
DLδǫ-OrBAC: Context based Access Control

Narhimene Boustia1 and Aicha Mokhtari2

1Saad Dahlab University, Algeria
2USTHB University, Algeria

Abstract. The final objective of an access control model is to provide a frame-
work to decide if an action performed by subjects on objects is permitted or not.
It is not convenient to directly specify an access control policy using concepts
of subjects, objects and actions. InOrBAC(Organization Based Access Control),
we can not only express static authorizations but also dynamic authorizations, de-
pending on context. Formally, OrBAC is described in first order logic, where the
context is one of the argument of predicate. We propose a new formalism based
on description logic withdefaultsandexceptions[1] to describe and reason on
OrBAC model. This paper is an enrichment of a previous work [10] with the in-
troducing of an exception operator (ǫ). This formalism covers not only concepts
of information systems like users, objects, subjects and roles but also the context
by the add of two operators of default (δ) and exception (ǫ). Notice that time
complexity is still polynomial [2].

1 Introduction

Security policy models as DAC [3], MAC [4, 5] and RBAC [6] (Role Based Access
Cotrol) provide concepts that are useful in current IS. However, such security policies
must also be adapted to deal with new requirements; rule are depending on context.

OrBAC (Organization Based Access Control) is useful to deal with some of these
new requirements [7]. OrBAC is a model that allows to express a security policy at
organizational level, i.e., indepent from the implementation made for this policy. The
access control policy does not directly apply to subject, object and action. It defines
static authorizations that apply within organization to control the activities performed by
roles on views. However, the OrBAC model also allows specification of more complex
dynamic authorizations applying in a given context. The formalism used is the first
order logic where the context is an additive argument.

The purpose of this paper is to present DLδǫ-OrBAC which is a new formalization
of OrBAC model based on descrition logic with defaults and exceptions (ALδǫ) [1].
Description Logic (DLs) [8] are a family of knowledge used to describe and classify
concepts and their instances. (ALδǫ) extends the well known description logic (AL) [8]
with the two unary connectives (δ, ǫ) to express respectively default and exception.

The idea is to consider that when we are in a usual context, we obtain a default
authorization and we express this fact with the connective (δ), but if the context change,
the authorization is excepted, and we express this exception with the connective (ǫ).
Notice, that even if we have more thant exception, we can represent this fact with the

Boustia N. and Mokhtari A. (2009).
DLδε-OrBAC: Context based Access Control.
In Proceedings of the 7th International Workshop on Security in Information Systems, pages 111-118
DOI: 10.5220/0002175801110118
Copyright c© SciTePress



composition of operators of exception (ǫ), and in spite of this, time complexity still
polynomial. This paper is an enrichment of a previous work [10] with the introducing
of an exception operator (ǫ).

The rest of the paper is structured as follow. Section 2 presents OrBAC model,
section 3 introduces description logic with defaults and exceptions. Section 4 defines
DLδǫ-OrBAC, shows how we express security and how we can infer access control
rules in differents contexts. We conclude in section 5 by theprospects of evolution of
DLδǫ-OrBAC.

2 OrBAC Model

The central entity in OrBAC model isOrganization. An Organization can be seen as an
organized group of subjects, each playing a specific role. Inthe medical domain, “Pière
and Marie Curie Center”, “Service of Pediatrics”,etc are organizations. Subject, Action
and Object are respectively abstracted into Role, Activityand View [7].

A Roleis a set ofSubjectsto which the same security rule apply, for example, the
subject “John” plays the role of “Doctor” in the organization “Service of Pediatrics”. A
Viewcorresponds to a set ofObjectsthat satisfy a common property, for example, in the
medical domain, the view “Medical record” corresponds to the object “Medical record
of patient”. AnActivity regroupsActionsthat partake of the same principle. In OrBAC
model, Actions will mainly contain computer actions such as“read”, “write”,etc, when
Activities contain “consulting”, “writing”,etc.Privilegesonly apply in specificcontexts.
Contexts can be used to specify the concrete circumstances where organizations grant
roles permission to perform activities on views.

It considers that all actions which are not permitted are prohibited, so it suffice to
defines only permission relation.

OrBAC is defined using eight basic sets of entities:OR (set of organizations),S
(set of subjects),AC (set of actions),O (set of objects),R (set of roles),AV (set of
activities),V (set of views) andC (set of contexts).

In the next section, we will introduce our formalism used to describe DLδǫ-OrBAC
which is based on description logic with defaults and exceptions.

3 Description Logic with Defaults and Exceptions

Description logic is actually largelly used to represent concept hierarchies, it employs
two kinds of formalisms for the knowledge representation: the terminological formal-
ism (TBox) used to describe conceptual knowledge, the assertional formalism (ABox)
used to allow facts to be stated [8].

In what follows, we present (ALδǫ), an extension ofAL language with the two
operators of defaults (δ) and exceptions (ǫ).

3.1 ALδǫ Language

The description language with defaults and exceptionALδǫ is inductively defined from
a setR of primitive roles and a setP of primitive concepts [9], augmented by the con-
stant⊤ (Top), with the abstract syntax rule:

112



C, D → ⊤ the most general concept
| P primitive concept
| C ⊓ D concept conjunction
| ¬P negation of primitive concept
| ∀∃r : C C is a value restriction on all roles R(> 0)
| δC default concept
| Cǫ exception to the concept

δ and ǫ are two unary connectives,⊓ is a binary conjunction connective and∀∃
enables universal quantification on role values.

In the next section, we will give the formalization of OrBAC model based on de-
scription logic with defaults and exceptions. We will show how these two connectives
(δ, ǫ) can be efficient to formalize access control.

4 DLδǫ-OrBAC

We now conceptualize the OrBAC model and construct a DL knowledge base capturing
the characteristics of OrBAC, including the context with the use of (δ) and (ǫ).

4.1 The TBox

Given an OrBAC model, we define a DL knowledge baseK, the alphabets ofK includes
the following atomic concepts: Organization, Subject, Object, Role, View, Action, Con-
text and Activity. The TBox includes the following axioms, each axiom is illustrated
with examples.

– Role Attribution Axiom: defines the relationship between subject and role.
Subject ⊑ ⊤; Role ⊑ ⊤;
Organization ⊑ ⊤
Employ ⊑ EmployS.Subject⊓EmployR.Role⊓EmployOr.Organization

Suppose that in a given hospitalX, Jeanis assigned in the role ofDoctor, andTom
is assigned in the role ofSurgeon. We express all these facts by the following rules.

Employ(E1) ⊑ EmployS.Subject(Jean)⊓ EmployR.Role(Doctor)
⊓ EmployOr.Organization(X)

Employ(E2) ⊑ EmployS.Subject(Tom)⊓ EmployR.Role(Surgeon)
⊓ EmployOr.Organization(X)
Where E1, and E2 are instances of Employ.

– View Definition Axiom: defines relationship between object and view.
Object ⊑ ⊤
V iew ⊑ ⊤
Use ⊑ UseO.Object ⊓ UseV.V iew ⊓ UseOr.Organization

Suppose that in a given hospitalX, Med-rec1 andordinnance1 are instances of
concept Object, andMed-rec andordinnance are instances of concept View. We
express all these facts by the following rules.

Use(U1) ⊑ UseO.Object(Med − rec1) ⊓ UseV.view(Med − rec)
⊓ UseOr.Organization(X)

113



Use(U2) ⊑ UseO.Object(Ordinnance1) ⊓ UseV.view(Ordinnance)
⊓ UseOr.Organization(X)
Where U1 and U2 are instances of Use.

– Activity Definition Axiom: defines relation between action and activity.
Action ⊑ ⊤
Activity ⊑ ⊤
Consider ⊑ ConsiderAc.Action ⊓ ConsiderAv.Activity

⊓ ConsiderOr.Organization

Suppose that in a given hospitalX, actionwrite is considered as a modification
activity and actionread as a consultation activity. We express all these facts by the
following rules.

Consider(C1) ⊑ ConsiderAv.Activity(Modify)⊓ConsiderAc.Action(write)
⊓ ConsiderOr.Organization(X)

Consider(C2) ⊑ ConsiderAv.Activity(Consult)⊓ConsiderAc.Action(read)
⊓ ConsiderOr.Organization(X)
Where C1 and C2 are instances of Consider.

– Context Definition Axiom:
Context ⊑ ⊤
Define ⊑ DefineAc.Action ⊓ DefineS.Subject⊓ DefineO.Object

⊓ DefineC.Context ⊓ DefineOr.Organization

We need first to define theNormal context.
Define(D1) ⊑ DefineAc.Action(Write) ⊓ DefineS.Subject(Jean)

⊓ DefineO.Object(Ordinnance) ⊓ DefineC.Context(Normal)
⊓ DefineOr.Organization(X)
Where D1 is an instance of Define.

– Permission Attribution Axiom: defines the relation between role, activity, view
and context in an organization.

Prohibition = non Permission
Permission ⊑ PermisionAv.Activity ⊓ PermissionR.Role

⊓PermissionV.V iew⊓PermissionC.Context⊓PermissionOr.Organization

Every user who play the role ofDoctor is permitted tomodify an ordinnance
when the contextnormal is true.
Permission(P1) ⊑ PermisionAv.Activity(Modify)

⊓ PermissionR.Role(Doctor) ⊓ PermissionV.V iew(Ordinnance)
⊓ PermissionC.Context(Normal) ⊓ PermissionOr.Organization(X)
Where P1 is an instance of Permission.

– Hierarchy Definition Axiom: defines the hierarchy between roles.
Sub−role ⊑ Sub−role1.Role⊓Sub−role2.Role⊓Sub−roleOr.Organization

Role1 is a sub role of Role2 in organization Or
Suppose that in a given hospitalX, aSurgeonplay also the role ofDoctor, then a
surgeon inherits the set of authorizations of the role doctor. The next rule express
this fact.

Permission(X, Doctor, Av, V, C) ⊑ Permission(X, Surgeon, Av, V, C)

114



And because we defined the concept of Sub-role, so the inheritance is expressed as
follow:

Permission(X, Surgeon, Av, V, C) ⊑ Permission(X, Doctor, Av, V, C) ⊓
Sub − role(X, Surgeon, Doctor)

– Concrete Permission Axiom:
Is − permitted ⊑ Is − permittedAc.Action ⊓ Is − permittedS.Subject

⊓ Is − pemittedO.Object

Jeanis permitted to writeDiagnosis
Is − permitted(I1) ⊑ Is − permittedAc.Action(Write)
⊓ Is − permittedS.Subject(Jean)⊓ Is − pemittedO.Object(Diagnosis)

Definition of Rules of Security:
Employ ⊓ Use ⊓ Consider ⊓ δPermission ⊓ δDefine ⊑ δIs − permitted

Employ ⊓ Use ⊓ Consider ⊓ Permissionǫ ⊓ Defineǫ ⊑ Is − permittedǫ

4.2 The ABox

The ABox ofK includes eight catalogs of axioms: Organization assertions axiom, Sub-
ject assertions axiom, Object assertions axiom, View assertions axiom, Role assertions
axiom, Action assertions axiom, Activity assertions axiomand Context assertions ax-
iom.

In the next section, we show how a security policy can be modelized and how we
can infer authorizations.

4.3 Inference and Subsumtion

– Permission Hierarchy
We know that a Surgeon is a sub-role of Doctor, so we can write:
Sub − role(S1) ⊑ Sub − role1.Role(Surgeon) ⊓ Sub − role2.Role(Doctor)

⊓ Sub − roleOr.Organization(X)
When we want to know if a Surgeon is permitted to write an ordinnance, we use
the following rule:

Permission(X, Surgeon, Modify, Ordinnance, Normal) ⊑
Permission(X, Doctor, Modify, Ordinnance, Normal) ⊓ Sub − role(S1)
and then the answer in this case isYesbecause we use the inheritance of properties
in the normal case.

– Access Control if Normal Context is True
Within organizationX, Normal context holds between subjectJean, actionWrite
and objectDiagnosis1, we obtain D2, an instance of concept Define.

Define(D2) ⊑ DefineAc.Action(Write) ⊓ DefineS.Subject(Jean)
⊓ DefineO.Object(Diagnosis1)⊓ DefineC.Context(Normal)
⊓ DefineOr.Organization(X)
We also know thatDiagnosis1is an object used in a viewDiagnosis, an instance
U3 of Use is write as:

115



Use(U3) ⊑ UseO.Object(Diagnosis1) ⊓ UseV.view(Diagnosis)
⊓ UseOr.Organization(X)
And finally, we know that in organizationX, each person who play the role of
Doctor is permitted tomodify Diagnosis, whenNormal context is true, we write
an instance P2 as:
Permission(P2) ⊑ PermisionAv.Activity(Modify)

⊓ PermissionR.Role(Doctor) ⊓ PermissionV.V iew(Diagnosis)
⊓ PermissionC.Context(Normal) ⊓ PermissionOr.Organization(X)
Now, the question is: Is Jean permitted to write diagnosis ina normal context?; We
have:
-Jean play role of doctor in organization X: Employ(E1);
-and, Diagnosis1 is an object used in the view Diagnosis: Use(U3);
-and, Write is considered as a modification activity: Consider(C1);
-and, by default, within organization X, context Normal holds between subject Jean,
action Write and object Diagnosis1:δDefine(D2);
-and finally, by default, in organization X, each person who plays the role of Doctor
is permitted to modify Diagnosis, when Normal context is true:δPermission(P2).
Formally, we write:Employ(E1)⊓Use(U3)⊓Consider(C1)⊓δPermission(P2)⊓
δDefine(D2)
Using security rules, we can deduce that the precedent proposition subsumeδIs −
permitted(I1).
And becauseIs − permitted(I1) ⊑ δIs − permitted(I1), we can deduce that
Jean is permitted to write diagnosis.

– Access Control if Context “Contamination-risk” is True. We have within orga-
nizationX, contextContamination-risk holds between subjectJean, actionWrite
and objectDiagnosis1, we obtain D3, an instance of concept Define.

Define(D3) ⊑ DefineAc.Action(Write) ⊓ DefineS.Subject(Jean)
⊓DefineO.Object(Diagnosis1)⊓DefineC.Context(Contamination−risk)⊓
DefineC.Context(normal) ⊓ DefineOr.Organization(X)
We know that contextContamination-risk is an exception of contextnormal,
DefineC.Context(Contamination−risk) ≡ (DefineC.Context(Normal))ǫ

If we substitute DefineC.Context(Contamination-risk) by its value, we obtain:
δDefine(D3) ⊑ δDefineAc.Action(Write) ⊓ δDefineS.Subject(Jean)

⊓ δDefineO.Object(Diagnosis1)⊓ δDefineC.Context(Normal)
⊓ (DefineC.Context(Normal))ǫ ⊓ δDefineOr.Organization(X)
Using the ruleAǫ ≡ δA ⊓ Aǫ, we obtain:
(DefineC.Context(Normal))ǫ ≡ δDefineC.Context(Normal)
⊓ (DefineC.Context(Normal))ǫ

after replacment, we get:
δDefine(D3) ⊑ δDefineAc.Action(Write) ⊓ δDefineS.Subject(Jean)

⊓ δDefineO.Object(Diagnosis1)⊓ (DefineC.Context(Normal))ǫ

⊓ δDefineOr.Organization(X)
which means that:Define(D2)ǫ ⊑ δDefine(D3)
In the contextContamination-risk , we create a new instance P3 which is defined
as follow:

116



Permission(P3) ⊑ PermisionAv.Activity(Modify)
⊓ PermissionR.Role(Doctor) ⊓ PermissionV.V iew(Diagnosis)
⊓PermissionC.Context(Normal)⊓PermissionC.Context(Contamination−
risk) ⊓ PermissionOr.Organization(X)
ContextContamination-risk is an exception of contextnormal
PermissionC.Context(Contamination−risk) ≡ (PermissionC.Context(Normal))ǫ

After substitution, we get:
Permission(P3) ⊑ PermisionAv.Activity(Modify)

⊓ PermissionR.Role(Doctor) ⊓ PermissionV.V iew(Diagnosis)
⊓ PermissionC.Context(Normal) ⊓ (PermissionC.Context(Normal))ǫ

⊓ PermissionOr.Organization(X)
We know that,Aǫ ≡ δA ⊓ Aǫ, we obtain:
Permission(P3) ⊑ PermisionAv.Activity(Modify)
⊓ PermissionR.Role(Doctor) ⊓ PermissionV.V iew(Diagnosis)
⊓ (PermissionC.Context(Normal))ǫ ⊓ PermissionOr.Organization(X)
So, we can deduce:Permision(P2)ǫ ⊑ δPermission(P3)
The question we can ask is: Is Jean permitted to write Diagnosis when context
Contamination-risk is true?
We have: -Jean play role of doctor in organization X: Employ(E1);
-and, Diagnosis1 is an object used in the view Diagnosis: Use(U3);
-and, Write is considered as a modification activity: Consider(C1);
-and, by default, within organization X, context Contamination-risk holds between
subject Jean, action Write and object Diagnosis1:δDefine(D3);
-and finally, by default, in organization X, each person who plays the role of Doc-
tor is permitted to modify Diagnosis, when context Contamination-risk is true:
δPermission(P3).
We obtain:Employ(E1) ⊓ Use(U3) ⊓ Consider(C1) ⊓ δPermission(P3) ⊓
δDefine(D3)
≡ Employ(E1) ⊓ Use(U3) ⊓ Consider(C1) ⊓ δPermission(P2)ǫ

⊓ δDefine(D2)ǫ

≡ Employ(E1)⊓Use(U3)⊓Consider(C1)⊓Permission(P2)ǫ⊓Define(D2)ǫ

Using security rules, we can deduce that the precedent proposition subsumeIs −
permitted(I1)ǫ. And becauseIs− permitted(I1) 6⊑ Is− permitted(I1)ǫ, then
we can’t deduce Is-permitted(I1), and Jean is not permittedto write diagnosis when
there is a contamination risk.

5 Conclusions

The aim of this paper is to give a logical formalisation to DLδǫ-OrBAC model using
the expressiveALδǫ language. We showed how default and exceptional knowledge are
well suited to represent and reason about access control, weillustrate this fact with a
small example of medical information system.

To implement and reason about this model, we need to choose a reasoner which take
into account default and exceptional knowledge. There are many tools for the classical
description logic [11], we mention Classic, Fact++, RacerPro, but in our knowledge,
there is no tool for description logic with default and exception reasoner.

117



The next step of our work is to develop such a reasoner.Neo−Classicδǫ is actually
our preoccupation.

References

1. F. Coupey and C. Fouqueré. Extending conceptual definitions with default knowledge.Com-
putational Intelligence, Vol 13, Num 2, 1997.

2. F.M. Donini, M. Lenzerini, D. Nardi, B. Hollunder, W. Nuttand M. Spaccamela. The com-
plexity of existential quantification in concept languages. Artificial Intelligence, 53:309-
327,1992.

3. B. Lampson. Protection. In5th Princeton Sympoium on Information Sciences and Systems,
March 1971, pp. 437- 443.

4. D.E. Bell and L.J. LaPadula. Secure computer systems: Unified exposition of multics inter-
pretation. Tech. Rep. ESD-Tr-73-306, The MITRE Corporation, March 1976.

5. K.J. Biba. Integrity consideration for secure computer systems. Tech. Rep. MTR-3153, The
MITRE Corporation, June, 1975.

6. R. Sandhu, E.J. Coyne, H.L. Feinstein and C.E. Youman. Role based access control models.
In IEEE Comuter, Vol. 29, no. 2, pp. 38-47, 1996.

7. A. Abou El Kalam, R. El Baida, P. Balbiani, S. Benferhat, F.Cuppens, Y. Deswarte,
A. Miège, C. Saurel, and G. Trouessin. Organization Based Access Control. In4th IEEE
International Workshop on Policies for Distributed Systems and Networks (Policy’03), Lake
Come, Italie, June 2003.

8. F. Baader, D.L. McGuiness, D. Nardi and P.F. Schneider. The Description logic handbook:
Theory, Implementation and Applications. Cambridge university press, 2002.

9. B. Nebel. Reasoning and revision in hybrid representation systems. InLecture Note in
Computer Science, Springer-Verlag, 1990.

10. N. Boustia and A. Mokhtari. Representation and reasoning on OrBAC. InThe Third Inter-
national Conference on Availability, Security and Reliability, Barcelona, Spain,2008.

11. http://www.cs.man.ac.uk/ sattler/reasoners.html

118


