A Model Driven Approach for Generating Code From
Security Requirements *

Oscar Sanchez, Fernando Molina, Jesus Garcia Molina and Ambrosio Toval

Departament of Informatic and Systems, University of Murcia, Spain

Abstract. Nowadays, Information Systems are present in numerous areas and
they usually contain data with special security requirements. However, these re-
quirements do not often receive the attention that they deserve and, on many
occasions, they are not considered or are only considered when the system de-
velopment has finished. On the other hand, the use of model driven approaches
has recently demonstrated to offer numerous benefits. This paper tries to align the
use of a model driven development paradigm with the consideration of security
requirements from early stages of software development (such as requirements
elicitation). With this aim, a security requirements metamodel that formalizes the
definition of this kind of requirements is proposed. Based on this metamodel, a
Domain Specific Language (DSL) has been built which allows both the construc-
tion of requirements models with security features and the automatic generation
of other software artefacts from them. An application example that illustrates the
approach is also shown.

1 Introduction

Nowadays, most organizations are depending increasingly on the use of Information
Systems. On many occasions, these systems contain data with special security require-
ments. The suitable management of that information is critical for the survival of these
organizations. However, these security requirements are frequently not considered or
they are only considered when the systems have been completely developed [1] but,
on the contrary, information security is a feature that must be considered in all the
stages of the lifecycle of a system, from requirements elicitation to implementation and
maintenance. On the other hand, the Model Driven Engineering (MDE) approaches
are gaining in popularity among practitioners as an emerging approach that provides a
cost-effective, reliable and rapid application development to get products faster and with
more quality [2]. They propose that models with different abstraction levels should be
used to drive the entire software development process. These models are built by means
of Domain Specific Languages (DSL) [3] and they make possible automatic code gen-
eration. This development paradigm, together with the need for considering security

* Partially supported by the projects DEDALO (TIN2006-15175-C05-03) from the Spanish
Ministry of Science and Technology, and MELISA-GREIS (PAC08-0142-335). Fernando
Molina is partially funded by the Fundacién Séneca (Reg. de Murcia).

Sanchez O., Molina F., Molina J. and Toval A. (2009).

A Model Driven Approach for Generating Code from Security Requirements.

In Proceedings of the 7th International Workshop on Security in Information Systems, pages 119-126
DOI: 10.5220/0002199601190126

Copyright © SciTePress

120

requirements in all the stages of software lifecycle lead us to consider that an MDE
approach can be useful to meet this need.

With this aim, firstly we have designed a security requirements metamodel, which
can be used as a mechanism for formalizing the elicitation of security requirements.
Based on this metamodel, a DSL that allows developers to define security requirements
models that can be used to generate other software artefacts has been devised. This au-
tomatic generation differentiates our approach from other requirements metamodelling
approaches. The generative approach will be illustrated by means of an application
example which shows how code for Oracle Label Security [4] and XACML security
policies [5] can be generated.

This paper is organized as follows. First we present the security requirements meta-
model, then the designed DSL will be presented along with an application example.
Finally we summarize the proposal.

2 Using Metamodelling to Capture Security Requirements

2.1 Requirements Metamodelling

A great number of approaches dedicated to dealing with requirements have appeared.
They often use textual descriptions for the requirements specification, which are gath-
ered in non-formal models or organized in requirements documents which are hardly
ever formally structured [6]. However, MDE approaches have introduced a new per-
spective for dealing with requirements which is based on the use of requirements meta-
models that formally define the concepts and relationships involved in the RE process
[6]. Several approaches for requirements metamodelling have recently appeared[6—8]
but a reference model has not been established yet [6]. In our approach, the core con-
cepts from these requirements metamodelling proposals have been extracted and, from
them, the requirements metamodel shown in Figure 1 has been designed, which includes
new relationships and concepts considered relevant.

e edFrom composedOf |4

! oy 1
% Catalogue | [Goal | ['Stakeholder |
= G 1 T proposes i

B y 1
CU"EdST satisfiedBy -
o+

0.2 proposes
GBSl Reguirement 1 decom posed nto

abtainedF rom . PN validatedThrough
Validation NMithod

uses

colleds

|F|.nctinm|Req.|irarrert | Hon Functional Requirement |

Fig. 1. Proposed requirements metamodel.

The key element in Figure 1 is that of requirement, which can be described
by using a set of attributes (hidden in the figure) such as an identifier and its
textual description. Requirements can be classified as either functional or
non-functional requirements. Due to the need for traceability with business
objectives, each requirement is connected to the set of goa1s that contributes to satisfy.
Every goal can be composed of other goals, and captures a high-level objective from

121

one or more stakeholders that propose it. Another concern is related to the reuse
of requirements, which is tackled by including a catalogue concept. This concept
serves to gather a set of requirements extracted from one or more sources (i.e., a law,
an organization policy, a particular domain,...) and that can be reused in all the projects
in which these sources are applicable. Still another concern is that of vocabulary disam-
biguation. Since requirements are usually described by using natural language, which
can be imprecise and ambiguous, the metamodel considers the possibility of describing
requirements using a set of well-defined terms gatheredintoa glossary. Finally,
possible methods for assuring the fulfilment of requirements can be modelled through
the concept of Validation Method.

2.2 Extending the Requirements Metamodel with Security Concepts

Once the requirements metamodel of Figure 1 has been defined, the next aim is to ex-
tend it with specific security concepts (see Figure 2). In order to ease the explanation,
we have classified them in several categories: basic security concepts, security require-
ments, and access control methods.

The basic security concepts are: Asset, Threat, Safeguard and Contingency
Plan. These terms have been extracted from MAGERIT [9], which conforms to the
standard ISO/IEC 15408-1999 (also known as the Common Criteria Framework [10]).
An Asset is a physical or logical object that has value itself and deserves to keep
some guarantees over it. Assets can have different types, for instance, documents,
data tables, and so forth, and they are important for a business, which is measured with
an impact index. An Asset can be damaged by a Threat, which has properties such
as its type, frequency (modelled as an annual rate), a concrete success probability and
a degradation (that is, the level of damage caused in an Asset if the threat achieves
its goal). Safeguards serve as a crackdown on a risk in order to reduce it. As shown
in the type attribute, we will distinguish between Safeguard Functions and
Safeguard Measures. The former are actions which reduce the risk whereas the
latter are physical or logical devices or processes that reduce the risk. Two operation
modes are distinguished for the safeguards: preventive if they act before a threat had
taken place and curative if they act on damaged assets. For the sake of softening a
threat that can give rise to damage, a detailed Contingency Plan composed of a
set of safeguards is recommended.

There not exists an standard classification for Security Requirements, so
based on [11, 12], five categories of them have been considered, which tackle five cat-
egories of threats, according to the characteristics that give value to the assets. These
categories are: privacy, integrity, authentication, availability and accountability. Fre-
quently there exist sets of requirements which are related to the same asset, soften the
same attack and achieve the same security objective. This concept, which has been ex-
tracted from [13], is introduced in our metamodel as a Security Requirements
Cluster. Regarding to Privacy and Integrity requirements, they are directly
associated with an Access Control Method which has a validity period. The dif-
ferent methods considered are Permissions (DAC), Security Levels (MAC)

122

Non-Functional Requirement ==DataType=>
Asset Type

-SERVICE
Security Requirement _DATA
-SOFTWARE
-HARCWYARE
‘ ‘ ‘ | ‘ -NETWORK
—— - - — — _INFORMATION_STORE
‘Auallahlllty| |Prwal:y| ‘Imegnty| Authentication | |Accountability | | | ¢ EQUIPRENT
-SI_PLACE
a " i -STAFF
1 1 ==DataTypess
Access Control Authentication Type
Method 0.* p.» |User
-PASEWORD
-validFrom -CERTIFICATE
-walicUntil -l
_'I) -EIOMETRY
-INTELLIGENT_CARD
1
0.7 W =<DataType=>
=7 Thread Type
5 . -DELIBERATED HUMAN
0 Security _NOM_DELIEERATED_HLIMAN
Permission Level NDUSTRY_FAILURE

-MATURAL_DISASTER
-value

Safeguard <<DtaTyper=
Safeguard Operation

Mode

-type
-operstiontode

)

Security Requirements
Cluster

Threat -CLRATIVE
-PREYENTIVE

Aype
] g

‘ 33 ~frequency
1

-successProbabilty ==DataType=>

—degradation Safeguard Type

Securit; Requirement -SAFEGUARD_FLUNCTION
-SAFEGUARD_MEASLIRE

Fig. 2. Extending the requirements metamodel of Fig. 1 with security concepts.

orRoles (HRBAC) [14]. The concept of MAC Association has been introduced
for associating a security level and an operation to an user.

Bearing the above security concepts in mind, we have designed a security require-
ments metamodel that is obtained by extending the requirements metamodel shown in
Figure 1 with the specific security concepts shown in Figure 2. The reader must take
into account that for lack of space solely the most important attributes are shown, and
that the data types depicted are not all the possible values but some of them. As can be
noticed, the link between both metamodels is the NonFunctional Requirement
metaclass. Security Requirement is a specialization of NonFunctional
Requirement, with the aim of dealing with requirements in a more suitable way.

3 A DSL for Security Requirements Management

From the defined security requirements metamodel, we have devised a generative ap-
proach based on a graphical DSL specifically built to specify security requirements
models. This DSL [3] allows users to create models in a handy and easy way, as well
as get software artefacts from these models. The Eclipse platform has been chosen for
building this graphical DSL. Specifically, the abstract syntax has been defined using
Ecore, the concrete syntax has been established with the Graphical Modelling Frame-
work (GMF [15]) and the semantics has been provided by means of model-to-text trans-
formations expressed in MOFScript templates [16].

The process of building our DSL and enable software artefacts generation is as fol-
lows: (i) define the security requirements metamodel we have designed by using Ecore
(see Figures 1 and 2), (ii) define a graphical notation for the DSL through GMEF, (iii)

123

specify the rest of elements that GMF needs to work, such as the definition of the el-
ements in the DSL toolbox and (iv) define MOFScript templates in order to generate
code from models created with the DSL. To illustrate our approach, templates for gen-
erating SQL and XACML code have been implemented, which will be explained in
Section 4.

Metamodel

e :
e msmati s
P ——

Templates
Configuration
models

Software Artefacts

Fig. 3. Overview of the generative architecture.

The designed DSL has been splitted into two connected views. The first one deals
with the general requirements concepts (see Figure 1) while the second one deals with
the specific security concepts that appear in Figure 2. This separation of concerns in
two views eases the modelling task and makes the tool handy.

The process of using the DSL is depicted in the Figure 3. Firstly, the developer
uses the DSL to create security requirements models that conform to the metamodel.
Secondly, the developer sets those features which are too specific for being included in
the requirements model (e.g. details regarding to a specific platform, DBMS or security
protocol). Following the MDE philosophy, we propose the use of models with this aim.
In our case, two simple metamodels have been built: a database metamodel in order to
model the DBMS specific features and a policy metamodel to specify the roles or users
allowed. The developer only needs to instantiate these metamodels to configure the gen-
eration process. These configuration models provide a mechanism to parameterize the
MOFScript transformation in an easy way.

Finally, a template is executed with the MOFScript engine which also takes the re-
quirements model and the configuration model as an input, with the aim of generating
software artefacts (code in this case) that implements the requirements. Although we
obtain database and XACML policies, any sort of software artefacts can be generated
such as security reports, Java code for interacting with a LDAP server or XML config-
uration files.

124

4 Application Example

A web application for the management of medical patients adapted from [17] is pro-
posed as an example of the use of our security requirements DSL. The DSL editor with
a simplified part of the example model is shown in Figure 4. It is important to highlight
that the Figure 4 focuses on the security concepts and does not show the view related to
the concepts in Figure 1 due to lack of space.

|d) default, dslsecurityrequirements_diagram 23 = | m}
2% Palette ;
@ e T
B SR Read ** Connection
Systemintrusicn StaffMustAuthenboate & CONFIDENTIAL . &5 ptarkson (= Security Elements
=3 - 2
" —_— : : Y Threat
(%[1, —ma2, A \ —
VvautForedaceas] Q: 3 : iy SecurityRequirementsCluster
sdnauthorized Access] DoctorCanReadPatirt | . / Bizan ' Till Safequard
HREQE ®jom1 N & staff (= Requirement Types
3 MurseCanReadPatient _, Patient i "
Frrs - A
. PrivacyRequirement
Unauthorized Modification ‘!“CLB Hacy .
) D.- F:EQ4 - — v, 4 InteqrityRequirement
L I0C tor '3l 4 5 P Xila . .
2 Mo SENSITIVE) Swillan:
) <+ RE g < — 8'F g (&= Access Control ©
CPLANL QS P ke
§ SeltityLEvel
Restare backups usinglogs Logchanges & FRole

£ User
Fig. 4. A fragment of the model for the application example.

As can be seen in Figure 4, the Pat ient asset needs protecting. The CL1 cluster
tries to restrict the access to the system to the medical staff, which leads the mod-
eller to create a role Staff and assign this role to doctors and nurses. The CL2 clus-
ter contains security requirements which try to avoid that unauthorized staff can ac-
cess to information of Patients. In this case, the modeller grants read access for
the Confidential level to the users PClarkson (nurse) and SWilliams (doc-
tor). The CL3 Cluster requirements attempts to avoid unauthorized modification of the
Patient data, so the modeller allows SWilliams (doctor) to update the Patients
table. Sensitive level is expected to be higher than Confidential level, so the
result is that PClarkson can read the Pat ient s information, and SWilliams can
read and update this data.

After that, model-to-text transformations are automatically applied to the model
to take advantage of the DSL, making use of the transformation templates previously
defined. On the other hand, the DSL is, on the one hand, able to generate code for
Oracle Label Security, which can be used for example in the persistence layer of the
application. An excerpt of the generated code is shown in Figure 5(a). This code creates
a policy, defines Confidential and Sensitive levels, creates the security labels,
sets the user levels, and applies the policy to the table Pat ient. Besides the security
levels modelled in the DSL, with the configuration model the developer can indicate
that the generated code will include a default security level named ’public’ level. On
the other hand, the DSL is also able to generate XACML access policies for the web
application. A short excerpt of this code is shown in Figure 5(b). Within the code, a rule

125

is defined for permitting users with a role attribute equals to Staff and a default rule
for denying all others. Both transformations also require the configuration model that
includes technology-dependant parameters, which has not been shown due to lack of
space.

execute sa_sysdba.create_policy (’Access_Patient’,’ols_col?,’read_control,label_default,hide’);

execute sa_components.create_level (*Access_Patient’,1000, PUB’,>PUBLIC’);

execute sa_components.create_level(’Access_Patient’,2000, CONF’,?CONFIDENTIAL?);

execute sa_components.create_level (>Access_Patient’,3000, SENS’, SENSITIVE’) ;

execute sa_label_admin.create_label(’Access_Patient’,1000,”PUB’);

execute sa_label_admin.create_label(*Access_Patient’,2000,”CONF’);

execute sa_label_admin.create_label(’Access_Patient’,3000,7SENS’);

execute sa_user_admin.set_user_labels (’Access_Patient’,’PClarkson’,’CONF’,’CONF’,°PUB’,’>CONF’,”CONF>);
execute za_user_admin.set_user_labels (’Access_Patient’,’SWilliams’,’SENS’,’SENS’,°PUB’,?SENS’,’SENS’);
execute sa_policy_admin.apply_table_policy(’ ACCESS_PATIENT?,’Test’,’Patient’);

(a)

<Rule Ruleld="AllowStaff" Effect="Permit">
<Condition FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
<Apply Functionld="urn:oasis:names:tc:xacml:1.0:function:string-one-and-only">
<SubjectAttributeDesignator
DataType="http://uwu.w3.0org/2001/XMLSchema#string"Attributeld="role"/>
</hpply>
<AttributeValue Datalype="http://www.w3.org/2001/XMLSchema#string">Staff</AttributeValue>
</Condition>
</Rule>
<Rule Ruleld="DenyAllOthers" Effect="Deny"/>
()

Fig. 5. Excerpts of the code automatically generated.

5 Conclusions and Further Work

In this paper, we have shown the viability of using metamodelling techniques aligned to
the MDE approach for the elicitation of requirements, making special emphasis in the
early consideration of security requirements. To achieve this goal, we have proposed a
security requirements metamodel, which is used as a basis of a generative architecture
that allows to obtain automatically code from requirements models. The metamodel
comes accompanied by a DSL that facilitates modellers the task of building require-
ments models.

As further work, the requirements metamodel and the associated automatic support
will be extended for considering new security features and additional capabilities for
the generation of other software artefacts such as conceptual models. For example, the
possibility of generating code related to authentication and access control policies us-
ing languages such as SAML and enriching the security metamodel to make it more
dynamic are being considered.

References

1. Villarroel, R., Ferndndez-Medina, E., Piattini, M.: Secure information systems development
- a survey and comparison. Computers & Security 24 (2005) 308-321

2. Selic, B.: Mda manifestations. The European Journal for the Informatics Professional IX
(2008)

3. Kelly, S., Tolvanen, J.: Domain-Specific Modeling: Enabling Full Code Generation. Wiley-
IEEE Computer Society Press (2008)

126

bt

13.

14.

15.
16.

17.

ORACLE: Oracle label security. http://www.oracle.com/technology/deploy/security/data
base-security/label-security/index.html (2008)

OASIS: extensible access control markup language. "http://www.oasis-open.org/” (2008)
Goknil, A., Kurtev, 1., van den Berg, K.: A metamodeling approach for reasoning about
requirements. In: ECMDA-FA. (2008) 310-325

Vicente-Chicote, C., Moros, B., Toval, A.: Remm-studio: an integrated model-driven envi-
ronment for requirements specification, validation and formatting. Journal of Object Tech-
nology, Special Issue TOOLS EUROPE 2007,6 (2007) 437-454

Berre, A. J.: Comet (component and model based development methodology). http:// mod-
elbased.net/comet/ (2006)

MAGERIT: Methodology for information systems risk analysis and management. Spanish
Ministry for Public Administration. http://www.csae.map.es/csi/pgSm20.htm (2006)

1.S.0.: Isofiec 15408 (common criteria v3.0): Information technology security techniques-
evaluation criteria for it security. (2005)

. Rodriguez, A., Ferndndez-Medina, E., Piattini, M.: A bpmn extension for the modeling of

security requirements in business processes. IEICE Transactions 90-D (2007) 745-752
Standard:ECMA-271: Extended commercially oriented functionality class for security eval-
uation. (1999)

Mellado, D., Ferndndez-Medina, E., Piattini, M.: A common criteria based security require-
ments engineering process for the development of secure information systems. Comput.
Stand. Interfaces 29 (2007) 244-253

Samarati, P., Capitani, S. D.: Access control: Policies, models, and mechanisms. In: FOSAD.
(2000) 137-196

Eclipse: Eclipse graphical modeling framework. http://www.eclipse.org/gmf/ (2008)
Eclipse: Generative Modeling Technologies (GMT): MOFScript. http://www.eclipse.org/
gmt/ (2008)

Fernandez-Medina, E., Piattini, M.: Designing secure databases. Information & Software
Technology 47 (2005) 463477

