
Managing Security Knowledge through Case based
Reasoning

Corrado Aaron Visaggio and Francesca De Rosa

Dept. of Engineering, University of Sannio, Italy

Abstract. Making secure a software system is a very critical purpose, especially
because it is very hard to consolidate an exhaustive body of knowledge about
security risks and related countermeasures. To define a technological infrastruc-
ture for exploiting this knowledge poses many challenges. This paper introduces
a system to capture, share and reuse software security knowledge within a Soft-
ware Organization. The system collects knowledge in the form of misuse cases
and makes use of Case Based Reasoning for implementing knowledge manage-
ment processes. A reasoned analysis of the system was performed throughout a
case study, in order to identify weaknesses and opportunities of improvement.

1 Introduction

Knowledge about software security is now acquiring an economic and strategic value
for Organizations: recently a market of vulnerabilities is developing and expanding fast
[4]. In order to improve security into software products, developing or hiring skilled
professionals is not enough [11]. As pointed out by Barnum and McGraw [13], critical
software security knowledge should be captured and widely shared. Once formalized
and catalogued, this knowledge could be used within the Organization with two pur-
poses: training, and supporting the problem solving process. Previous experience could
be reused as is, or could help produce the solution for a new problem. Threats modeling
is a central aspect of the security engineering process [5]. A way to model threats in
terms of interaction with the system is the misuse case [9]. A misuse case describes
potential system behaviors that are not acceptable by a system’s stakeholders. A misuse
case defines a sequence of steps which lead the user to misuse the system, i.e. to violate
privacy or security policies. These misuses either represent high-probability attacks or
high-impact events that negatively affect the system’s legitimate stakeholders. Misuse
cases should be at a level of detail that drives design activities, and they are convenient
means for capturing knowledge about system’s security. A misuse case could leverage
a security flaw at three different levels of detail:

– domain level, i.e. when the user process allows illegal access to sensitive resources;
for instance, when web pages that should be accessed with https protocol could be
reached with a http connection, too;

– design level, i.e. when the design exposes security bugs; an example is the sql
injection vulnerability;

Visaggio C. and De Rosa F. (2009).
Managing Security Knowledge through Case based Reasoning.
In Proceedings of the 7th International Workshop on Security in Information Systems, pages 127-135
DOI: 10.5220/0002200401270135
Copyright c© SciTePress



– technological level, i.e. when the bug is due to the specific technology (program-
ming language, dbms, frameworks, api’s, and so forth). An example of this kind of
vulnerabilities is discussed in [2].

Of course, the misuse case could also exploit flaws concerning more than one level.
With this paper we present a system for capturing, sharing, and reusing security knowl-
edge into an Organization. The knowledge is formalized in the form of a misuse case
and stored into a knowledge base. The system finds vulnerabilities which were success-
fully solved (and whose solution could be retrieved in the knowledge base) similar to a
new one. If this similarity is enough high, the solution or parts of it could be re-applied
to solve the current security problem. This usually happenswhen two vulnerabilities
share one of the three levels but concern more than one level.For instance, the sql in-
jection mechanisms do not depend from the technology, so a designer could re-use the
same countermeasures, properly adapted, as well as when using asp, jsp or php (technol-
ogy level) and when implementing different processes, i.e.different web applications’
features (domain level). The paper is organized as follows:next section introduces the
system; the third section discusses an example. Finally, conclusions are drawn.

2 The System

Our system relies on case base reasoning (CBR) [3] as model for knowledge storage and
retrieval. A case is a couple (problem, solution). The case based reasoning is a problem
solving technique which exploits the learning from similarcases in order to solve a new
problem. The CBR process for problem solving is a four-stepscycle (Fig. 1).

Fig. 1. CBR cycle.

Once the new problem is described (new case), the engine searches forsimilar prob-
lems stored into the base (retrieve phase) by calculating the similarity of the new case
with theprevious cases. Two cases are similar when they correspond to similar prob-
lems. Similarity functions are divided in two classes: thesurface similarity, that ex-
presses the distance between two cases by a number into a range [0,1] or [0,100]; and
thestructural similarity, that considers cases as complex structures, as well as graphs:

128



similarity is a function which compares the properties of these structures into the two
cases. The retrieved case which has the highest value of similarity is the candidate for
solving the new problem (reuse phase). Three classes of reuse exist: (i) replacing parts
of the solutions, namelysubstitution; (ii) altering part of the structure, namelytransfor-
mation; and finally (iii) applying the derivation of the (old problem’s) solution to the
new problem, namelygenerative adaptation. The proposed solution to the new prob-
lem, i.e. thenew caseis then validated (revise phase). Finally the new case must be
integrated in the case base (retain phase).

With this paper we adapt the CBR mechanisms for capturing, sharing, and reusing
knowledge about security threats within a Software Organization. We focused on the
models applied to the retrieve phase. The structure of the case refers to the specifica-
tions of misuse case provided by Sindre et al. [7], which are detailed in the table 1,
while a complete case is provided in table 8 (missing attributes are empty in the case).

The user will define the case in natural language, but specialliteral valuesmust be
used when the case is filled in. Such values are nameddomain’s tag.

Table 1.Structure of a misuse case.

Name Name of the Misuse Case
Summary Brief description of the Misuse Case
Date Generation Date of the Misuse Case
Author Author of the Misuse Case
Basic Path Main sequence of steps needed to accomplish the attack
Alternative Path Alternative actions’ sequence for the attack
Mitigation Points Countermeasures for reducing the risks of the attack
Triggers Events which could activate the misuse case
Preconditions Characteristics and properties of the system necessary

to make the attack possible
Assumptions Conditions enabling the attack and which are external

to the system
Mitigation Guarantee Conditions to validate the mitigation of the threat
Related Business Rules Business rules which are affected by the security flaws.
Stakeholders and Threats Stakeholders and threats concerned by the misuse case
Potential Misuser Profile Competence, skill, and capability needed for accomplishing

the attack
Scope Impact of the misuse
Abstraction Level Design Portion interested by the misuse case
Precision Level Architectural component interested by the misuse case

These values will be the elements of the corresponding attribute’s domain. As a
matter of fact, each attribute is defined upon a finite and discrete domain, which should
increase over time. This happens because when the number of cases in the knowledge
base gets bigger, the need of a greater expressiveness to describe misuse cases arises.
For instance, in the example in table 8 the tags for the attributepreconditionsarepub-
licly availableandregistered as a customer.

Let Otarget be the searched object in the case base; it describes the problem that the
user needs to solve. Otarget is a partially filled in case. As some attributes do not help
the retrieve phase, the candidate attributes to be compiledin the Otarget are: triggers,
preconditions, assumptions, related business rules, stakeholder and threats, potential
misuser profile, scope, abstraction level, and precision level. Otarget is a matrix where
each row represents an attribute of the misuse cases, and each column is a value assumed

129



by the attribute, i.e. a key for the search of similar cases. An exemplar Otarget is shown
in table 2.

The system will search themost similarcases in the knowledge base. In order to
establish whether two cases are similar, asimilarity measuremust be defined. The
similarity between two objects is a function, called GlobalSimilarity and defined in
the interval [0:1], where 1 corresponds to the maximum similarity. A similarity mea-
sure fulfills these properties: reflexivity, symmetry, monotony, and triangle equality.
Let Oa1, a2, , an be a complex object withn attributes ai, while let (O1,O2) be two
instances of the Oα. First, the similarity between the correspondent couple ofvalues for
each attribute ai of (O1,O2) should be calculated, namelylocal similarity (localSimi).
Thus, theglobal similarity is calculated by including the local similarities for all the n
attributes of the object.GlobalSim Oα (O1, O2) = 1

n

∑n

i=1
LocalSimi. The way of

local similarity calculation depends on the kind of objects’ attribute. In case of: num-
bers, similarity is a distance; strings, similarity is an evaluated comparison; symbols,
similarity is calculated for each possible combination; object, similarity is measured
by a proper function which considers all the object’s fields.The soundnessof a sim-
ilarity measure is expressed through thegold standard. This is a set of comparisons
with a desired similarity value, defined by the user or a domain expert. A key point
of estimating the quality of a similarity measure will always be the calculation of its
deviation to the gold standard. This basically consists of two steps: choosing pairs of
objects to compare and choosing a meaningful measure for calculating thedeviation.
Some algorithms have been proposed in order to accomplish the first step; as this is not
the focus of this paper, this argument will be not discussed here. We used the formula:
1

n

∑n

i=1
|GoldStdi − simV aluei|, where n is the number of comparisons, goldStdi is

the gold standard value and simValuei is the calculated value for the i-th comparison.
Further methods includes the root mean square error and the threshold error, which will
not be treated here. Finally thefitness function[16], which is a hyperbolic function must
be defined as

Fitness(deviation) = z
deviationMax+a

− b,
where:
a = fitnessMean∗deviationMax

fitnessMax−2fitnessMean

b = fitnessMax∗fitnessMean
fitnessMax−2fitnessMean

z = a ∗ (fitnessMax + b)

– deviationmax, as the max measure of diversity, and varies between 1 and 100;
– fitnessmean, measures the quality of the comparison;
– fitnessmax, measures the maximum of similarity.

These can be used to adapt the hyperbola to the concrete needsone might have,
transforming a deviation to a fitness. These might be that a defined maximal deviation
leads to a fitness value of 0 and that a deviation of 0 leads to a defined maximal fitness
value(or infinity if a is chosen to be 0).

So if one defines two points which the hyperbola has to cross, namely, fitness(0) =
fitnessmax and fitness(deviationmax) = 0, it is possible to set up two equations for the
parameters (a, b and z) of the common hyperbola. So a third point of the hyperbola

130



is needed (i.e., can be chosen) to set up the third equation. Having these three points
it is possible to calculate the three parameter values. Let’s define a value fitnessmean,
that corresponds to the fitness function’s value for the deviation of deviationmax/2.
Choosing this value to be fitnessmax/2, the resulting function would be a straight line.

The similarity function consists of a collection of similarity tables, one for each
attribute of the case. The similarity table defines the similarity between all the possible
couples of that attribute’s values. Letα= a1, a2, a3, a4,. . . ak be an attribute and letαi,
with i ∈ [1, k] be a possible value assumed byα. A similarity table, i.e. Ta, for the
attributeα is a triangular table where each element on the l-th row and j-th column is
the local similarity between the tags al and aj , i.e. T alj = localSima(al, aj)

This is needed as the similarity between two values can be assigned only with regard
to the semantics of the attribute. table 3 shows an exemplar excerpt of the similarity
table for the Stakeholders and Threats attribute in the function f2 (used in the next
section’s example). Local similarity values for the different tags are provided.

In summary, the CBR Retrieve phase process is recalled: first, the user defines the
target object to search, i.e., by instantiating the matrix Otarget.The system calculates
the global similarity for each candidate case (Oretr j) in the knowledge base, namely
and GlobalSim (Otarget, Oretr j ) . The system selects the Oretr j which is able to
maximize the fitness function.

The user can exploit a retrieved case Oretrieved in order to solve the new problem.
There are three situations. Oretrieved fits well the new problem: the solution is applied
to the problem (which is actually not anewone), i.e. knowledge is reused (reuse phase).
Oretrieved partially fits the new problem: the solution proposed by Oretrieved can not
be applied as is, but it could help user define the solution forthe new problem: a new
case is created and stored, i.e. the knowledge base is enlarged. Finally Oretrieved is
so different from Otarget that it does not provide any help. In this latter situation, the
existing knowledge is not enough to face the new problem.Revise phase consists of
verifying that the solution is effective. Finally, the caseis catalogued in the case base
(Retain phase). If new attribute values are introduced with the new case, the similarity
table must be properly updated. The next section will discuss an example of the retrieve
and reuse phase.

3 An Example

Let’s consider the following problem: how to mitigate the risk that passwords used to
authenticate for restricted services are captured by otherusers or lost. The problem is
formalised in table 2.

Table 2.An exemplar problem.

Trigger Always true
Assumption Passwords are used to authenticate
Related Business Rule Restricted services
Stakeholders and Threats Give away the password to other

Potentially losing money

131



For comprehension’ sake, let’s assume that there are four candidate cases into the
case base, namely the misuse cases #524, #530, #557, and #541. In order to understand
how the system works, let’s consider two different similarity functions, f1 and f2 . The
example will show how similarity functions could affect theretrieval results. Each simi-
larity function consists of a similarity table for each attribute used to define the problem.
For space’s reasons, only parts of the two functions are showed, in table 7. Some val-
ues in the similarity function f1 are intentionally set wrong, in order to emphasize the
effects in the retrieve phase. For instance, in the Related Business Rule attribute of f2,
similarity between the tagAvailable over the internetwith itself corresponds to 0.1,
while it should reasonably be 1.0.

Table 3.Similarity table for Stakeholders and Threats attribute belonging to the similarity func-
tion f2.

Loss of data Potentially Give away the Alteration Meeting with
losing money password to others of data No-relevant people

Loss of data 1.0 0.3 0.2 0.7 0.1
Potentially
losing money 0.3 1.0 0.3 0.2 0.1
Give away the
password to others 0.2 0.3 1.0 0.1 0.2
Alteration of data 0.7 0.2 0.1 1.0 0.1
Meeting with
No-relevant people 0.1 0.1 0.2 0.1 1.0

Table 4.Comparing retrieval results by applying the two similarityfunctions f1 and f2.

Misuse case f1 f2
ID Fit. mean 0.05 Fit. mean 1.00 Fit. mean 0.05 Fit. mean 1.00
524 100 100 100 100
530 46 57 12 26
557 37 37 44 44
541 22 35 13 26

Thefitness meanis a parameter for evaluating the quality of comparison. Thehigher
this parameter is the better is the evaluation of the retrieved case. As a matter of fact, for
both the functions, the values obtained by setting the parameter at 1.00 are higher than
when the parameter is 0.05. Let’s analyze now the results of the retrieve phase. In both
the cases the misuse case #524 (see table 4) scored the maximum, which is 100. This
case is perfectly correspondent to the problem description, i.e. the case will be reused
as is, indeed. The #524 summary quotes: A crook obtains passwords for user accounts
belonging to someone else, for the e-shop application typically e-shop clerks or system
administrators. In order to get the complete picture of the differences, let’s compare the
misuse case #530 which is considered the worst one for f2, with #541, that is the worst
one for f1 (see table 6).

The #541 regards disclosing the agreement about the date of the meeting to other
people who are not authorized. The #530 describes the case when the misuser gains
access to the system by trying large sets of passwords. Accordingly to f1’s results, #530
is much more suitable than #541. This evaluation is not satisfactory, as #530 description
misses two attributes’ value, i.e. the problem is much more general than the problem we
need to solve, and consequently the solution, too. In conclusion the results provided by

132



Table 5.Similarity table for Stakeholders and Threats attribute belonging to the similarity func-
tion f2.

Attribute s Problem Retrieved Case: #524
Trigger Always true No Value
Assumption Passwords are used Passwords are used to authenticate

to authenticate e-shop clerks and administrators
Related Business Rule Restricted services Only authorized users shall be able

to access restricted services
Stakeholders and Threats Give away the password []the crook may also sell or give away

to other the password to others who have an
interest in harming the e-shop [..]

f2 are more realistic, as both #530 and #541 have a close similarity, while the similarity
with the Otarget is definitely low. Let’s analyse briefly the points of strength and weak-
ness of the solution presented here. Pros are: it is possibleto manage security knowledge
without introducing further structures, or tools. As a matter of fact, the system exploits
directly misuse cases, that should be integrated in the security engineering process. The
main drawbacks are related to the similarity functions. Maintenance is costly, as every
change to the similarity tables affects other tables. Furthermore, if the similarity tables
are not properly set up, the retrieval could be scarcely effective.

4 Related Work

At the best knowledge of the authors the problem of capturingand reusing security
knowledge modeled as misuse case has been not faced, with theonly exception of [17].
Ingalsbe et al. [8] introduce a process of threat modeling basically aimed at risk miti-
gation. Modeling the threats is used as a basis for evaluating related risks. This paper
copes with the organizational aspects of threat modeling. Some authors [1] highlight
the need for interleaving and aligning security engineering and software engineering
processes. The paper does not face the problem of collectingknowledge about security
risk mitigation. Authors in [14] present a unified threat model for assessing threats in
web applications, by extending the threat tree model. They utilize historical statistical
information contained in this model to design threat mitigation schemes. The threat as-
sessing results and mitigation schemes should help direct secure coding and testing. In
order to solve the problems of evaluating system security threat in the complex system,
Liu and Liu [15] introduce a threat model based on the attacking-tree graph. First, an
evaluating standard of the feasibility and harmful level ofthe vulnerability exploitation
is given. Then an attacking-tree graph of the target system is constructed based on the
relationship among exploitations of vulnerabilities. This model is able to calculate the
impact of all kind of threats on the system security. Paper [12] presents an approach for
addressing the threat modeling in pervasive computing; themodel could also support
the risk analysis. To improve trustworthiness of software design, paper [6] presents a
formal threat-driven approach, which explores explicit behaviors of security threats as
the mediator between security goals and applications of security features. To specify
the intended functions, security threats, and threat mitigations of a security design as
a whole, authors’ method relies on aspect-oriented Petri nets as a unified formalism.
All these papers focus on the problem of threat modeling. Paper [10] proposes a threat
model-driven security testing approach for detecting undesirable threat behavior at run-

133



time. The threat model guides the code instrumentation; instrumented code is tested
while the execution traces are collected and analyzed to verify whether the undesirable
threat traces are matched. This paper applies threat modeling for strengthening security
testing.

Table 6.Comparing #530 and #541 misuse cases.

Problem Retrieved Case: #530 Retrieved Case: #541
Trigger Always true Always true Always true
Assumptions Passwords are used No Value Agreement is not encrypted

to authenticate
Related Restricted services No Value Information about the meeting
Business Rules should be available only to the

concerned meeting participants
Stakeholders Give away the password Possible loss of data; No Value
and threats to other possible disclosure of data, possible alteration

of data. May disrupt business and
affect customer relations

Table 7.Comparing similarity tables of f1 and f2.

Similarity Function f 1 Similarity Function f 2

Related Available Restricted Restricted
Business Rule over the services access

internet
Available over
the internet 0.1 1.0 1.0
Restricted
services 1.0 0.1 0.2
Restricted
access 1.0 0.2 0.1

Related Available Restricted Restricted
Business Rule over the services access

internet
Available over
the internet 1.0 0.1 0.1
Restricted
services 0.1 1.0 0.8
Restricted
access 0.1 0.8 1.0

Assumption Uses the Passwords Not-
network are used to encrypted
to log authenticate

Uses the
network 0.1 0.2 0.7
to log
Passwords
are used 0.2 0.1 0.7
to authenticate
Not-encrypted 0.7 0.7 0.1

Assumption Uses the Passwords Not-
network are used to encrypted
to log authenticate

Uses the
network 1.0 0.6 0.2
to log
Passwords
are used 0.6 1.0 0.2
to authenticate
Not-encrypted 0.2 0.2 1.0

5 Conclusions

This paper introduces a system for capturing, sharing and reusing knowledge about
mitigating or removing security flaws from a software system. Future directions in-
clude: experimenting the approach on a real case base, and improve the mechanisms
of searching. With regards to the latter point, we will further investigate how to make
more reliable the similarity function. As the comparison’stechniques proposed here are
somehow preliminary, we will take into account the application of regular expressions,
string patterns, and heuristic based techniques. A second concern is about how to col-

134



Table 8.Misuse case #557.

Name Tamper With DB
Summary A crook manipulates the web query submitted from a search form,

to update or delete information or to reveal information that should not be
publicly available.

Date 2001.02.23
Author David Jones
Basic Path 1. The crook provides some values to a product web form (e.g. the use case

Register Account) and submits.
2. The system displays the result matching the query.
3. The crook alters the submitted URL, introducing an error in the query and
resubmits the query.
4. The query fails and the system displays the database errormessage
to the crook, revealing more about the database structure.
5. The crook further alters the query, for instance adding a nested query
to reveal secret data or update or delete data, and submits.
6. The system executes the altered query, changing the database or revealing
content that should have been secret.

Alternative Paths ap1. In step 3 or 5, the crook does not alter the URL in the address window,
but introduces errors or nested queries directly into form input fields.

Mitigation Points mp1. In step 4, the exact database error message is not revealed to the client.
This will not entirely prevent the misuse, but the crook willhave a much
harder time guessing table and field names in step 5.
mp2. In step 6, the system does not execute the altered query because all queries
submitted from forms are explicitly checked in accordance with what could be
expected from that form. This prevents the misuse case.

Triggers t1. Always true
Preconditions The crook is able to search for products, either because thisfunction is publicly

available, or by having registered as a customer.
Mitigation Guarantee crook is unable to access the database in an unauthorized manner through a

publicly available web form (cf mp2).
Related Business Rules The services of the e-shop shall be available to customers over the internet.
Stakeholder and Threats st1. E-shop: Loss of data if deleted. Potential loss of revenue if customers are

unable to Order Product, or if prices have been altered. Badwill resulting from this.
st2. Customers: potentially losing money (at least temporarily) if crook has malignantly
increased product prices. Unable to order if data lacking, wasting time.

Potential Misuser Profile Skilled. Knowledge of databases and query language, at least able to understand
published exploits on cracker web sites.

lect values which define the similarity tables. Proper processes to identify and validate
them will be modelled and assessed with empirical investigation.

References

1. A. Raman and S. Muegge, An integrated approach to securityin software development
methodologies, Proc. of Canadian Conference on Electricaland Computer Engineering.
2008, pp. 002011-002014

2. C. Lai, Java Insecurity: Accounting for Subtleties That Can Compromise Code, IEEE Soft-
ware, IEEE Computer Society, 2008, pp. 13-19

3. C. Riesbeck and R. Schank, Inside Case-Based Reasoning, Riesbeck/Schank, 1989
4. D. Ahmad and I. Arce, Vulnerability Bazaar, IEEE Securityand Privacy, IEEE Computer

Society, 2007, pp. 69-73
5. D. Byers and N. Shahmehri, Design of a Process for SoftwareSecurity, Proc. of the The

Second International Conference on Availability, Reliability and Security (ARES), IEEE
Computer Society, 2007, pp. 301-309.

6. D. Xu and K. N. Kendall, Threat-Driven Modeling and erification of Secure Software Using
Aspect-Oriented Petri Nets, IEEE Transactions on SoftwareEngineering, IEEE Press, 2006,
pp. 265-278

135



7. G. Sindre, A.L. Opdahl and G.F. Brevik, Generalization/Specialization as a Structuring
Mechanism for Misuse Cases. In Proc. of 2nd Symposium on Requirements Engineering
for Information Security (SREIS’02), 2002

8. J. A. Ingalsbe, L. Kunimatsu, T. Baeten and N. R. Mead, Threat Modeling: Diving into the
Deep End, IEEE Software, IEEE Computer Society Press, 2008,pp. 28-34

9. J. Steven and G. Peterson, Defining Misuse within the Development Process, IEEE Security
and Privacy, IEEE Computer Society, 2006

10. L. Wang, E. Wong and D. Xu, A Threat Model Driven Approach for Security Testing, In
Proc. of the Third International Workshop on Software Engineering for Secure Systems (In-
ternational Conference on Software Engineering), IEEE Computer Society, 2007, p. 10

11. M. E. Johnson and E. Goetz,Embedding Information Security into the Organization, Security
& Privacy, IEEE Computer Society, 2007, pp. 16-24

12. N. A. Malik, M. Y. Javed and U. Mahmud, Threat Modeling in Pervasive Computing
Paradigm, In Proc. of New Technologies, Mobility and Security, 2008, pp. 28-34

13. S. Barnum and G. McGraw, Knowledge for Software Security, Security & Privacy, IEEE,
2005, pp. 74-78

14. X. Li, and K. He, A Unified Threat Model for Assessing Threat in Web Application. In Proc.
of the 2008 International Conference on Information Security and Assurance (isa 2008),
2008, pp. 142-145

15. X. Liu and Z. Liu Evaluating Method of Security Threat Based on Attacking-Path Graph
Model. In Proc. of International Conference on Computer Science and Software Engineering,
2008 , pp. 1127-1132

16. A. Stahl, and T. Gabel. Using Evolution Programs to LearnLocal Similarity Measures. In
Proc. of the 5th International Conference on Case-Based Reasoning (ICCBR 2003), Trond-
heim, Norway, June 2003.

17. D. Mellado, E. Fernández-Medina, and M. Piattini, ”SREPPLine: Towards a Security Re-
quirements Engineering Process for Software Product Lines”. In Proc. of WOSIS 2007,
2007, pp. 220-232

136


