
Security as a Service - A Reference Architecture for
SOA Security

Mukhtiar Memon, Michael Hafner and Ruth Breu

University of Innsbruck, Austria

Abstract. Securing service-oriented systems is challenging, because like busi-
ness services the security services are equally distributed in SOA systems. En-
forcing security exclusively at the endpoints creates a significant security burden.
Also, every endpoint has to implement the entire security infrastructure, which
is an expensive approach. Currently, there is very little work done to separate
security from service endpoints. We propose aSecurity As A Service(SAAS)
approach, which shifts major security burden from service endpoints to dedi-
cated and shared security services within a security domain. Security services
are composed from components, and integrated based on the Service Component
Architecture (SCA) model. In this contribution, we apply the SAAS paradigm to
implement security for SECTISSIMO, which is a platform-independent frame-
work for security modeling and implementation [9].1

1 Introduction

Security is a complex non-functional requirement of SOA systems, which are composed
from services deployed across different locations and diverse platforms. The main prob-
lem for SOA security is the lack of security modeling frameworks, based on consistent
and formal methods. We have addressed this problem in [9], and proposed a solution as
SECTISSIMO security modeling framework.

The second most important aspect, which is the focus of this contribution, is the
architecture for SOA security. From this point of view, the available architectures and
supporting standards are still in the nascent state. SOA system deals with many facets
of security, ranging from basic encryption and access control to security monitoring and
management across domains. A domain basically comprises a number of service end-
points (or simply endpoints), which offer atomic or composed services. The workflow
formed by composed services spans multiple endpoints in different domains. There-
fore, the security provided at a particular endpoint may not be sufficient to secure all
the services in the composition. The reason is obvious, as there is no common point,
which all the endpoints can rely for security assessment and evaluation. An endpoint
can perform only primitive security tasks such as encryption, signature etc. While, for
complex security tasks, an endpoint has to rely upon the decisions based on the security

1 This work was partially supported by the SecureChange (ICT-FET-231101) EU project and
the SECTISSIMO (P-20388) FWF project.

Memon M., Hafner M. and Breu R. (2009).
Security as a Service - A Reference Architecture for SOA Security.
In Proceedings of the 7th International Workshop on Security in Information Systems, pages 79-89
DOI: 10.5220/0002174900790089
Copyright c© SciTePress



protocols traversing other domains. This necessitates a hybrid approach combining inte-
grated and decoupled security. The integratedEndpoint Securitytakes care of primitive
security tasks and the decoupled security, which is shared by all the endpoints within a
particular domain, handles more complex security tasks.
On the grounds of these facts we present an approach for engineering security-critical
SOAs, consisting of two phases:

1. Phase 1: Modeling of security together with functional modeling and generation of
security artifacts through semi-automated transformation.

2. Phase 2: Implementation of security as a service, usingService Component Archi-
tecture(SCA) model.

We have worked out the model-driven approach for security inthe SECTET [5] and
SECTISSIMO [9] frameworks. The contribution of this paper is our proposal to deploy
security services within a domain, which are shared by all the service endpoints in that
domain. These services are capable of executing security protocols among different
security domains, thereby reducing the major security burden of service endpoints.

The remaining paper is organized as follows.Section2 presents related approaches.
Based on an example use case, the security requirements of healthcare system are de-
scribed in Section 3.Section4 sketches the SECTISSIMO security framework.Section
5 presents limitations of endpoint security in the perspective of SOA. Proposed Security
As A Service (SAAS) approach is discussed in Section 6, whereas,Section7 presents
our solution as a Reference Architecture for SOA Security. The implementation of the
solution based on SCA is discussed inSection8, followed by challenges related to
SAAS approach inSection9. Concluding remarks and future work are given inSection
10.

2 Related Work

This paper mainly focuses on a reference architecture for security-critical SOA sys-
tems based onSecurity As A Service(SAAS) paradigm. In [4], Heather Hinton et. al.
have introduced the SAAS approach and proposed a Security Decision Service (SDS),
which provides service-based PDP to multiple enforcement points. A more comprehen-
sive discussion is given in [6] by R. Kanneganti and P. Chodavarapu, for implement-
ing authentication, trust and secure conversation as separate services to solve security
manageability and interoperability problems. Identity Externalization issues for service-
oriented security (SOS) are presented by Oracle in [15]. In [7], J. Lopez uses dedicated
security services for advanced authentication and authorization requirements. G. Petter-
son [17] presents security-specific views for SOS architectures. Antivirus products use
the SAAS approach based on security services for small and medium businesses [8].

These approaches basically discuss separation of securityfrom endpoints for indi-
vidual security services but this does not solve the key security problems of SOA, which
includes complex security requirements such as non-repudiation, security compliance
and monitoring. Also, these approaches do not clearly definehow security tasks should
be split between endpoints and the shared security. We have investigated these problems

80



very carefully, taking into account a more comprehensive set of security services.

There are other even more important aspects which have so farnot been addressed.
For example, none of the above approaches define how securityservices depend on
each other and how to configure security at deployment-time.Without defining the de-
pendency and relationship among security services, it is not possible to design complex
security protocols among various endpoints of different domains. An other aspect that
adds value to our approach is the reusability of security components. With our approach
it is possible to implement same security components with different deployment-time
configurations. To achieve these values, we compose the components based on Ser-
vice Component Architecture (SCA) [16]. We use SCA’sDependency Injectionmecha-
nism to define dependency among the components. Similarly, we use SCA’s component
Propertiesfor deployment-time configurations of security components(Details in Sec-
tion 8).

3 Motivating Example

We illustrate our concepts with an industrial use case of a healthcare system, which con-
sists of medical services provided by various stakeholderssuch as hospital, radiography,
pharmacy and insurance [2]. The security workflows for cross-domain authentication,
authorization, non-repudiation and monitoring etc. execute the protocols among multi-
ple domains of these stakeholders.

Fig. 1. Distributed Healthcare Scenario.

We consider two domains, represented by Hospitals 1 and 2 respectively, as shown
in Figure 1. The users in these domains can be authenticated with the local identi-
ties assigned to them in the form of credentials such as username password and dig-
ital certificate. In this scenario, a practitioner from Hospital 1, accesses a service i.e.
viewRadiographyfrom Hospital 2. We assume that she possesses the local identity for
Hospital 1, but this identity is not valid for Hospital 2, because every hospital maintains
the local identities of its own domain users. What is required here, is another (security)
service, which federates the practitioner’s identity between two hospitals. One of the
critical questions could be that which of the service endpoints in the hospitals should
perform the task of identity federation and why. This is justone example of a security
task between two domains, but in the real world there are a number of security tasks
such as authorization decisions, privacy enforcement, security protocol execution, log-
ging, security compliance verification and security monitoring among many healthcare
stakeholders. If these tasks are assigned to a specific service endpoint, it will not only

81



create additional processing burden, but also create interoperability problems. To ad-
dress these problems, we propose to free the service endpoints from security tasks (as
much as possible) and assign them to the dedicated and sharedsecurity services.

4 SECTISSIMO Framework

The proposed SAAS approach is used to design the reference architecture for SEC-
TISSIMO framework. SECTISSIMO provides a layered approachto model security
requirements in parallel with functional modeling and generate security artifacts using
transformation. The security requirements are modeled in aplatform-independent way,
using abstract security protocols and controls. In the second phase, platform-specific se-
curity artifacts (i.e. security policies) are generated from the abstract models based on
supporting security infrastructures of the target platform. The security services in the
SAAS component (Section 6.1) of the proposed reference architecture execute these
platform-specific artifacts which are generated from models. For detailed discussion
about SECTISSIMO, please refer [9].

5 Limitations of Endpoint Security

The Endpoint Securityis based on the assumption that all the security infrastructure
components are integrated with the service endpoint. This includes identities stores,
policy repositories, protocol execution engines and monitoring agents. Integrating them
with the endpoint is an expensive solution, because the service endpoint administra-
tion has to deploy and configure all the required hardware, network and applications.
It also increases the responsibilities and security burdenof the endpoints, which could
slow down its performance. Additionally, this creates the problems for security inter-
operability as different domains implement different standards, mechanisms and con-
figurations for security. The approach is quite effective for primitive security tasks such
as encryption, signature and time-stamping etc. But, it is not applicable for SOA secu-
rity, in which services and security controls may not be placed exclusively at the same
endpoint. These limitations markedly advance our understanding that endpoint security
leads to some architectural and interoperability problemspertaining to SOA security.

6 Security As A Service (SAAS) Approach

In this section we define our approach and present our arguments why the SAAS ap-
proach is a better choice to solve SOA security as compared with endpoint security.

The Security As A Service (SAAS) approach can be defined as an architectural solu-
tion for SOA security, based on decoupled and shared security services within a domain.

If we examine the security requirements of a service endpoint, we will see that a
service endpoint is mostly concerned with the security decision (e.g. token validation,
authorization), that results from a security protocol. Forinstance, the decision that as-
serts if the security tokens of a Practitioner are valid or ifshe has certain permissions to

82



call a service. As a further step, the endpoint enforces thatsecurity decision. We assume
that the task of executing the security protocol and communicating the decision to the
target endpoint should be performed by separate security services.
Figure 2 shows the architecture of shared security servicesbased on the proposed

Policy

Repository

S
e

c
u

ri
ty

P
ro

x
y

H
a
n

d
le

r

(S
P

H
)

Global Request Handler

PKI

Repository

Authentication

Service

Non

Repudiation

Service

Monitoring

Service

Authorization

Service

Logging

Service

Compliance

Service

SAAS Component

Global Response Handler

Service Endpoint Architecture

WS Interface

Security Token Service

WS Interface

Security Protocols

(e.g., NRep, SSO)

SAAS Engine

requestRadiography

Healthcare

System

Back End

Applications

Radiography

Fig. 2.The Architecture of Shared Security Services in a domain.

SAAS approach. The upper part shows theHealthcare System, which comprises of
various service endpoints. The GlobalRequestandResponseHandlers are integrated
with the service endpoint. The handlers intercept the incoming and outgoing messages
to/from a service endpoint and provide primitive security.For example, in Figure 2, the
Request Handler intercepts a Practitioner’s request to access theviewRadiographyser-
vice and the Response Handler intercepts the response created by backend application.
The service endpoint uses a combination of integrated and shared security to evaluate
the request before creating the service response. Proposedhybrid approach divides the
security tasks between service endpoint’s integrated security and theSAAS Component.
The integrated security at the endpoint performs the primitive tasks, such as encryp-
tion/decryption and signing/signature validation etc. The reason why these tasks should
be performed locally, is that an endpoint can not accept/release clear text and unsigned
messages due to the risk of man-in-the-middle attack, whilecommunicating within and
outside the domain. This is done by Security Proxy Handler (SPH), which is an essential
part of Handlers. The SPH specifically performs the following security tasks:

1. Encryption/Decryption, Signature/Signature Validation and Key Exchange
2. Enforcement of security decisions, communicated by theSAAS Component
3. Report events regarding service requests, responses andenforcements to the log-

ging and monitoring services

83



Apart from primitive security the other tasks are handled bythe security services in the
SAAS component. The SPH of the service endpoint forwards those tasks to theSAAS
Engine, which assigns them to the appropriate security service from the SAAS Com-
ponent. The SAAS Component uses two interfaces for communication with other do-
mains; i.e. 1)WS-Interface to Security Token Service, for communication with external
identity provider and 2)WS-Interface for Security Protocolsfor execution of security
protocols such as Single Sign-On and Non-repudiation with the endpoints of other do-
mains.

6.1 SAAS Component

TheSAAS Componentis a central component, deployed by a security domain for pro-
viding shared security to all the service endpoints in that particular domain. Along with
various security services, the SAAS component consists of thePolicy Repositoryand
PKI Repository, which are used by different security services. The policy repository
consists of the policies, specifying different security requirements, such asAuthentica-
tion, AuthorizationandNon-repudiation. The security services in the SAAS Component
depend on each other. We discuss below their role and relations in more detail:

1. Authentication.The authentication Service provides intra- and inter-domain au-
thentication, as the users requesting services could be from within or outside the
domain. In case of an internal request, the authentication service validates user’s
local identity and sends the signed authentication decision to the endpoint. The
Security Proxy Handler (SPH) at the endpoint validates the security service’s sig-
nature before forwarding the authentication decision to the target service. In case of
a request from an outside domain, the authentication service first resolves the iden-
tity of the external user. For this, it contacts the externalidentity provider usingWS
Interfaceto Security Token Service(STS). After the STS validates the user, the au-
thentication service creates a security context for authentication. This provides the
functionality of identity federation to the outside user, as discussed in the section 3.

2. Authorization.Authorization service verifies permissions assigned to theusers. The
permissions are defined in the policies stored inPolicy Repository. Based on the
policy, this service makes the authorization decision and sends the signed autho-
rization assertion to the endpoint. The SPH of the endpoint validates the signature
of authorization assertion and enforces the decision.

3. Non-repudiation.This service executes an out-of-band non-repudiation protocol
between requester and the endpoints and stores the protocolmessages locally.

4. Logging.This service logs the service request and response messages. Messages
are communicated to logging service using notifications. Apart from logging, the
ordinary requests and responses, the logging service also stores the messages gen-
erated by security events. For example, the message notifying that a particular user
was not authenticated because the security tokens submitted by her were not signed
by the STS. These logs are based on the evaluation done by security compliance
service discussed below.

5. Security Compliance.This service verifies if the message sent by a user is compli-
ant with the security policy of an endpoint. The security policy defines the security

84



requirements based on supported security infrastructuresand mechanisms, for ex-
ample, type of tokens, encryption, signature algorithms etc. The authentication ser-
vice depends upon the decision of the compliance service. Ifa request is evaluated
to be security-compliant by this service then the authentication service proceeds for
token validation.

6. Security Monitoring.The Monitoring service is responsible to handle the events,
which are generated by the endpoints or security services ofSAAS Component.
For instance, the compliance service reports the security event, if certain mes-
sage for a service request does not meet an endpoint’s security policy. The non-
repudiation service notifies a protocol failure, when an endpoint does not follow
the Non-repudiation protocol requirements. The monitoring service of a domain’s
SAAS component notifies these events to a central service, which monitors security
among various domains. The purpose of monitoring security centrally is to receive
the security events from different domains and notify the responsible and affected
endpoints of the particular domains.

From above definitions it follows that security services arenot only complex in them-
selves but also depend on each other. If security is integrated at the endpoint, then it will
create very complex security workflows to be handled by the endpoint. Our approach
of separating security as a service reduces significant partof security functionality from
the endpoints. Moreover, composing all security services as a SAAS component makes
it possible to integrate and configure related security components at deployment time.

7 Reference Architecture

TheReference Architectureas shown in Figure 3, shows the security services and cur-
rent web service based security standards for implementingdecoupled and shared secu-
rity. The architecture is divided into three main parts i.e.Service Consumer(e.g. a prac-
titioner);Healthcare System, which shows different service endpoints in the domain and
theSAAS Component, which consist of various security services. ThePrimitive Secu-
rity at the endpoint, performs basic security functionalities of encryption/decryptionand
signature/signature validation. Its Policy Enforcement Point (PEP) enforces the security
decisions at the endpoint. The shared security services shown in the SAAS Component,
have already been discussed in Section 6. In the subsequent part of this section , we fo-
cus more on the web service based security standards for implementation of the SAAS
Component.

1. WS-SecurityPolicy.This standard is used to define the security requirements of
a service as security assertions [14]. We use this standard to write the security
policy of and endpoint, which defines supported type of bindings, tokens, encryp-
tion/signature algorithms. In the SAAS Component, this policy is used by two ser-
vices i.e. security compliance and authentication. The security compliance service
checks if the request is according to the policy. Followed byits decision, the au-
thentication service proceeds for token validation.

2. SAML. Security Assertion Markup Language (SAML) is used to exchange the se-
curity information between security domains [11]. We use SAML for two services

85



Healthcare System

Service Endpoint . . n

Service Endpoint 2
Service

Consumer

Hospital’ s Security Domain

Service Endpoint 1

viewRadiography

Practitioner

WS-Security Policy

(Service Request + Security Token)

Complying to Security Policy

Cross-Domain

Authentication

SAML Authority

Security Token

Service

Token Issuing

Authority

Token Validation

Authority

Authorization

Policy

Decision

Point (PDP)

Auhorization

Policeis

Security

Compliance
Security

Monitoring

Alert

Logs

Non –

Repudiation

Authorization Policy

(XACML)

Primitive Security

Signature

Encryption

Logging

Access

Logs
Protocol

Logs

Security Services at SAAS Component

Authentication Policy

WS-(SecurityPolicy)

Policy Enforcement

Point (PEP)

Security Alert

(WS-Notification)
Notifications

(WS-Notification)

Authorization

Assertion

(SAML)
Authentication

Assertion

(SAML)

Token

Issuance

(WS-Trust)

Authentication

Security

Policies

Authorization

Assertion

(SAML)

Token

Validation

(WS-Trust)

Fig. 3. The Reference Architecture.

i.e. authentication and authorization services. The authentication service creates an
authentication request and response based on SAML protocols. TheSAML Author-
ity gets token validation decision from identity provider i.e.Security Token Service
(STS) and sends signed authentication assertion to the endpoint. The Authorization
service uses SAML in similar manner. It sends authorizationrequest to the Policy
Decision Point (PDP) and sends SAML authorization assertions to the endpoint’s
Policy Enforcement Point (PEP).

3. XACML. Extensible Access Control Markup Language (XACML), is a standard to
write authorization policies [13]. We use XACML to create authorization policies
of a service consumer.The Policy Decision Point(PDP) of this service, makes the
authorization decision based on the permissions assigned to the roles (e.g. practi-
tioner), defined as XACML rules.

4. WS-Trust. WS-Trust provides an interface to service consumer to get security to-
kens from STS [12]. The authentication service uses WS-trust interface for user’s
token validation decision from STS.

5. WS-Notification. WS-notification defines a set of interfaces to send event notifi-
cations [10]. We use this standard to send event notifications from the endpoint to
Logging and Security Monitoring Services. Notifications, which are sent for log-
ging carry ordinary information pertaining to the service requests and responses.
The notifications, which are sent to the Monitoring Service are the security alerts,
resulting from security non-compliance.

86



8 Composing Security from Components

In Section 2, we mentioned that security services are offered by security components,
which are composed based on Service Component Architecture(SCA) model. We use
this model to deploy security components as aSecurity Composite, which meets all
the security requirements of a domain. An SCA component has aService, aReference,
WiresandProperties. TheServiceis an interface to the functionality a component of-
fers. AReferenceis an interface of the service that a component depends on. Aservice
is connected with areferenceusing aWire. Propertiesare used to configure the com-
ponents for different implementations. A set of required components is composed as a
Composite, which provides an interface for service invocation. The composition is re-
cursive and a composite could be used as a component in another composition [3]. Com-
posites are written in XML-basedService Composition Definition Language(SCDL).
SCA uses SCAPolicyFramework to define security (and other QoS) requirements using
high-level security objectives calledIntents. Intents are mapped to aPolicySet, which is
mapped to concrete security policies written in WS-Policy standard [16].

8.1 Security Implementation using SCA Model

The motivation of implementing proposed SAAS approach withSCA model is based
on its promising features, supporting SOA based composition of security components.
We benefit from these features in many aspects as discussed below:

1. Component-based Security Services.We assume that the security services de-
ployed in a security domain are offered by components written in different lan-
guages. This modularity enables to use old components (reusability), add new com-
ponents (extensibility) and update existing components (maintainability).

2. Deployment-time Security Configuration.Security Components form aSecurity
Composite, which can be configured at deployment time based on the security pol-
icy of a domain. We use SCA componentproperties, to make such deployment-time
configurations. For example, an authentication component is implemented accord-
ing to the security policy, which defines types of supported tokens (e.g. Signed
SAML Tokens, x.509 certificate, Username password), encryption and signature
methods (e.g. basic256, sha-1) and message parts (e.g. header, body) to be pro-
tected. An authentication component can be written to implement any of these to-
kens and algorithms etc. The values are passed to the components as properties.
This gives the flexibility to configure the same security components for different
implementations. In Java, the property-based configurations of SCA components is
done with annotations embedded in Java classes [1].

3. Separation of Concerns.Using SCA we separate security concerns from func-
tionality, because significant part of the security logic isnot integrated with service
endpoint. As a result any changes in the security logic can beincorporated with-
out affecting the service endpoint. The service endpoint equally benefits from this
separation, because it does not depend upon infrastructure, which are used for its se-
curity. Additionally, the peformance of the endpoint is also enhanced as it performs
minimum security tasks and does not have to solve interoperability problems.

87



4. Dependency Injection.The security services offered by components depend on
each other as discussed in Section. 7. We useDependency Injectionto define de-
pendency between security components using SCAwiresbetween components.

9 Challenges Related to SAAS Approach

The advantages of the SAAS approach are manifold, but it alsooffers some implementation-
level challenges, which need special attention. SAAS assumes decoupled and central-
ized security services for each domain. It may create a single point of failure, because
many endpoints rely on centralized SAAS Component. This problem should be tack-
led with certain service replication mechanisms. Secondly, there are only few standards
available, which can support SAAS approach, including SAML, XACML, WS-policy,
WS-Trust etc. There are no standards for security monitoring, non-repudiation and se-
curity compliance at the service and protocol levels. The Web service standards such as
WS-Notification, WS-Eventing offer very basic interfaces,which can not be used for
complex security scenarios such as failure of mutual authentication or non-repudiation
protocol.

10 Conclusions and Future Work

In this paper, we presented an approach for security as a service implementation us-
ing Service Component Architecture (SCA) model. We observed that the concept of
endpoint security has many obvious limitations in the perspective of SOA. We also in-
vestigated that current approaches addressing service-oriented security consider very
limited aspects of SOA security. We have presented a more comprehensive set of se-
curity services and particularly discussed the aspects of dependencies among security
services and deployment-time configuration of security components. In future, we con-
tinue our research in two directions i.e. 1)Security Modeling, for providing abstractions
to the security protocols and 2)Security Implementation, for designing protocol engines
to implement the security services of SAAS Component.

References

1. SCA Implementation with Java, 2007. http://tuscany.apache.org/.
2. R. Breu, M. Hafner, F. Innerhofer-Oberperfler, and F. Wozak. Model-Driven Security En-

gineering of Service Oriented Systems.Lecture Notes in Business Information Processing,
5(5):59–71, 2008.

3. F. Satoh et. al. Methodology and Tools for End-to-End SOA Security Configurations. In
SERVICES ’08, pages 307–314, Honolulu, HI, 2008.

4. M. Hondo H. Hinton and B. Hutchison. Security Patterns within a Service-Oriented Archi-
tecture, 2005.

5. M. Hafner. SECTET A Domain Architecture for Model Driven Security, 2006. PhD Thesis
November 2006.

6. R. Kanneganti and P. Chodavarapu.SOA Security in Action. Manning Publications Co.,
Greenwich, CT, USA, 2007.

88



7. J. Lopez, J. A. Montenegro, and et. al. Specification and Design of Advanced Authentication
Authorization Services.Computer Standards and Interfaces, 27(5):467–478, 2005.

8. MacAfee. Security as a Service, 2008.
9. M. Memon, M. Hafner, and R. Breu. SECTISSIMO: A Platform-Independent Framework

for Security Services. InModSec ’08: MODELS 2008, Toulouse, France, 2008.
10. P. Niblett and S. Graham. Events and service-oriented architecture: the OASIS web services

notification specifications.IBM Syst. J., 44(4):869–886, 2005.
11. OASIS. Security Assertion Markup Language (SAML), 2005. http://www.oasis-open.org.
12. OASIS. WS-Trust Sepcifications, 2005. http://docs.oasis-open.org/.
13. OASIS. Extensible Access Control Markup Language(XACML), 2006. http://www.oasis-

open.org.
14. OASIS. WS-SecurityPolicy, 2007. http://docs.oasis-open.org/.
15. Oracle. Service-Oriented Security: An Application-Centric Look at Identity Management,

2008. http://www.oracle.com/.
16. OSOA. Service Component Architecture, 2007. http://www.osoa.org/.
17. G. Peterson. Service Oriented Security Architecture, 2005. http://www.arctecgroup.net.

89


