
Service Composition Based on Functional and
Non-Functional Descriptions in SCA

Djamel Belaı̈d, Hamid Mukhtar and Alain Ozanne

Institute TELECOM, TELECOM & Management SudParis
9, rue Charles Fourier, 91011 Evry Cedex, France

Abstract. Service Oriented Computing (SOC) has gained maturity and there
have been various specifications and frameworks for realization of SOC. One
such specification is the Service Component Architecture (SCA), which defines
applications as assembly of heterogeneous components. However, such assembly
is defined once and remains static for fixed components throughout the applica-
tion life-cycle.
To address this problem, we propose an approach for dynamic selection of com-
ponents in SCA, based on functional semantic matching and non-functional strate-
gic matching using policy descriptions in SCA. The architecture of our initial
system is also discussed.

1 Introduction

In order to provide their services to a large variety of clients, enterprises often manage
various contracts with other service providers. One problem faced by such enterprises is
the emergence of new competing service providers, with better, cost-effective solutions.
Thus, it would be natural that enterprises change partnerships in pursuit of better ones.
However, in reality, it is much more different than that.

When inter-enterprise applications are developed on top of the existing Informa-
tion System, they are created for particular service providers. This results in two major
problems. First, if a change of any of the service provider is required, a whole new
application needs to developed. Second, if only a part of the functionality of the ap-
plication is required to be reused, again a new application needs to be deployed. Such
problems arise due to the fact that most of the time, the description of service provider
is hard-coded in the application logic instead of the service description itself. Thus,
we can rightly call such applications as service-provider-dependent rather than service-
dependent.

To overcome such difficulties, Service-Oriented Computing (SOC) has emerged re-
cently. SOC is the computing paradigm that utilizes services as fundamental elements
for developing applications/solutions. Services are self-describing, platform-agnostic
computational elements that support rapid, low-cost composition of distributed appli-
cations [8]. Service providers procure the service implementations and descriptions,
and provide related technical and business support.

However, even after arrival of SOC based approaches, the aforementioned problems
have not been solved completely. The applications have started to become modularized

Belaïd D., Mukhtar H. and Ozanne A. (2009).
Service Composition Based on Functional and Non-Functional Descriptions in SCA.
In Proceedings of the Joint Workshop on Advanced Technologies and Techniques for Enterprise Information Systems, pages 52-61
DOI: 10.5220/0002201900520061
Copyright c© SciTePress



in terms of services, but the definition of services is still dependent on their imple-
mentation. One particular approach for realizing SOC basedapplications, the Service
Component Architecture (SCA) avoids such obstacle by separating the service defini-
tion from its implementation. However, as we will explore inthis paper, SCA is also
limited by the fact that applications defined using SCA are static. Once defined, services
and their implementation remain intact afterwards. But in an ideal situation, should a
service provider changes, the new implementation is to be reused with minimum of
effort.

1.1 A Motivating Example

Consider a fictitious travel agency based in Paris. The agency provides services such
as flight, hotel and car booking as well as arranging for excursions in a specific des-
tination city. To offer its services, the agency relies on a number of other specialized
service providers in France. In order to keep up with so many service providers, the IT
personnel at the agency have set up an application that combines the various services
from different service providers but that hides this complexity to the travel agent using
the software. The selection of a service provider for a particular service, according to
criteria such as availability etc, is managed automatically by the application.

Now assume that our agency wants to open a new branch in Madrid. In order to
provide their services for various destinations in Spain, the travel agency settles up new
agreements with local service providers, which are registered into the system. However,
for certain destinations no service provider offers excursion activities. Thanks to the
development approach used by IT personnel of the agency, if the application finds that
a service provider is unreachable, it tries to find an alternative service provider. If it
does not find any service provider for some service, it continues offering the rest of the
services.

As the reader can observe, the above example requires several points: first, the ap-
plication, whose composition defined in terms of services, should be deployable at dif-
ferent locations with different service providers. Second, an application designer should
be able to make its application work in a kind of degraded modeif some of the service
providers required for its full fonctionalities can not be found. Both of these points form
the basis of our approach for service composition used in this paper.

The rest of this paper has been organized as follwing. In Sect. 2 we describe the
Service Component Architecture (SCA) upon which we build the rest of the paper.
Sect. 3 discusses the notion of abstract and concrete composition and how it can be
applied to SCA. Sect. 4 describes the architecture of our system. Sect. 5 provides and
overview of related work and Sect. 6 concludes this paper.

2 Service Component Architecture

Service Component Architecture (SCA) [7] provides a programming model for build-
ing applications and systems based on a Service Oriented Architecture (SOA). The main
idea behind SCA is to be able to build distributed applications, which are independent

53



Fig. 1. A basic view of SCA meta model.

of implementation technology and protocol. SCA extends andcomplements prior ap-
proaches to implementing services, and builds on open standards such as Web services.
The basic unit of deployment of an SCA application is composite. A composite is an
assembly of heterogeneous components, which implement particular business function-
ality. These components offer their functionalities through service-oriented interfaces
and may require functions offered by other components, alsothrough service-oriented
interfaces.

Fig. 2. The TravelPlanner application (a) SCA representation (b) representation as composite tree.

SCA components can be implemented in Java, C++, COBOL, Web Services or as
BPEL processes. Independent of whatever technology is used, every component relies
on a common set of abstractions including services, references, properties, and bind-
ings. A service describes what a component provides, i.e. its external interface. A ref-
erence specifies what a component needs from the other components or applications of
the outside world. Services and references are matched and connected using wires or
bindings. A component also defines one or more properties, potentially holding its con-
figuration. Fig. 1 shows the various SCA elements and their relationships in the SCA
meta-model. As shown, the SCA definition of a composite is recursive, i.e., a composite
can contain another composite and so on.

SCA allows dependency injection by relieving the developerfrom writing the code
to find the required references and do the appropriate binding [3]. The bindings are
taken care of by the SCA runtime and can be specified at the timeof deployment. The
bindings specify how services and references communicate with each other. Each bind-
ing, separating how a component communicates from what it does, lets the components
business logic be largely divorced from the details of communication.

54



Since SCA already has the notion of services and components and since it allows
dynamic binding of services to components, it is an ideal candidate for realization of
our proposed approach and, hence, in the rest of the paper we will explain our approach
using the SCA artifacts.

2.1 SCA Example Application

First, we show how we can represent our example application in SCA. This has been
done in fig. 2(a). The application is described in the composite namedTravelPlanner,
which offers a single service to the user that is provided by the TravelBooking com-
ponent. However, theTravelBooking component itself uses services provided by other
components namelyPlaneBookingCompnent, CarBookingComponent andHotel-
BookingComponent as well service provided by theExcusionBooking composite.
Finally, theExcursionBooking composite is also composed of one component namely
ExcursionBookingComponent. Note how the services provided by one component
are used as references by another component. For example, the ExcursionBooking-
Component references are connected to the services provided by theCoachBooking-
Component and theRestaurantBookingComponent components.

The TravelPlanner application describes all the services required by the travel
agent for a successful trip planning of a client. As mentioned previously, the selection of
components implementing these services is made dynamically based on the availability
of service provider. However, since the procedure for booking a travel or an excursion
is known, such a procedure is already provided in the description of theTravelPlanner
composite. Let us assume that this process has been described in BPEL. Our goal is,
thus, to find the components that match the references required by theTravelBooking-
Component andExcursionBookingComponent.

3 Abstract and Concrete Composition

We say that a composition is abstract when its description lacks some of the informa-
tion that defines the composition implementation. Such a composition describes the
services participating in the composition, but does not tell about how the services are
implemented.1

When this concept is applied to SCA, we say that an application described in SCA
is abstract if its description does not contain complete implementation definition. How-
ever, since an SCA composite is defined recursively, we need to distinguish between
various levels of abstraction depending on whether all or part of a composite is abstract.
This notion can be better explained by using the compositiontrees.

3.1 SCA Applications as Composition Trees

The implementation of an SCA composite may be provided by oneor more compo-
nents. However, these components may themselves be defined in terms of other com-
ponents and so on. This property can be explained easily by a tree structure, where the

1 We assume the availability of the technical resources required for instantiating and running
such a composition, and hence do not treat such aspects.

55



root is the application itself (i.e., the outermost composite) and its children represent
the composites and components enclosed by it. With this treestructure, we observe that
the inner nodes of the tree represent the composites and the leaves represent the com-
ponents. The components, i.e., the leaves of the tree may be found at any level below
the root depending on the application composition structure.

Figure 2(b) shows the tree representation of the example SCAapplication of fig. 2(a).
Note that while a composite knows about its contents enclosed by it, it does not have
any information about the contents of the composites enclosed by it. For example, in
fig. 2(b), the root node (at level 0) knows if its children (at level 1) have known imple-
mentations or not, but it does not have this information about the nodes at level 2. To
know them, we need to query the composite at level 1.

Bearing such a tree structure in mind, we distinguish between various levels of
abstraction for an SCA application:

1) If any of the subcomponents of a composite have no defined implementation, then
the composite isshallow abstract, e.g., the compositeExcursionBooking at level
1 of the tree in fig. 2(b) is shallow abstract.

2) By recursive definition, if any of the composite enclosed by the root composite
is shallow abstract, the composite is calleddeep abstract. For example, theTrav-
elPlanner composite is deep abstract because it encloses theExcursionBooking
composite, which is shallow abstract.

3) If all the subcomponents of a composite have known implementations, then the
composite isshallow concrete.

4) By recursive definition, if any of the composites enclosedby the root composite is
shallow concrete, the root composite isdeep concrete.

Figure 3 shows these various levels of abstraction diagrammatically.

Fig. 3. The different levels of abstraction for SCA applications.

Our aim is to build a concrete composition tree, which is semantically equivalent to
a given (shallow or concrete) abstract tree. Its fundamental principle is to replace the

56



abstract components of a composition tree by semantically equivalent concrete ones.
We assume that a number of concrete components are availablein some repository,
which is accessible to us and we need to make a selection out ofthem.

However, the SCA specifications [7] do not specify any mechanism for matching of
services and their implementations (components). Thus, wepropose an architecture for
matching of services to components.

4 The System Architecture

Figure 4 describes the architecture of our proposed system.The Composer is the main
entity, which initiates the composition process by accepting the abstract application as
input. It uses services of the Semantic Trader for matching of abstract and concrete
components. The Semantic Trader depends on the services provided by the Registry for
requesting components and uses the services of Semantic Trader for matching services
and components. The Composer uses the Selection Strategy entity for deciding which
strategy to use based on the current policy employed by the system administrator. The
role of these entities is discussed in the following sub-sections.

Fig. 4. The System Architecture.

4.1 Transformation of Tree

The Composer transforms the input abstract application into an equivalent concrete one.
The transformation process consists of three intermediatestages:

1) First, the Composer transforms the application into a composition tree structure as
described previously. From the composition tree, the Composer selects a sub-tree
that only keeps branches of which leaves are abstract components. In other words,
if some components have well-defined implementations, theyare not considered
for processing.

2) While walking down the abstract tree, for each component node, we look in the
repository for a concrete component, which is semanticallyequivalent to the ab-
stract one and replace the description of the latter by the former.

3) During the second stage, we may find more than one componentor no matching
components at all for an abstract service. The Composer usesa strategy for deciding
on what to do in such a case.

57



4.2 Semantic Matching

To be able to reason about the functional properties of SCA artifacts, we use semantic
matching, as described in the second stage of the transformation process.

SA-SCA:Semantic Annotations for SCA We propose Semantic Annotations for
SCA (SA-SCA), which suggests how to add semantic annotations to various SCA ar-
tifacts like composite, services, components, interfaces, and properties. This extension
is similar to the concept of annotations in SAWSDL [1] and is in accordance with the
SCA extensibility mechanism [7]. Our proposed SA-SCA defines a new namespace
calledsasca and adds an extension attribute calledmodelReference so that relationships
between SCA artifacts and concepts in another semantic model are handled. This choice
is motivated by the fact that applications developers can use any ontology language to
annotate services rather than be bound to one particular approach. The listing below
shows the description of ourTravelPlanner composite:

<composite name="TravelPlanner">
<service name="TravelPlannerService"
promote="TravelBookingComponent/

TravelBookingService"/>
<component name="TravelBookingComponent">

<service name="TravelBookingService"/>
<reference name="PlaneBookingService"/>
<!-- ... (other references) -->
<implementation.bpel

process="TravelBoooking.bpel"/>
</component>
<component name="PlaneBookingComponent"
modelReference=
"booking.owl#PlaneBooking">
<service name="PlaneBookingService"

modelReference=
"booking.owl#PlaneBooking"/>

</component>
<!-- ... (other component definitions) -->

</composite>

4.3 Selection Strategy

The selection of a concrete component can be filtered out by using a particular strategy
employed by the administrator based on the organizational policies. For example, one
policy might be the selection of the service provider based on seasonal variations as
described in the example scenario, but other strategies could also be used. For example,
when there are many concrete components, the choice of one concrete component over
the other may be influenced by the QoS factors such as price, response time, reputation,
etc. Such strategies can be defined along with SCA application description by using the
SCA Policy Framework [6].

58



Partial Composition. It is possible that while walking the abstract tree, we do notfind
all the components. Instead of resulting in a failed composition, the component selec-
tion policy may specify to ignore such concrete components and build a composition
tree with only the available components. For example, a transaction policy may require
inter-component dependency and, hence, if any of such components is missing, the
transaction will not be executable. In such a case, it is important to find all the relevant
components and if they are not found, the policy may require to require abandoning the
dependent components and continuing with components for the rest of services in the
composition. The description and enforcement of such policies is dependent on partic-
ular use case and we do not consider them in this paper, but provide an overview in
Sect. 5.

It is then important to notice that we provide the possibility for both a shallow and
a deep transformation of the composite. In the first case, thecomposite description is
brought to a shallow concrete state, while in the second casea deep concrete tree is cre-
ated. Considering theTravelPlanner composite, its shallow transformation will replace
the CarBookingComponent, HotelBookingComponent, andPlaneBookingCom-
ponent components with concrete ones, and its deep transformationwill, in addition to
these, replace theCoachBookingComponent andRestaurantBookingComponent
components. This possibility is interesting in the case of adistributed composition. A
Composer can process a shallow transformation on a composite located on its hosting
computer, and delegate the transformation of the distant subcomposites to their colo-
cated Composers.

We are currently implementing our proposed architecture aspart of the French Na-
tional project ANR-SCOrWare.2

5 Related Work

The idea of describing application as an abstract composition of services which are
resolved into service components dynamically, has been treated previously. In CO-
COA [2], the objective is to find concrete components for abstract services defined in a
user task. Their solution builds on semantic Web services (OWL-S) and offers flexibility
by enabling semantic matching of interfaces and ad hoc reconstruction of the user tasks
conversation from services conversations. Furthermore, COCOA allows meeting QoS
requirements of user tasks. For this purpose, they have created COCOA-L, an exten-
sion of OWL-S, that allows the specification of both local andglobal QoS requirements
of user tasks. Compared to their approach, our approach alsoproposes use of seman-
tic matching but instead of using a fixed number of QoS attributes, we propose to use
the SCA policy Framework for specifying organization-level policies. Our approach is
more flexible because the service developers and the deployers have full control over
defining the appropriate policy for component selection.

The subject of semantic service description has also been treated by various research
works. Semantic Annotations for WSDL (SAWSDL) [1] defines how to add semantic
annotations to various parts of a WSDL [10] document such as input and output mes-
sage structures, interfaces and operations. For this purpose, SAWSDL defines a new

2 http://www.scorware.org/

59



specific namespacesawsdl and adds an extension attribute, namedmodelReference, to
specify the association between WSDL components and concepts in some semantic
model. The matching between a concept and WSDL element is done by using a match-
ing algorithm. One such matching algorithm is proposed in [4]. Following the example
of WSDL extension, we have extended SCA to be able to carry outsemantic matching
for different SCA elements including services, components, interfaces, and properties.

Finally, there has been significant recent work related to the use of policies in SCA.
One such approach uses the SCA policy framework for abstractand concrete resource
specification [5] which is then used for matching abstract services with their concrete
component implementations. However, the approach is basedon syntactic matching of
SCA artifacts. This approach, together with ours, can be used as a component selection
strategy as described in Sect. 4.3. Similarly, in [9] the authors define patterns and roles
for applying abstract policies in SCA to their concrete implementations. With an exam-
ple application they show how their approach can be applied for transactional policies.

6 Conclusions & Future Work

We have presented an approach for dynamic composition of applications whose compo-
sition is described in terms of the services provided by the application; however, these
services are resolved into component implementations at the time of execution of the
application. The service implementations might be distributed and provided by differ-
ent service providers whose selection is influenced by the policies used by the system
administrator. The selection of a particular implementation is made on the basis of a
matching algorithm.

The applications are described in SCA. Currently, we consider only applications
whose composition in terms of services is defined statically. For the future work, we
are looking forward to having such applications created automatically in the pervasive
environments in terms of the services available in the environment. We also intend to
consider the user’s preferences apart from the organizational policies when looking for
candidate service providers.

References

1. Akkiraju, R. and Sapkota, B., 2006. Semantic annotationsfor WSDL. Technical report,
W3C. (cf. http://www.w3.org/TR/sawsdl-guide/).

2. Ben Mokhtar, S., Georgantas, N., and Issarny, V., 2007. COCOA: Conversation-based ser-
vice composition in pervasive computing environments withqos support. J. Syst. Softw.,
80(12):1941–1955.

3. Chappel, D., 2007. Introducing sca. White paper. Available online:http://www.osoa.org.
4. M’Bareck, N. O. A. and Tata, S., 2007. How to consider requester’s preferences to enhance

web service discovery? InInternet and Web Applications and Services, 2007. ICIW ’07.
Second International Conference on, pages 59–59.

5. Mukhtar, H., Belaı̈d, D., and Bernard, G., 2008. A policy-based approach for resource speci-
fication in small devices. InUBICOMM 08: The Second International Conference on Mobile
Ubiquitous Computing, Systems, Services and Technologies. IEEE.

60



6. Open SOA Collaboration, 2007a. SCA Policy Framework v1.00 specifications.
http://www.osoa.org/.

7. Open SOA Collaboration, 2007b. Service Component Architecture (SCA): SCA Assembly
Model v1.00 specifications. http://www.osoa.org/.

8. Papazoglou, M. P., 2003. Service-oriented computing: concepts, characteristics and direc-
tions. InWeb Information Systems Engineering, 2003. WISE 2003. Proceedings of the Fourth
International Conference on, pages 3–12.

9. Satoh, F., Mukhi, N. K., Nakamura, Y., and Hirose, S., 2008. Pattern-based Policy Config-
uration for SOA Applications. InServices Computing, 2008. SCC ’08. IEEE International
Conference on, volume 1, pages 13–20.

10. Web Services Description Language. WSDL 2.0 Home Page, 2006.
http://www.w3.org/TR/wsdl20/.

61


