if any of the composites encloBgdhe root composite is
shallow concrete, the root compositadsep concrete.

Figure 3 shows these various levels of abstraction diagaimaily.
O component |:| composite
_-impl1=0 E>Concrete
“~impl = 0 [=)Abstract

Shallow Concrete

o

¥iimplementation(Ci)i=0

1 i n

+—— Deep Concrete

: i implementation(Ci)!=0 and
c, o €, Ci==DeepConcrete

Fig. 3. The different levels of abstraction for SCA applications.

Our aim is to build a concrete composition tree, which is seinally equivalent to
a given (shallow or concrete) abstract tree. Its fundangnitaciple is to replace the

57

abstract components of a composition tree by semanticglijvalent concrete ones.
We assume that a number of concrete components are avditabtene repository,
which is accessible to us and we need to make a selection the i

However, the SCA specifications [7] do not specify any meddrmarior matching of
services and their implementations (components). Thugregose an architecture for
matching of services to components.

4 The System Architecture

Figure 4 describes the architecture of our proposed sy§thmComposer is the main
entity, which initiates the composition process by acegpthe abstract application as
input. It uses services of the Semantic Trader for matchingbstract and concrete
components. The Semantic Trader depends on the servicdadgutdy the Registry for
requesting components and uses the services of SemandierToa matching services
and components. The Composer uses the Selection Strateétyyfendeciding which
strategy to use based on the current policy employed by thtersyadministrator. The
role of these entities is discussed in the following suliiges.

Semantic 4
‘Composer }—{ Trader }—{ Registry ‘

Selection
Strategy

Semantic
Matcher

Fig.4. The System Architecture.

4.1 Transformation of Tree

The Composer transforms the input abstract applicati@eintequivalent concrete one.
The transformation process consists of three intermediatges:

1) First, the Composer transforms the application into apmsition tree structure as
described previously. From the composition tree, the Caapselects a sub-tree
that only keeps branches of which leaves are abstract coempmrin other words,
if some components have well-defined implementations, #reynot considered
for processing.

2) While walking down the abstract tree, for each componexenwe look in the
repository for a concrete component, which is semanticadjyivalent to the ab-
stract one and replace the description of the latter by thrada

3) During the second stage, we may find more than one componert matching
components at all for an abstract service. The Composeaustestegy for deciding
on what to do in such a case.

58

4.2 Semantic Matching

To be able to reason about the functional properties of S@faets, we use semantic
matching, as described in the second stage of the transfiompaocess.

SA-SCA:Semantic Annotations for SCA We propose Semantic Annotations for
SCA (SA-SCA), which suggests how to add semantic annottiowarious SCA ar-
tifacts like composite, services, components, interfaaed properties. This extension
is similar to the concept of annotations in SAWSDL [1] andnisccordance with the
SCA extensibility mechanism [7]. Our proposed SA-SCA defiaenew namespace
calledsasca and adds an extension attribute calfeatiel Reference so that relationships
between SCA artifacts and concepts in another semanticlraceleandled. This choice
is motivated by the fact that applications developers canamy ontology language to
annotate services rather than be bound to one particulanagp. The listing below
shows the description of odravelPlanner composite:

<conposi te name="Travel Pl anner" >
<servi ce nane="Travel Pl anner Servi ce"
pr onot e="Tr avel Booki ngConponent /
Tr avel Booki ngServi ce"/ >
<conponent nane="Tr avel Booki ngConponent " >
<servi ce name="Travel Booki ngServi ce"/ >
<r ef erence nane="Pl aneBooki ngServi ce"/>
<l-- ... (other references) -->
<i npl enent ati on. bpel
pr ocess="Tr avel Boooki ng. bpel "/ >
</ conponent >
<component nane="Pl aneBooki hgConponent "
nodel Ref er ence=
"booki ng. ow #PlI aneBooki ng" >
<servi ce name="Pl aneBooki ngSer vi ce"
nodel Ref erence=
"booki ng. owl #Pl aneBooki ng"/ >
</ conmponent >
<l-- ... (other component definitions) -->
</ conposi te>

4.3 Selection Strategy

The selection of a concrete component can be filtered outibg asparticular strategy

employed by the administrator based on the organizaticsiaies. For example, one

policy might be the selection of the service provider based@asonal variations as
described in the example scenario, but other strategidd aao be used. For example,
when there are many concrete components, the choice of mceate component over
the other may be influenced by the QoS factors such as preggmse time, reputation,
etc. Such strategies can be defined along with SCA applitdéscription by using the

SCA Policy Framework [6].

59

Partial Composition. It is possible that while walking the abstract tree, we dofimat
all the components. Instead of resulting in a failed contposithe component selec-
tion policy may specify to ignore such concrete componentslaiild a composition
tree with only the available components. For example, a#etion policy may require
inter-component dependency and, hence, if any of such coemts is missing, the
transaction will not be executable. In such a case, it is mamd to find all the relevant
components and if they are not found, the policy may reqoiredquire abandoning the
dependent components and continuing with components éore$t of services in the
composition. The description and enforcement of such jgdlis dependent on partic-
ular use case and we do not consider them in this paper, buidpran overview in
Sect. 5.

It is then important to notice that we provide the possipildr both a shallow and
a deep transformation of the composite. In the first case¢cahgposite description is
brought to a shallow concrete state, while in the seconda&dsep concrete tree is cre-
ated. Considering th&avelPlanner composite, its shallow transformation will replace
the CarBookingComponent, HotelBookingComponent, and PlaneBookingCom-
ponent components with concrete ones, and its deep transformatibim addition to
these, replace thEoachBookingComponent and RestaurantBookingComponent
components. This possibility is interesting in the case dis&ributed composition. A
Composer can process a shallow transformation on a coregosdted on its hosting
computer, and delegate the transformation of the distamt@uposites to their colo-
cated Composers.

We are currently implementing our proposed architectugeasof the French Na-
tional project ANR-SCOrWaré.

5 Reéated Work

The idea of describing application as an abstract compaosdf services which are
resolved into service components dynamically, has beetelepreviously. In CO-
COA [2], the objective is to find concrete components for ustservices defined in a
user task. Their solution builds on semantic Web servic¥gl(€3) and offers flexibility
by enabling semantic matching of interfaces and ad hoc stagtion of the user tasks
conversation from services conversations. Furthermd@&;GA allows meeting QoS
requirements of user tasks. For this purpose, they haveéeck€@OCOA-L, an exten-
sion of OWL-S, that allows the specification of both local @sbal QoS requirements
of user tasks. Compared to their approach, our approactpatgmses use of seman-
tic matching but instead of using a fixed number of QoS atteébuwe propose to use
the SCA policy Framework for specifying organization-lguelicies. Our approach is
more flexible because the service developers and the deplbgee full control over
defining the appropriate policy for component selection.

The subject of semantic service description has also beatett by various research
works. Semantic Annotations for WSDL (SAWSDL) [1] definesshim add semantic
annotations to various parts of a WSDL [10] document sucimpgtiand output mes-
sage structures, interfaces and operations. For this pey@AWSDL defines a new

2 http://www.scorware.org/

60

specific namespaawsdl and adds an extension attribute, nameiel Reference, to
specify the association between WSDL components and ctsigegome semantic
model. The matching between a concept and WSDL element &slopnsing a match-
ing algorithm. One such matching algorithm is proposed JnHdllowing the example
of WSDL extension, we have extended SCA to be able to carrgemgantic matching
for different SCA elements including services, compongntsrfaces, and properties.
Finally, there has been significant recent work relatedeasse of policies in SCA.
One such approach uses the SCA policy framework for absirattoncrete resource
specification [5] which is then used for matching abstractises with their concrete
component implementations. However, the approach is bassgintactic matching of
SCA artifacts. This approach, together with ours, can bd asea component selection
strategy as described in Sect. 4.3. Similarly, in [9] théhatg define patterns and roles
for applying abstract policies in SCA to their concrete ismpentations. With an exam-
ple application they show how their approach can be apptietténsactional policies.

6 Conclusions& FutureWork

We have presented an approach for dynamic composition ditafipns whose compo-
sition is described in terms of the services provided by fiieation; however, these
services are resolved into component implementationseatirtie of execution of the
application. The service implementations might be distéld and provided by differ-
ent service providers whose selection is influenced by thieips used by the system
administrator. The selection of a particular implemeptais made on the basis of a
matching algorithm.

The applications are described in SCA. Currently, we carsahly applications
whose composition in terms of services is defined statichlly the future work, we
are looking forward to having such applications createdmatically in the pervasive
environments in terms of the services available in the enwirent. We also intend to
consider the user’s preferences apart from the organimdtwlicies when looking for
candidate service providers.

References

1. Akkiraju, R. and Sapkota, B., 2006. Semantic annotatfond¥SDL. Technical report,
W3C. (cf. http://www.w3.0rg/TR/sawsdl-guide/).

2. Ben Mokhtar, S., Georgantas, N., and Issarny, V., 2007CO& Conversation-based ser-
vice composition in pervasive computing environments wjtis support. J. Syst. Softw.,
80(12):1941-1955.

3. Chappel, D., 2007. Introducing sca. White paper. Avééamline:http://www.osoa.org.

4. M'Bareck, N. O. A. and Tata, S., 2007. How to consider retgres preferences to enhance
web service discovery? Imternet and Web Applications and Services, 2007. ICIW ' 07.
Second International Conference on, pages 59-59.

5. Mukhtar, H., Belaid, D., and Bernard, G., 2008. A poliased approach for resource speci-
fication in small devices. IWBICOMM 08: The Second International Conference on Maobile
Ubiquitous Computing, Systems, Services and Technologies. IEEE.

10.

61

. Open SOA Collaboration, 2007a. SCA Policy Framework @1$pecifications.

http://www.osoa.org/.

. Open SOA Collaboration, 2007b. Service Component Aechitre (SCA): SCA Assembly

Model v1.00 specifications. http://www.osoa.org/.

. Papazoglou, M. P., 2003. Service-oriented computingcepts, characteristics and direc-

tions. InV\eb I nformation Systems Engineering, 2003. WI SE 2003. Proceedings of the Fourth
International Conference on, pages 3-12.

. Satoh, F., Mukhi, N. K., Nakamura, Y., and Hirose, S., 20B8ttern-based Policy Config-

uration for SOA Applications. IrServices Computing, 2008. SCC '08. |EEE International
Conference on, volume 1, pages 13-20.

Web Services Description Language. WSDL 2.0 Home Page)06.2
http://www.w3.0rg/TR/wsdI20/.

