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Abstract: Today's multi-dimensional business or OnLine Analytical Processing (OLAP) databases have little support 
for sensitivity analysis. Sensitivity analysis is the analysis of how the variation in the output of a 
mathematical model can be apportioned, qualitatively or quantitatively, to different sources of variation in 
the input of the model. This functionality would give the OLAP analyst the possibility to play with ``What 
if...?''-questions in an OLAP cube. For example, with questions of the form: ``What happens to an 
aggregated value in the dimension hierarchy if I change the value of this data cell by so much?'' These types 
of questions are, for example, important for managers that want to analyse the effect of changes in sales, 
cost, etc., on a product's profitability in an OLAP sales cube. In this paper, we describe an extension to the 
OnLine Analytical Processing (OLAP) framework for business analysis in the form of sensitivity analysis. 

1 INTRODUCTION 

In this paper, a new OLAP database operator is 
described that supports the analyst in answering 
these managerial sensitivity analysis questions in an 
OLAP data cube. For example, an analyst while 
navigating an OLAP cube, might be interested in the 
question: How is the profit in the year 2008 for a 
certain product affected when its unit price is 
changed ceteris paribus (c.p.) with one extra unit or 
one percent in the sales model? Such question might 
be `dangerous', when the change is not caused by a 
variable in the base cube, but by a variable on some 
intermediate aggregation level in the cube. The latter 
situation makes the OLAP database mathematically 
inconsistent. 

Consistency in a set of OLAP equations is not 
trivial because by changing a certain variable (c.p.), 
a system of equations can become inconsistent. For 
instance, missing data, dependency relations, and the 
presence of non-linear relations in the business 
model can cause an OLAP system to become 
inconsistent. It is therefore important to investigate 
the criteria for consistency and solvability in the 

OLAP context. Our novel OLAP operator corrects 
for such inconsistencies such that the analysts can 
still carry out sensitivity analysis in the OLAP 
context. Moreover, we elaborate on two important 
mathematical conditions for sensitivity analysis in 
the OLAP context namely consistency and 
solvability of the system of OLAP equations. For 
this purpose, we distinguish between linear systems 
of OLAP equations, associated with dimension 
hierarchies, and nonlinear systems of OLAP 
equations, generally associated with business 
models. 

Sensitivity analysis in the OLAP context is 
related to the notion of comparative statics in 
economics or sensitivity analysis in engineering. 
Where the central issue is to determine how changes 
in independent variables affect dependent variables 
in an economic model (Samuelson, 1941). 
Comparative statics is defined as the comparison of 
two different equilibrium states solutions, before and 
after change in one of the independent variables, 
keeping the other variables at their original values. 
The basis for comparative statics is an economic 
model that defines the vector of dependent variables 
y1, y2, …, ym as functions of the vector of 
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independent variables x1, x2, …, xn . In this paper we 
apply comparative statics in the OLAP context 
where we have a system of linear or nonlinear 
equations with dependent variables on an aggregated 
level of the cube, called non-base variables and 
independent variables on the base level, called base 
variables. 

This research is part of our continued work on 
extensions for the OLAP framework for business 
diagnosis. Current OLAP databases have limited 
capabilities for sensitivity and diagnostic analysis. 
The goal of our research is to largely automate these 
manual diagnostic discovery processes (Caron and 
Daniels, 2007). In (Sarawagi et al., 1998) a similar 
research approach is taken. 

The remainder of this paper is organized as 
follows. Section 2 introduces our notation for multi-
dimensional equations, followed by formal 
description of consistency and solvability of systems 
of OLAP equations in Section 3. In addition, we 
show that systems of OLAP equations are consistent 
and have a unique solution. In Section 4 the OLAP 
framework is extended with sensitivity analysis 
based on the consistency property. Subsequently, we 
briefly describe a software implementation of our 
model for OLAP sensitivity analysis. Finally, 
conclusions are discussed in Section 6.  

2 NOTATION AND EQUATIONS 

The multi-dimensional OLAP database is a 
framework used to provide business decision-makers 
with the ability to perform dynamic data analysis. 
With OLAP tools, users gain access to the data 
warehouse. Decision-makers tend to have questions 
that are often multi-dimensional in nature and 
demand fast access to large amounts of aggregated 
data. A typical business question might be: ``What 
was the profit of product A this year, in region X, 
per sales office, compared with the previous version 
of the product, compared to the targeted profit?'' For 
decision-making purposes it might be necessary that 
the answer to this question is explored further, for 
example on the quarter, month and week level. This 
functionality is provided by OLAP. 

Two important data schemata for the design of a 
multi-dimensional database are the star schema and 
the snowflake schema. OLAP typically uses a star 
schema, where data is stored in fact tables and 
dimension tables. In a star schema, one central fact 
table is linked via foreign keys with several 
dimension tables. Each dimension has its own single 
table with a smaller set of data. The other important 

multi-dimensional design approach, the snowflake 
schema, is a non-redundant database design that 
characterises itself by the normalized data approach 
where data is further split into additional dimension 
tables (Han and Kamber, 2005). 

In both schemata data is organized using the 
dimensional modelling approach, which classifies 
data into measures (i.e., facts) and dimensions. 
Measures are numeric and dimensions are 
categorical data types. Measures like are the basic 
units of interest for analysis. Dimensions correspond 
to different perspectives for viewing measures. 
Dimensions are usually organized as dimension 
hierarchies, which offer the possibility to view 
measures at different dimension levels (e.g. month 
p  quarter p  year is a hierarchy for the Time 
dimension). Aggregating measures up to a certain 
dimension level, with functions like sum, count, and 
average, creates a multidimensional view of the data, 
also known as the data cube. A number of data cube 
operations exist to explore the multidimensional data 
cube. 

Here we use a generic notation for multi-
dimensional data schemata that is particularly 
suitable for combining the concepts of measures, 
dimensions, and dimension hierarchies as described 
in (Caron and Daniels, 2007). Therefore, we define a 
measure y as a function on multiple domains: 

1 2 1 2
1 2:n ni i i ii i

ny D D D× × × →K K R  (1) 

Each domain iD has a number of hierarchies ordered 

by max0 1 i
k k kD D Dp pKp , where 0

kD  is the lowest 

level and maxi
kD  is the highest level in maxi

kD . A 
dimension’s top level has a single level instance 

{ }max Alli
kD = . For example, for the time dimension 

we could have the following hierarchy 0 1T Tp  
2Tp , where { }2T All-T= , { }1T 2000,2001= , and 

{ }2 Q1,Q2,Q3,Q4T = . A cell in the cube is denoted 
by 1 2( , , , )nd d dK , where the 'skd  are elements of 
the domain hierarchy at some level, so for example 
(2000, Amsterdam, Beer) might be a cell in a sales 
cube. Each cell contains data, which are the values 
of the measures y like, for example, 211sales (2000, 
Amsterdam, Beer). The measure’s upper indices 
indicate the level on the associated dimension 
hierarchies. If no confusion can arise we will leave 
out the upper indices indicating level hierarchies and 
write sales (2000, Amsterdam, Beer). Furthermore, 
the combination of a cell and a measure is called a 
data point. The measure values at the lowest level 
cells are entries of the base cube. If a measure value 
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is on the base cube level, then the hierarchies of the 
domains can be used to aggregate the measure 
values using aggregation operators like SUM, 
COUNT, or, AVG. 

By applying suitable equations, we can alter the 
level of detail and map low level cubes to high level 
cubes and vice versa. For example, aggregating 
measure values along the dimension hierarchy (i.e. 
rollup) creates a multidimensional view on the data, 
and de-aggregating the measures on the data cube to 
a lower dimension level, creates a more specific 
cube. 

Here we investigate the common situation where 
the aggregation operator is the summarization of 
measures in the dimension hierarchy. So y is an 
additive measure or OLAP equation (Lenz and 
Shoshani, 1997) if in each dimension and hierarchy 
level of the data cube: 

1 1 1

1
( , , ) ( , , )q n q n

Ji i i i i i
j

j
y a y a+

=
= ∑K K K K

K K K K  (2) 

where 1q
ka D +∈ , q

j ka D∈ , q is some level in the 
dimension hierarchy, and J represents the number of 
level instances in q

kD . An example equation 
corresponding to two roll-up operations reads: 

212

4 20
102

1 1

sales (2001,All-Locations,Beer)

sales (2001.Q ,Country ,Beer).j k
j k= =

=

∑∑
 

3 SOLVABILITY 

In comparative statics in economics the central issue 
is to determine how changes in independent 
variables affect dependent variables in an economic 
model. Comparative statics is based on an economic 
model (i.e., a system of equations) that defines the 
vector of dependent variables y as functions of the 
vector of independent variables x. In the OLAP 
context we have a system of linear equations with 
dependent variables on an aggregated level of the 
cube, called non-base variables and independent 
variables on the base level, called base variables. A 
condition for the application of comparative statics 
is that the underlying system of equations is 
mathematical consistent. 

The data structure in an OLAP cube represents a 
system of additive equations in the form of a 
aggregation lattice (Han and Kamber, 2005). The 
top of the lattice is the apex cube max max maxi i iy K  and the 
bottom of the the lattice is represented by the base 

variables 00 0x K . The upset of a base variable in the 
lattice represents non-base variables on specific 
levels of aggregation in the OLAP cube. For 
example, the non-base variable 1 2 ( 1)p ni i i iy +K K is a 

parent of the non-base variable 1 2 p ni i i iy K K , 
somewhere in the lattice. Roll-ups can be alternated 
from one dimension to the next by the data analyst, 
resulting in multiple paths from a base variable to a 
non-base variable in the aggregation lattice. 

An example aggregation lattice is given for the 
variable sales ( 1 2 3i i iy ) from an example sales 
datacube in figure 1, where the indices represent the 
customer, product, and store dimension, 
respectively. In the lattice the variable 101y , which 
has a number of data instances, has instances of the 
root in its upset and instances of the variables 
{ 100y , 001y , 000x } in its downset. All non-base 
variables y are aggregated from instances of the base 
variables 000 (customer, product,store)x . The length 

of a path from a non-base variable 1 2 ni i iy K in the 
lattice to a base variable 00 0x K  is 1 2 ni i i+ + +K . 
Obviously, the sum of the indices of a non-base 
variable corresponds with the number of 
aggregations carried out. Non-base variable in the 
system of OLAP equations are the result of 
aggregation operators in the lattice structure. 
Moreover, a non-base variable in the lattice 
corresponds with a single equation expressed in a 
unique set of base variables. This property can be 
easily verified by substituting all equations in the 
downset of a non-base variable from its current level 
to the base level. 

A system of OLAP equations as in equation (2), 
where the functions are linear, can be written in 
matrix form as: 

Az = c (3) 
where A is an m×n coefficient matrix of constants, c 
is an m×1 vector of constants, and z is an n×1 vector 
of variables for which we need solutions. In the next 
section below, we discuss relevant matrix theory on 
the conditions under which equation (3) is consistent 
and solvable. Moreover, we transfer the matrix 
theory to a system of implicit equations with 
independent and dependent variables that 
corresponds to a system of additive OLAP 
equations. This system of equations lets us study the 
impact of a change in one or more base variables 
(c.p.) on a non-base variable. The matrix form of 
this system of equations is Az = 0; the matrix A is 
partitioned as [A1 A2], where A1 is the coefficient sub 
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matrix for non-base variables and A2 is the 
coefficient sub matrix for base variables. And the 
vector of variables z is partitioned in non-base 
variables y and base variables x as z' = [y x]. 

The equations of the OLAP aggregation lattice 
in (3) are rewritten in the following partioned matrix 
form: 

1 2A Ay x 0+ =  (4) 
where A1 is a m × n matrix of constants, A2 is a m × l 
matrix of constants, ny∈R  is vector of all non-base 
variables, from all levels in the aggregation lattice, 
for which solutions are needed, and 00 0 lx ∈K R  is a 
vector of base variables that are given. The above 
system of equations in (4) is the collection of all 
possible drilldown equations in the OLAP database 
by drilling down from the root of the lattice to the 
base over all possible dimensions and dimension 
hierarchies. This system of equations is clearly 
overspecified, because a non-base variable in the 
lattice might be the right hand side in multiple 
drilldown equations. In fact, each possible drilldown 
from one dimension to the next, results in an 
additional equation for a non-base variable. From 
the substation argument above it follows that 
equation (4) has a unique solution y for a given set 
of base variables x. 

This implies 1 2 1( | ) ( )rank A A rank Ax− = , see 
theorem 6.1 from (Schott, 1997), for all x so the 
columns of A2 are linear combinations of the 
columns of A1, so 2 1A A Z=  where a Z is a n × l 
matrix of constants. 

Furthermore, since the solution for y is unique 
we have 1( )rank A n=  because the null space of A1 
is 1( ) { }N A 0= . So also Z is unique since 

1 1 *A Z A Z=  would imply 1( *) 0A Z Z− =  and 
because 1( ) { }N A 0= , we have *Z Z= . It is also 
easy to show that  

1 2Z A A−=  (5) 

where 1A−  is the left generalized inverse (e.g. the 
Moore-Penrose inverse) of 1A . This exists because 

1( )rank A n=  and satisfies 1 1 nA A I− = , see theorem 
6.6 from (Schott, 1997). 

To show (5) note that 1 2A Z A=  implies: 

1 1 2 1 1 1 2 1 2A A A A A A A A Z A− −= = =  (6) 

So 1 2A A− is another solution of 1 2A Z A=  and there-
fore 1 2Z A A−=  by uniqueness. Because of (6) it can 
be shown that the OLAP aggregation lattice always 

has a unique solution for the non-base variables for a 
given a set of base variables.  

4 SENSITIVITY ANALYSIS 

Because a system of OLAP equations is uniquely 
solvable, a change in a single base variable (c.p.) in 
the aggregation lattice will result in a new unique 
solution for the non-base variables. If a non-variable 

1 ( , , )q ni i i
jy aK K

K K  is changed with some magnitude 
(c.p.) the aggregation lattice will obviously become 
inconsistent because its down set variables are not 
changed accordingly. This is demonstrated with the 
following 2 example equations that are derived from 
the aggregation lattice in Figure 1 where an instance 
of the variable 101y  is changed with some Δ: 

111 101

1

101 100

1

1. ( , , )

2. ( , , ) ( , , )

J

j
j

J

j
j

y y a

y a y a

=

=

+ Δ = + Δ

+ Δ ≠

∑

∑

K K

K K K K

. 

In the first equation we see that variables in the 
upset of 101y incorporate the change resulting in a 
consistent equation. However, in the second 
equation we see that the system becomes 
inconsistent, because in the down set of 101y , i.e. the 
variables on the right hand side of the equations, 
remain on their initial values. In that case, sensitivity 
analysis is ‘dangerous’ because it results in an 
inconsistent system of OLAP equations.  

101y

000x

010y 100y

011y 110y

111y

001y

store
customer

product

 
Figure 1: Aggregation lattice for the sales cube. 

Now we have to correct the down set of the variable 
1 ( , , )q ni i i

jy aK K
K K  for the change from each 

associated lower level aggregation level to the base 
cube level. This correction makes the sensitivity 
procedure again useful for the complete aggregation 
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lattice. In the correction procedure all variables in 
the down sets of siblings of 1 q ni i iy K K ( , , )jaK K  have 
to remain on their norm values and one variable on 
each level of the down set of 1 ( , , )q ni i i

jy aK K
K K  has 

to be corrected with the specified change. The 
variables on the base cube level are corrected in the 
final step.  

5 SOFTWARE IMPLEMENTAION 

In this section, we shortly present the most important 
concepts of the prototype software implementation 
of the sensitivity analysis model in MS Excel/ 
Access in combination with Visual Basic. This 
application is initially programmed to perform 
experiments and analyses necessary for a case study. 
Fig. 2 depicts the UML use case of the program for 
OLAP sensitivity analysis and Fig. 3 depicts the 
GUI in an MS Excel environment. 
 For the user it is important to have an interface 
that is easy in use. An organized lay-out will help 
the user in getting maximum results. Another 
important functionality of the prototype is the 
dynamic environment. Different databases, 
measures, dimensions and tables should all be 
handled in an easy consistent manner. With this 
dynamic prototype, the most important aspect of the 
program, the sensitivity analysis, should not be 
forgotten. The user needs a set of tools, which can 
be used in order to perform the sensitivity analysis. 
Features like the undo operation and error handling, 
must also be taken into account. In order to get a 
working prototype in Microsoft Excel, some 
constraints must be made. The first constraint 
applies to the input of the program. The database 
must be a Microsoft Access database or some other 
database that be accessed with ODBC, that is 
modelled via a star schema. From this database, one 
single measure can be selected for analysis. In order 
to keep the data in the database valid, all sensitivity 
analysis operations are done on a copy of the 
original database. This makes sure that the original 
data will not be modified and the user is able to 
‘play’ with the data as much and extreme as he or 
she wants. The copy has to be made on the 
background without the notice of the user. After 
each sensitivity analysis, the selected and changed 
cell will be highlighted. From this point, a new 
sensitivity analysis can be made by the business 
analyst. 

6 CONCLUSIONS 

In this paper, an extension in the OLAP framework 
has been developed and implemented in a prototype 
application. The model for sensitivity analysis 
describes the theoretical framework of this subject. 
The prototype software implementation for 
sensitivity analysis is an additional tool for business 
analysts that want to analyse their company data 
interactively. With this tool, they are able to ‘play’ 
with the data by doing sensitivity analyses.  
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APPENDIX 

Sensitivity Analysis Program

User

Open Database

Select Dimensions «uses»

«uses»

Create View

Define Delta

«extends»

«extends»

«uses»

Select Record

Process Update

Find Records to
Update

«uses»

Create Query

«uses»

«uses»

Stop Program

Get Base Variables

Create Query

Substract Measure
and Dimensions

«uses»

OLAP Database

Roll-Up

Drill-Down

Slice and Dice

Select Measure

«uses»

«uses»

«uses»

«extends»

Perform
Sensitivity Analysis

«extends»

«extends»

«uses»

«extends»

Close Program

Reset

Undo

«extends»

 
Figure 2: Use cases for the OLAP sensitivity analysis application. 

 
Figure 3: GUI OLAP sensitivity analysis application. 
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