
CHALLENGES AND PERSPECTIVES IN THE DEPLOYMENT
OF DISTRIBUTED COMPONENTS-BASED SOFTWARE

Mariam Dibo and Noureddine Belkhatir
Laboratoire d’Informatique de Grenoble, 681, Rue de la Passerelle, BP 72, 38402 St Martin d'Hères, France

Keywords: Deployment, Components based software engineering, J2EE, CCM, .NET, D&C, Generic deployment
system, MDA, Deployment process.

Abstract: Software deployment encompasses all post-development activities that make an application operational. It
covers different activities such as packaging, installation, configuration, application start and updates. These
deployment activities on large infrastructures are more and more complex leading to different works
generally developed in an ad'hoc way and consequently specific to middleware such as for instance J2EE,
.net or CCM. Every middleware designs specific deployment mechanisms and tools. The objective of this
work is to propose a generic deployment approach independently of the target environments and to propose
necessary abstractions to describe the software to be deployed, the deployment infrastructures and the
deployment process with the identification and the organization of the activities to be carried out and the
support for its execution. Our approach is model driven and our contribution is about a generic deployment
framework.

1 INTRODUCTION

An important issue of component based software
engineering is the deployment of components in
decentralised locations in an efficient, safe and
consistent manner. The deployment life cycle
encompasses all the post-development activities of
an application which makes the software useful. It is
an important step in software life cycle, which for a
long time has been reduced to only installation.
Today, the components approach and the
distribution make deployment complex. Many
deployment tools exist but they are often built in an
ad'hoc way, specific to a technology or to an
architecture and covering partially the deployment
life cycle. This paper reviews this important domain
of software life cycle, emphasizing the pros and cons
of each deployment approach.
The challenge is to develop a generic framework
encompassing specific tools and supporting the
whole deployment process.
The rest of this paper is organized as follows: Part 2
presents related works. We split this part in two
sections. In the first section, we present approaches
developed by the industrials leading to tools and
platforms developed in an ad' hoc manner.

The second section aims at specifying high level
abstraction approaches using models, meta-models
and their transformations. Examples of these
approaches are Software Dock (Hall et al., 1999),
SOFA (Bures et al., 2006), UDCM (Hnetynka,
2005) and Dance (Edwards et al., 2004). We put in
this category the works developed by the OMG
group identified as D&C (OMG, 2006b) and based
on a model-driven approach.

In the last part we present briefly our approach
highlighting the concepts and the architecture of the
generic deployment framework we propose.

2 RELATED WORKS

2.1 Industrial Approaches

In this category, most of the existing technology of
deployment is built in an ad' hoc manner. Therefore,
every system has its own tool or its own method of
deployment covering partially the deployment life
cycle. In this category, we include industrial
proposals such as CCM (OMG, 2006a), EJB (SUN,
2009], OSGI (Alliance, 2003) or .NET (Lowy,
2001). These systems integrate some preoccupations
such as the persistence or safety but supply solutions

403Dibo M. and Belkhatir N. (2009).
CHALLENGES AND PERSPECTIVES IN THE DEPLOYMENT OF DISTRIBUTED COMPONENTS-BASED SOFTWARE.
In Proceedings of the 11th International Conference on Enterprise Information Systems - Information Systems Analysis and Specification, pages
403-406
DOI: 10.5220/0002009904030406
Copyright c© SciTePress

which are too ad-hoc. For example the composition
of units is still not taken into account, the
programming language choice is very binding, and
communication is very dependent on the context. A
general weakness is the lack of abstraction allowing
a better re-use of components. For lack of a frame of
composition in the industrial models, it is the Glue
code which assures the communication between
components if they are distributed.

2.2 Academic Approaches

Model based systems such as D&C (OMG, 2006b),
UDCM (Hnetynka, 2005) provide expressive
abstractions to control deployment. These systems
enhance a technology transition based on models
and meta-models offering more generality and
elevating the level of abstraction. The key
capabilities are:
- Identification of the common services

separation of concerns with clear identifications
of the different models (applications, locations,
deployment planner and orchestration).

- Mapping based on MDA (OMG, 2005) a
transformational approach to the underlying
middleware.

- Automatic deployment and life cycle
management.

3 OUR APPROACH OVERVIEW

We know unquestionably that the concept of
architecture with components consists in creating
reusable entities and in developing personalized
software thanks to the appropriate assembly of these
components. In such a context, the roles of
components developers and applications composers
become clearly different. So, components developers
work out on generic components whereas the
applications composers concentrate on the
application domain in assembling and in configuring
generic components available in business. Thus, a
component adheres to a component model, which
establishes the standard for the implementation and
the interoperability of the component. In such an
environment, where the development of components
tends to be more and more independent from their
re-use, it is necessary to have a deployment machine
which will allow assembly and to distribute
applications correctly with components whatever
their implementation may be. Figure 1 below
represents the deployment process of components-
based software which is constituted by several

activities in correlation. Thus, deploying a
component based software consists in distributing
components in specific locations and in managing
the constraints of placement, dependencies and
configuration. Once deployed, a software system is
available for use.

We propose a generic deployment framework.
By generic we understand, the fact of being able to
deploy any application regardless of the
implementation technology.

(1) Application modeling, concerns the
description of software architecture. It allows to
model for every application, the various components
which constitute it. For every composite or primitive
component, we can specify its assembly, its
constraints of dependences as well as its software
and material needs.

(2) Network domain modeling, concerns the
description of the locations network. It allows to
model for every domain, the various locations it
contains. For every location, we can specify the
offered material and software resources.

(3) Enterprise thesaurus modeling, allows to
model the similarity between the concepts used in a
specific enterprise or in a business domain.

(4) Strategy modeling, allows defining the
strategy used to deploy applications.

(5) In deployment processes many concepts
(application, domain, enterprise thesaurus and
strategy) are manipulated. It processes components
placements. It generates and assures the
deployment plan consistency and supplies the
specific deployment descriptor. It executes the
plan following specifics strategies to the execution
environment.

Placement is the association of an application
component and a domain node. A placement (Ci, Nj)
is valid if and only if all component Ci constraints
are satisfied by node Nj resources.

Deployment Plan, for an application A
composed of component C1 to Ci where i> 1 and for
a domain D formed from locations L1 to Lj where j>
1, the deployment plan is all the valid placements
(Ci, Lj). The placements are fulfilled by the
deployment planner which contains all data and all
necessary strategies to make the mapping viable.

The deployment plan (PIM), will be instantiated
generating in the deployment descriptor specific to
the execution platform (PSM), for instance, in
compliance with the EJB platform.

ICEIS 2009 - International Conference on Enterprise Information Systems

404

Figure 1: Generic deployment engine.

The plan execution is the orchestration of the
plan in a defined order. As for instance download,
install, activate and reinstall. Our team has
developed an environment for dynamic reinstallation
and adaptation DYVA (Ketfi et al., 2002). DYVA
covers a part of plan execution.

4 CONCLUSIONS

Deployment becomes more and more complex when
deploying large systems on large infrastructures.
On the one hand, any ad' hoc solutions for deploying
monolithic or component based systems exist.
On the other hand, there is a new approach to
deployment technology. In recent years there have
been many works in development by academics
focusing on a new generation of systems. These
approaches enhance a technology transition. They
have shown the potential of using a model-driven
approach such as MDA.
The defined models are based on expressive and
simple abstractions so the application, the location,
the deployment process and its orchestration can be
built on top of that common foundation.
We hope that the deployment framework
architecture we propose is a contribution to this new
generation of systems.

At the moment we implemented the module of
application modeling, the module of network
domain modeling and the protocol of plan
generation by taking into account the strategy by
default. In the future works we plan to add a
strategies specification language more elaborated
and benefiting from various approaches.

REFERENCES

Alliance, OSGI Service Platform, Release 3, IOS Press,
Inc., 2003.

Bures, T., Hnetynka, P., Plasil, F., SOFA 2.0: Balancing
Advanced Features in a Hierarchical Component
Model, SERA’06, Fourth International Conference on
Software Engineering Research, Management and
Applications 09-11 Aug. 2006, p. 40 – 48.

Edwards, G., Deng, G., Schmidt, D. S., Gokhale, A.,
Natarajan, B., Model-driven Configuration and
Deployment of Component Middleware Publisher
/Subscriber Services, Proceedings of the 3rd ACM
International Conference on Generative Programming
and Component Engineering, Vancouver, CA, October
2004.

Hall, R. S., Heimbigner, D., Wolf, A. L., A cooperative
approach to support software deployment using the
software dock, Proceedings of the 21st international
conference on Software engineering, p.174-183, May
16-22, 1999, Los Angeles, California, United States.

CHALLENGES AND PERSPECTIVES IN THE DEPLOYMENT OF DISTRIBUTED COMPONENTS-BASED
SOFTWARE

405

Hnetynka, P., A model-driven environment for component
deployment, Software Engineering Research,
Management and Applications, 2005. Third ACIS
International Conference on 11-13 Aug. 2005, p. 6 –
13.

Ketfi, A., Belkhatir, N., Cunin, P.Y, Adaptation
Dynamique Concepts et Expérimentations
Proceedings of the 15th International Conference on
Software & Systems Engineering and their
Applications ICSSEA’02, Paris, France, December
2002.

Lowy, J., COM and .NET component services, O’Reilly &
Associates, 2001.

OMG, CORBA Component Model Specification
http://www.omg.org/docs/formal/06-04-01.pdf,
Version 4.0, Technical Report, April 2006.

OMG, Deployment and Configuration of Component-
based Distributed Application Specification, Version
4.0, Technical Report, April 2006.

OMG, Model Driven Architecture, OMG Document
ormsc/05-04-01, 2005.

SUN, Enterprise Java Bean, Adress = http://java.sun.com,
Path = /products/ejb/.

ICEIS 2009 - International Conference on Enterprise Information Systems

406

