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Abstract: A new method for model order reduction with eigenvalue preservation is presented in this paper. The new 
technique is formulated based on the system state matrix transformation which preserves the system 
eigenvalues and is accomplished using an artificial neural network training. A linear matrix inequality 
(LMI) numerical algorithm technique is used to obtain the complete system transformation. Model order 
reduction is then obtained utilizing the singular perturbation method. Simulation results show that the LMI-
based transformed reduced model order is superior to other reduction methods. 

1 INTRODUCTION 

The objective of any control system is to obtain a 
desired response. In order to achieve this objective, a 
dynamical model is usually developed based on a set 
of differential equations (Franklin, 1994). The 
obtained mathematical model may have a certain 
parameter, called perturbation, that has a little effect 
on the system performance (Kokotovic, 1986) 
(Zhou, 2009). Neglecting this parameter results in 
simplifying the order of the designed controller 
based on reducing the system model order. A 
reduced model order can be obtained by neglecting 
the fast dynamics (i.e., non-dominant eigenvalues) 
of the system and focusing on the slow dynamics 
(i.e., dominant eigenvalues). This method is referred 
to as singular perturbation. Simplification and 
reduction of a system model leads to controller cost 
minimization (Garsia, 1998). An example is the ICs, 
where increasing package density forces developers 
to include side effects. Knowing that these devices 
are often modeled by large RLC circuits, this would 
be too demanding computationally and practically 
due to the detailed modeling of the original system 

(Benner, 2007). In control system, due to the fact that 
feedback controllers do not usually consider all the 
dynamics of the system, model reduction becomes a 
very important issue (Bui-Thanh, 2005).  

For a reduced model order that will best mimic 
the performance of its original system, system 
transformation is performed. In the process of 
system transformation, some system parameters are 
required to be identified. This objective maybe 
achieved by the use of artificial neural networks 
(ANN) (Alsmadi, 2007), which are considered as the 
new generation of information processing networks 
(Hinton, 2006). Artificial neural systems maybe 
defined as physical cellular systems which have the 
capability of acquiring, storing and utilizing 
experiential knowledge. They can be represented as 
mathematical or computational models based on 
biological neural networks. An artificial neural 
network consists of an interconnected group of 
artificial neurons and processes information. They 
perform summing operations and nonlinear function 
computations. Neurons are usually organized in 
layers and forward connections where computations 
are performed in a parallel fashion at all nodes and 
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connections. Each connection is expressed by a 
numerical value called a weight. The learning 
process of a neuron corresponds to a way of 
changing its weights. An artificial neural network 
can be used to model complex relationships between 
inputs and outputs of different systems (Haykin, 
1994) (Zurada, 1992) (Williams, 1989). 

In obtaining the overall transformed model, 
which leads to control design advantages, part of the 
transformation requires some optimized solution. 
This is accomplished using what is called the linear 
matrix inequality (LMI), which serves application 
problems, in convex optimization (Boyd, 1994). The 
LMI is based on the Lyapunov theory of showing 
that the differential equation )()( tAxtx =  is stable if 
and only if there exists a positive definite matrix [P] 
such that 0<+ PAPAT . The requirement { 0>P , 

0<+ PAPAT } is what is known as Lyapunov 
inequality on [P]. The LMIs that arise in systems 
and control theory can be formulated as convex 
optimization problems that are amenable to 
computer solution and then solved using different 
algorithms (Boyd, 1994). 

This paper is organized as follows: Section 2 
presents background on model order reduction and 
artificial neural networks. A detailed illustration of 
the ANN transformed system state matrix estimation 
and the LMI-based complete system transformation 
is presented in Section 3. Section 4 presents a 
practical implementation of the ANN transformation 
training, LMI-based transformation, and singular 
perturbation reduction along with simulation 
comparative results. Conclusions are presented in 
Section 5. 

2 PRELIMINARY  

Many of linear time-invariant (LTI) systems have 
fast and slow dynamics, which are referred to as 
singularly perturbed systems (Kokotovic, Khalil, and 
O'Reilly, 1986). Neglecting the fast dynamics gives 
the advantage of designing simpler lower-
dimensionality reduced order controllers. To show 
the formulation of a reduced model order, consider 
the following system: 

)()()( tButAxtx +=  (1) 

)()()( tDutCxty +=  (2) 

As a singularly perturbed system (with slow and fast  
dynamics), Equations (1) - (2) may be formatted as:  

011211 0     , )( )()( )(  x)x(tuBtξAtxAtx =++=  (3) 

022221 0(    , )()()()( ξ)ξtuBtξAtxAtξε =++=  (4) 

)()()(  )(y 21 tDutξCtxCt ++=  (5) 

where  1mx ℜ∈ and 2mξ ℜ∈ are the slow and fast 
state variables respectively,  1nu ℜ∈ and 

2ny ℜ∈ are the input and output vectors 
respectively, { ][ iiA , [ iB ], [ iC ], [D]} are constant 
matrices of appropriate dimensions with }2,1{∈i , 
andε  is a small positive constant. The singularly 
perturbed system in Equations (3)-(5) is simplified 
by setting 0=ε . That is, the fast dynamics of the 
system are being neglected and the state variables ξ  
are assumed to have reached their quasi-steady state. 
Hence, setting 0=ε  in Equation (4), with the 
assumption that [ 22A ] is nonsingular, produces:  

)()()( 1
1

2221
1

22 tuBAtxAAtξ r
−− −−=  (6) 

where the index r denotes the remained or reduced 
model. Substituting Equation (6) in Equations      
(3)-(5) yields the following reduced model order:  

     )()(  )( tuBtxAtx rrrr +=  (7) 

)()()( tuDtxCty rrr +=  (8) 

Where the new matrices: 21
1

221211 AAAAAr
−−= , 

2
1

22121 BAABBr
−−= , 21

1
2221 AACCCr
−−= , and 

2
1

222 BACDDr
−−= . 

The system in Equations (1) and (2) maybe 
estimated by an ANN. In this paper, a recurrent 
neural network based on an approximation of the 
method of steepest descent is used for the estimation 
of the system state matrix. The network tries to 
match the output of certain neurons with the desired 
values of the system output at specific instant of 
time (Haykin, 1994) (Williams, 1989). Hence, 
consider the discrete system given by: 

)()()1( kuBkxAkx dd +=+  (9) 

)()( kxky =  (10) 

which, for a system with two eigenvalue categories 
(slow and fast), can be represented as: 

)(
)(
)(
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kx
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ky  (12) 

where k is the time index. Using the recurrent neural 
network, the system in Equations (11) and (12) for a 
2nd model order can be estimated as illustrated in 
Figure 1.  
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Figure 1: A second order recurrent neural network 
architecture. 

As a general case, consider a network consisting 
of a total of N neurons with M external input 
connections, as shown in Figure 1 for a 2nd model 
order. Let the variable g(k) denotes the (M x 1) 
external input vector applied to the network at 
discrete time k and the variable  y(k + 1) denotes the 
corresponding (N x 1) vector of individual neuron 
outputs produced one step later at time (k + 1). The 
input vector g(k) and one-step delayed output vector 
y(k) are concatenated to form the ((M + N) x 1) 
vector u(k), whose ith element is denoted by ui(k). If 
Λ denotes the set of indices i for which gi(k) is an  
external  input, and β denotes the  set of indices i for 
which  ui(k)  is the output  of a neuron (which is 
yi(k)), the following is true: 

⎪⎩

⎪
⎨
⎧

∈

∈

β  i ,ky 

Λ i ,kg 
 = ku

i

i
i

 if)(

 if)(
)(  (13) 

The (N x (M + N)) recurrent weight matrix of the 
network is represented by the variable [W]. The net  
internal activity of neuron j at time k is given by: 

)()( = )(
 

kukwkv iji
βΛi

j ∑
∪∈

 (14) 

At (k + 1), the output of the neuron j is computed by 
passing vj(k) through the nonlinearity (.)φ :  

))((= )1( kvφky jj +  (15) 

The derivation of the recurrent algorithm maybe 
obtained by using dj(k) to denote the desired 
response of neuron  j at time k, and ς(k)  to denote 
the set of neurons that are chosen to provide 
externally reachable outputs. A time-varying (N x 1) 
error vector e(k) is defined whose jth element is 
given by the following relationship: 

⎪⎩

⎪
⎨
⎧ ∈

otherwise               0, 

)(   if  ),( - )( 
 = )(

kςjkykd
ke

jj
j  (16) 

The objective is to minimize the cost function Etotal 
which is obtained by: 

)]( 
2
1[)( = 2

   

total kekEE j
ςjkk
∑∑∑
∈

=  (17) 

This cost function will be minimized by 
estimating the instantaneous gradient, which is the 
error at each instant of time k with respect to the 
weight matrix [W] and then updating [W] in the 
negative direction of this gradient (Haykin, 1994). 
As a result: 

[ ]]~[]~[ dd BAW =  (18) 

where dA~ and dB~  are the estimates of Equation (9). 

3 SYSTEM TRANSFORMATION 
AND ORDER REDUCTION 

In the new reduction technique, the system is 
transformed before the model order is reduced. 
System transformation is achieved by transforming 
the system state matrix [A] based on the ANN 
estimation and then transforming the [B], [C], and 
[D] matrices of Equations (1) and (2) using the LMI-
based transformation.   

3.1 ANN System State Matrix 
Transformation  

In this paper, one objective is to search for a 
transformation that decouples different categories of 
system eigenvalues. In the transformed system 
presented in this paper, the dominant eigenvalue 
category is selected as a subset of the original 
system eigenvalues. This is accomplished by 
transforming the system state matrix [A] in Equation 
(1) into [ Â ] (for all real eigenvalues) as follows: 
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This is an upper triangular matrix that has the 
original system eigenvalues preserved in the 
diagonal, seen as λi, and has the elements to be 
identified, seen as (aij). It is set as such for the 
purpose of eliminating the fast dynamics and 
sustaining the slow dynamics through model order 
reduction. In order to evaluate the (aij) elements, 
first, the system of Equations (1) and (2) is 
discretized as shown in Equations (9) and (10), 
second, the [ dA ] in Equation (9) is transformed into 

[ dA~ ] (similar to the form seen in Equation (19)), 
third, the recurrent neural network estimates the 
required elements of [ dA~ ], fourth, (aij) are then 
evaluated once the continuous form is obtained from 
the estimated discrete system. 

In this estimation, the interest is to estimate or 
obtain the [ dA~ ] only without the estimation of the 

[ dB~ ] matrix, where this [ dB~ ] matrix is 
automatically obtained in the recurrent network as 
seen in Figure 1 and Equation (18). In order to 
achieve this objective, the zero input (u(k) = 0) 
response is obtained where the input/output data is 
basically generated based on the initial state 
conditions only. Hence, the discrete system of 
Equations (9) and (10), with initial state 
conditions 0)0( xx = , becomes:  

0)0(       ),()1( xxkxAkx d ==+  (20) 

)()( kxky =  (21) 

Now based on Equations (20) and (21), where 
the initial states are the system input and the 
obtained states are the system output, a set of 
input/output data is obtained and the neural network 
estimation is applied (Haykin, 1994). In steps: 
Step 1. Initialize the weights [W] by a set of 
uniformly distributed random numbers. Starting at 
the instant  k = 0, use Equations (14) and (15) to 
compute the output values of the N neurons 
(where ßN = ).  
Step 2. For every time step k and all ,ßj∈  ßm∈  
and ∪∈ ß Λ, compute the system dynamics which 
are governed by the triply indexed set of variables:  

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+=+ ∑

∈ßi
mj

i
mjij

j
m kuδkπkwkvφkπ )()()())(()1(  (22) 

with initial conditions 0)0( =j
mπ  and mjδ  given by 

( ))()( kwkw mji ∂∂  is equal to "1" only when j = m 
and =i ; otherwise it is "0". Notice that for the 
special case of a sigmoidal nonlinearity in the form 
of a logistic function, the derivative )(⋅φ  is given by 

)]1(1)[1())(( +−+= kykykvφ jjj .    
Step 3. Compute the weight changes corresponding 
to the error signal and system dynamics:  

∑
∈

=Δ
ςj

j
mjm kπkeηkw )()()(  (23) 

Step 4. Update the weights in accordance with: 

)()()1( kwkwkw mmm Δ+=+  (24) 

Step 5. Repeat the above 4 steps for final desired 
estimation. 

Training the network as illustrated, produces the 
discrete transformed system state matrix [ dA~ ]. This 
new discrete matrix is then converted to the 
continuous form to give the transformed system state 
matrix [ Â ] as actually seen in Equation (19). 

3.2 LMI-based Complete System 
Transformation 

The transformation in Equation (19) is motivated by 
the matrix reducibility concept illustrated as follows 
(Boyd, 1994) (Horn, 1985 ): 
Definition. A matrix nMA∈ is called reducible if 
either: 
(a)   n = 1 and A = 0; or 
(b)  n ≥ 2, there is a permutation matrix nMP∈ ,  
and some integer r with 11 −≤≤ nr  such that:  

⎥
⎦

⎤
⎢
⎣

⎡
=−

Z
YX

APP
0

1  (25) 

where rrMX ,∈ , rnrnMZ −−∈ , , rnrMY −∈ , , and 
0 rrnM ,−∈  is a zero matrix. 

The attractive features of the permutation matrix 
[P] such as being orthogonal and invertible have 
made this transformation easy to carry out. Based on 
the LMI technique, the optimization problem is 
casted as follows: 
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o
P

PP −min subject to εAAPP <−− ˆ1  (26) 

which maybe written in an LMI equivalent form as: 
 
 )(min Strace

S
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0
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 (27) 

where S is a symmetric slack matrix (Boyd, 1994). 
The Linear Matrix Inequalities (LMI) are applied 

to the [A] and [ Â ] matrices and the transformation 
matrix [P] is then obtained, which is necessary for 
obtaining the complete system transformation {[ B̂ ], 
[ Ĉ ], [ D̂ ]}. Complete system transformation can be 
achieved as follows: assuming that xPx 1ˆ −= , the 
system of Equations (1) and (2) can be re-written as: 

)()(ˆ)(ˆ tButxAPtxP +=  (28) 

)()(ˆ)(ˆ tDutxCPty +=  (29) 

Pre-multiplying Equation (28) by [P-1] yields: 

 )(ˆ)(ˆˆ)(ˆ        

)()(ˆ)(ˆ 111

tuBtxAtx

tBuPtxAPPtxPP

+=∴

+= −−−

 (30) 

)(ˆ)(ˆˆ)(ˆ               

  )()(ˆ)(ˆ          and

tuDtxCty

tDutxCPty

+=∴

+=
 (31) 

where the transformed system matrices are: 
APPA 1ˆ −= , BPB 1ˆ −= , CPC =ˆ , and DD =ˆ . 

3.3 Model Order Reduction 

Model order reduction will now be applied to the 
system of Equations (30) and (31) which has the 
following format: 

)(
)(ˆ
)(ˆ

0)(ˆ
)(ˆ

tu
B
B

tx
tx

A
AA

tx
tx

o

r

o

r

o

crn

o

r
⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
 (32) 

[ ] )(ˆ
)(ˆ
)(ˆ

)(ˆ tuD
tx
tx

CCty
o

r
orn +⎥

⎦

⎤
⎢
⎣

⎡
=  (33) 

Notice that in the new formulation, the dominant 
eigenvalues (slow dynamics) which are presented 
in rnA  are now decoupled from the non-dominant 
eigenvalues (fast dynamics) which are presented 
in oA . Hence, as illustrated in Equations (3) and (4) 
for order reduction, Equation (32) is written as: 

)()(ˆ)(ˆ)(ˆ tuBtxAtxAtx rocrrnr ++=  (34) 

)()(ˆ)(ˆ tuBtxAtx oooo +=  (35) 

By neglecting the system fast dynamics 
(setting )(ˆ txo  = 0 by setting 0=ε )), the coupling 
term )(ˆ txA oc is evaluated by solving for )(ˆ txo  in 

Equation (35). That is, )()(ˆ 1 tuBAtx ooo
−−=  and the 

reduced model order becomes:  

)(][)(ˆ)(ˆ 1 tuBBAAtxAtx roocrrnr +−+= −  (36) 

)(][)(ˆ)(ˆ 1 tuDBACtxCty ooorr +−+= −  (37) 

Hence, the overall transformed reduced model order 
is given by: 

 )()(ˆ  )(ˆ tuBtxAtx orrorr +=  (38) 

)()(ˆ)(ˆ tuDtxCty orror +=  (39) 

where the details of the {[ orA ], [ orB ], [ orC ], 
[ orD ]} overall reduced matrices are shown in 
Equations (36) and (37). 

4 SIMULATIONS AND RESULTS  

The proposed method of reduced order system 
modeling based on neural network estimation, LMI-
based transformation, and model order reduction is 
investigated the following case studies.  
 
Case Study. Consider the system of a high-
performance tape transport shown in Figure 2 
(Franklin, 1994). The system is designed with a 
small capstan to pull the tape past the read/write 
heads with the take-up reels turned by DC motors. In 
the static equilibrium, the tape tension equals the 
vacuum force FTo =  and the torque from the motor 
equals the torque on the capstan oot TriK 1= . Please 
notice that all the variables are defined in (Franklin, 
1994).   
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Figure 2: Tape-drive system schematic control model. 

The variables are defined as deviations from the 
equilibrium. The system equations of motion are 
given as follows: 

 iKTrωβ
dt
ωdJ t+−+= 111

1
1 , 111 ωrx =  

 eωKRi
dt
diL e =+ 1 ,  222 ωrx =  

 0222
2

2 =++ Trωβ
dt
ωd

J  

 )()( 131131 xxDxxKT −+−=  
)()( 322322 xxDxxKT −+−=  

 111 θrx = ,  222 θrx = ,  
2

21
3

xx
x

−
= , 

The state space model is derived from the system 
equations, where there are (i) one input, which is the 
applied voltage, (ii) three outputs, which are: (1) 
tape position at the head, (2) tape tension, and (3) 
tape position at the wheel, (iii) five states: (1) tape 
position at the air bearing, (2) drive wheel speed, (3) 
tape position at the wheel, (4) tachometer output 
speed, and (5) capstan motor speed. For dynamical 
testing of the new reduction technique validity, 
different cases of this practical system were 
investigated.  

As a first example, a system with all real 
eigenvalues is considered: 

)(

1
0
0
0
0

)(

10-000.03-0
05.4-1.4-0.40.35
05000

0.7504.10.11.35-0.1-
00020

)( tutxtx
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⎥
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⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
 

)(
02.02.02.02.0
005.005.0
00100

)( txty
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
=  

with the eigenvalues {-9.9973, -3.9702, -1.8992,      
-0.677, -0.2055}. Since there are two categories of 
eigenvalues, slow {-1.8992, -0.6778, -0.2055} and 
fast {-9.9973, -3.9702}, model order reduction may 
be applied. 
     Discretizing this system with a sampling period  
Ts = 0.1s, simulating the discrete system for 200 
input/output data points, and training it with learning 
rate of  η = 1 x 10-4 and initial weights for ]~[ dA :  

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0.0121    0.0049    0.0091    0.0024    0.0102  
0.0051    0.0076    0.0078    0.0039    0.0055  
0.0034    0.0175    0.0136    0.0176    0.0176  
0.0040    0.0017    0.0048    0.0024    0.0072  
0.0168    0.0089    0.0009    0.0039    0.0048  

w
  

produces the transformed system matrix: 

     

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

9.9963-0000
0.09203.9708-000
0.05370.22821.8986-00
0.05540.01560.05130.6782-0
0.20740.07620.0068-0.0367-0.2051-

Â
 

with estimated eigenvalues -9.9963, -3.9708, -1.898, 
-0.6782, -0.2051. This was achieved by decoupling 
the fast eigenvalue category from the slow one, 
which simply was done by first placing the slow 
eigenvalue category in λi of Equation (19) and then 
the fast category. As observed in Â  above, the 
eigenvalues are almost identical with the original 
system with little difference due to discretization. 
Using the LMI-based system transformation, the 
complete transformed system is obtained. 
Considering the     {-9.9963, -3.9708} as the fast 
category eigenvalue, the 3rd order reduced model is 
determined. Simulation results based on (i) model 
order reduction without system transformation, (ii) 
model order reduction with ANN transformation 
(estimation of ]~[ dA  and ]~[ dB  matrices only as 
presented in Equations (11) and (12)), (iii)  model 
order reduction with LMI-based complete system 
transformation, and (iv) the original 5th order system 
are all shown in Figure 3. 
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Figure 3: Reduced 3rd model orders (Pink.…. transformed 
with ANN estimation only, Red-.-.-.- non-transformed,                         
Black---- transformed with LMI) output responses to a 
step input along with the non reduced (Blue____ original) 
system output response. The LMI-transformed curve fits 
almost exactly on the original response.  

For more rigorous testing of the new reduction 
technique, the 5th model order is reduced to a 2nd 
order assuming that the -1.8986 belongs to the fast 
eigenvalue category. Hence, the 2nd order reduced 
model with its eigenvalues preserved as desired is 
obtained: 
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Simulating this reduced 2nd model order as 
performed for the 3rd model order, provided the 
results shown in Figure 4 where the new reduction 
technique results in responses are identical to the 
original system's.  

As a second example, the system considered here 
consists of two complex eigenvalues and three real,  
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Figure 4: Plots of Pink…. 3rd order transformed with ANN 
estimation only and reduced 2nd model orders (Red-.-.-.- 
non-transformed, Black---- transformed with LMI) output 
responses to a step input along with the non reduced          
(Blue____ original) system output response. The LMI-
transformed curve fits almost exactly on the original 
response.  

where two of the real eigenvalues produce fast 
dynamics. The system is given by: 
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The five eigenvalues are {-10.5772, -9.999, -0.9814, 
-0.5962 ± j0.8702}. Considering the {-10.5772,        
-9.999} as the fast eigenvalue category, model order 
reduction is performed.  
    Discretizing the system with Ts = 0.1s, using a 
step input with a learning time Tl = 15s, and training 
the ANN for the input/output data with η =  0.001 
learning rate produces the transformed system 
matrix:  
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0.0964-0.9860-1.46330.8701-0.5967
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As observed, all the system eigenvalues have 
been preserved. Based on this transformed matrix, 
using the LMI technique, the permutation matrix [P] 
is computed and then used for obtaining the [ B̂ ], 
[ Ĉ ], and [ D̂ ] matrices. Since there are two 
eigenvalues that produce fast dynamics, the 
following 3rd order reduced model is obtained: 
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The reduced model has also preserved the original 
system dominant eigenvalues {-0.9809, -0.5967± 
j0.8701}, which achieves the proposed objective. 
Investigating the performance of this reduced model 
order compared with the other reduction techniques 
shows again its superiority as seen in Figure 5. The 
LMI-based transformed responses are almost 
identical to the 5th order original systems'. 
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Figure 5: Reduced 3rd model orders (Pink…. transformed 
with ANN estimation only, Red-.-.-.- non-transformed,                        
Black---- complete transformation with LMI) output 
responses to a step input along with the non reduced          
(Blue____ original) system output response. The LMI-
transformed curve fits almost exactly on the original 
response.  

5 CONCLUSIONS  

In this paper, a new method of dynamic systems 
model order reduction is presented that has the 
following advantages. First, in the transformed 

model, a decoupling of the slow and fast dynamics is 
achieved. Second, in the reduced model order, the 
eigenvalues are preserved as a subset of the original 
system. Third, the reduced model order shows 
responses that are usually almost identical to the 
original full order system. Hence, observing the 
simulation results, it is clear that modeling of 
dynamic systems using the new LMI-based 
reduction technique is superior to those other 
reduction techniques.  
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