

PSO-BASED RESOURCE SCHEDULING ALGORITHM
FOR PARALLEL QUERY PROCESSING ON GRIDS

Arturo Pérez-Cebreros, Gilberto Martínez-Luna and Nareli Cruz-Cortés
Database and Information Systems Laboratory, Center for Computer Research

National Polytechnic Institute, Av. Juan Dios Batiz s/n, Zacatenco 07738, Mexico City, Mexico

Keywords: Particle Swarm Optimization, Genetic Algorithms, Grid, Database, Query Scheduler.

Abstract: The accelerated development in Grid computing has positioned it as promising next generation computing
platforms. Grid computing contains resource management, task scheduling, security problems, information
management and so on. In the context of database query processing, existing parallelisation techniques can
not operate well in Grid environments, because the way they select machines and allocate queries. This is
due to the geographic distribution of resources that are owned by different organizations. The resource
owners have different usage or access policies, cost models, varying loads and availability. It is a big
challenge for efficient scheduling algorithm design and implementation. In this paper, a heuristic approach
based on particle swarm optimization algorithm is adopted to solving parallel query scheduling problem in
grid environment.

1 INTRODUCTION

The emerging paradigm of grid computing and the
construction of computational grids are making the
development of large scale applications possible
from optimization and other fields (Foster, 1998).
However, this have increased the necessity of novel
applications that require close and potentially
sophisticated interaction and data sharing between
resources that may belong to different organizations.
Examples include the bio-informatics labs across the
world sharing their simulation tools, experimental
results; as well as the use of the donated spare
computer time of thousands of PCs connected to the
Internet in order to solve computation problems.
Hence, the question is how database management
systems and technologies can best be deployed or
adapted for be used in such environments. As a
consequence of this, the databases technologies have
led to many proposals that try to integrate databases
with Grid applications (Alpdemer, 2003; Liu, 2003;
Narayanan, 2003). In particular, query processors for
Grid-enabled databases, such as (Alpdemer, 2003;
Smith, 2003) can provide effective declarative
support for combining data access with analysis to
perform non-trivial tasks, and are well suited for
intensive applications as they naturally care for

parallelism. This is due to the fact that many
complicated tasks can be effectively encapsulated
and specified by databases queries. However, one of
the more difficult tasks for the efficient exploitation
of parallelism in such query processors; it is
scheduling a large number of queries, in order to
achieve better performance. For the reason that
many computing resources are geographically
distributed under different ownerships, each having
their own accesses policy, cost, and various
constraints. Unlike scheduling problem in
distributed systems, this problem is much more
complex as new features of Grid systems such as its
dynamic nature and the high degree of heterogeneity
of tasks and resources must be tackled.

Systems like OGSA-DQP are capable of
performing query processing over heterogeneous
local database management systems, like mySQL
and Oracle. Such systems may employ a number of
machines to run the query processing tasks. Clearly,
these machines can be heterogeneous as well, in
terms of their computational capacity and
characteristics. For instance, some may have high-
speed interconnections, interfaces, operating
systems, a larger amount of memory or a low power
CPU. This kind of heterogeneity environment (HE)
has motivated our project.

131Pérez-Cebreros A., Martínez-Luna G. and Cruz-Cortés N. (2009).
PSO-BASED RESOURCE SCHEDULING ALGORITHM FOR PARALLEL QUERY PROCESSING ON GRIDS..
In Proceedings of the 11th International Conference on Enterprise Information Systems - Databases and Information Systems Integration, pages
131-137
DOI: 10.5220/0001986901310137
Copyright c© SciTePress

In this paper, the Particle Swarm Optimization
(PSO) is employ to solve the scheduling problem in
Grid enabled databases environment. The
practicality of the approach lies in the fact that
resource scheduling remains NP-complete even
when an unlimited number of processors is available
(Chrétienne, 1992), as a logical consequence of the
NP-completeness of scheduling, the scientific
community has been eager to investigate efficient
scheduling algorithms based on heuristics or
approximation techniques that produce near optimal
solutions. In practice, scheduling must rely on these
algorithms due to the intractability of the problem.

This paper is organized as follows. We present
the problem in Section 2. A Particle Swarm
Optimization (PSO) is introduced in Section 3. We
compare our work with others in Section 4.
Experiment settings and results are discussed in
Section 5 and some conclusions are given in Section
6.

2 PROBLEM DESCRIPTION

It is well know that, even in homogeneous systems,
choosing the maximum degree of parallelism not
only harms the efficiency of resource utilization, but
can also degrade the system's performance
(Wilschut, 1992). Therefore, on Grid enabled, it
holds as well.

Furthermore, the problem of query partition
parallelism is discussed under the viewpoint of
sending query fragments to many databases and
executing the query in parallel. So the main focus is
on executing a query fragment at any database as
long as the cost for query execution is minimal.
Therefore, it is clear that some optimizations and
restrictions for data access and query execution are
required. Unfortunately, finding a schedule of
minimal length is in general a difficult problem. This
becomes intuitively clear as one realizes that an
optimal schedule is a trade-off between high
parallelism and low inter-machine communication.
On the one hand, query fragments should be
distributed among the machines in order to balance
the workload. On the other hand, the more the query
fragments are distributed, the more inter-machine
communications.

Another problem of resource selection for a
query scheduler on emergent Grids is the budget; the
integration of computational economy as part of
scheduling system greatly influences the way
computational resources are selected to meet the
user requirements. The users should be able to

submit their queries along with their requirements to
a scheduling system.

Moreover, many of the resource management
systems (e.g. (Stonebraker, 1994; Heiser, 1998;
Amir, 2000; Buyya, 2000)) support a single model
for resource trading, provide their own programming
model and are implemented as monolithic systems.
To overcome these limitations, the modern Grid
computing systems use a layered architecture. Users
and owners's resources have their own expectations
and strategies for being part of the Grid (Buyya,
2001). In particular, the resource consumers adopt
the strategy of solving their problems at low cost
within a required time frame. The resource providers
adopt the strategy of obtaining best possible return
on their investment while trying to maximize their
resource utilization by offering a competitive service
access cost in order to attract consumers.

Indeed, the grid enabled database environment is
dynamic and, also the number of resources to
manage and the number of queries to be scheduled.
These queries are usually very large making thus the
problem a complex large scale optimization problem
(as several optimization criteria such as response
time and/or economic cost must to be matched).

3 PSO QUERY SCHEDULER
ON GRIDS

3.1 Solution Approach

The complexity of the process of resource selection
and creating a schedule S for a query graph G on a
set of databases D is a key problem in emergent
computational Grids. It should be obvious that
generally there is more than one possible schedule
for a given graph and a set of databases (which of
course would have consequences for the scheduling
of the other queries). Due that the usual purpose in
employing a parallel system is the fast execution of a
program; the usual aim is to produce a schedule of
minimal length.

The algorithm proposed here receives a query
plan which can be partitioned into sub-plans that can
be evaluated on different machines. In our
simulation, we assume the existence of a query
optimizer which first constructs a single-node plan,
and then transforms the single-node plan into a
multi-node one, in order to reduce the search space
(Kossman, 2000).

For example, exchange operators encapsulate the
parallelism and involve communication (Graefe,

ICEIS 2009 - International Conference on Enterprise Information Systems

132

1990), and they naturally define the boundaries of
different sub plans. Let us assume there are two
databases, each containing one table, namely Orders
and LineItem. The nodes of the plan are query
operators (scans, projects, joins, and exchanges or
data communication). These operators may be
executed on different machines in parallel. But we
assume that scans are not parallelisable, because
data from any single table is accessed in an existing
database. So suppose that the optimizer decides,
using PSO Query Scheduler proposed here, that the
join of this example, implemented as a hash join
algorithm, should be cloned at any site, in order to
deal with the second stage, where the single node
plan is parallelized and how to improve it.

In particular, in grid-enabled databases
considered here, a query is decomposed into a set of
partitions S. Define |S| to be the number of partitions
in the set S and si to be the ith partition, then S = {si,
0 ≤ i < |S|}. A grid-enabled database consists of a set
of heterogeneous databases D. Define |D| to be the
number of databases in the set D an mj to be the jth
database, then M = {mj, 0 ≤ j < |D|}. The estimated
expected execution time of partition si on database
mj is Tij, where 0 ≤ i < |S| and 0 ≤ j < |D|.

To formulate this problem under our simulation
model, an estimation of the computational load of
each partition, the computing capacity of each
resource, and an estimation of the prior load (CPU,
Network) of each one of the resources are required.
Thus, we make the usual assumption that we know
the computing capacity of each resource, the
estimation or prediction of the computational
necessities (workload) of each partition, and the load
of prior work of each resource. This assumption is
typically made for the current state-of-the-art in
Heterogeneous Computing systems when studying
the matching and scheduling problem (Freund, 1994;
Singh, 1996; Shroff, 1996). Finding the estimated
expected execution times for subtasks is another
research problem, which is outside the scope of this
paper.

3.2 Particle Swarm Optimization

PSO is a population-based search algorithm and is
initialized with a population of random solutions,
called particles (Hu, 2004). Unlike in other
evolutionary computation techniques, each particle
in PSO is also associated with a velocity. Particles
fly through the search space with velocities which
are dynamically adjusted according to their
historical behaviour.

In particular, PSO learns the scenario and uses it
to solve optimization problems. Thus, each single
solution is like a 'bird' in the search space, which is
called 'particle'. All particles have fitness values
which are evaluated by the fitness function to be
optimized, and have velocities which direct the
flying of the particles. So the particles fly through
the search space by following the particles
(solutions) and then searches for optima by updating
each generation, following equations will be used to
compute the new elements of velocity and position
vectors:

vid(k+1)=X[wk(k)vid(k)+c1r1[pid(k)-

xid(k)]+ c2r2[pgd(k)-xid(k)]]

 (1)

xid(k+1)=xid(k)+vid(k+1) (2)

where wk is the inertia weight, which represents the
particle's preference to continue moving in the same
direction it was going on the previous iteration,
introduced in (Shi, 1998), X is the constriction
coefficient, which serves as a balancing factor for
the local and global search, introduced in (Clerc,
2002), c1 and c2 are cognitive and social factors
respectively, often set equal to 2, k represents the
iteration number, r1 and r2 are random numbers
between [0,1], i(i=1,2,...,N) is the index representing
the particles in the swarm and d (d=1,2,...n) is the
index for dimensions of searching space. We define
one particle as a possible solution in the population,
and the fitness function is the minimum time/cost
value. The main PSO algorithm is given below:

begin
 for i=1 to number of particles do
 Initialize position and

 velocity randomly;
 Initialize the neighborhood;
 end
 repeat
 compute the fitness value

 G(xi);
 for i=1 to number of

 particles do
 if G(xi)>G(xpbi) then
 for d=1 to number

 of dimensions do
 xpbid=xid;
 end
 end
 select the local best

 position in the
 neighborhood lbi;

PSO-BASED RESOURCE SCHEDULING ALGORITHM FOR PARALLEL QUERY PROCESSING ON GRIDS.

133

 for d=1 to number of
 dimensions do

 w=rand();
 vid=w * vid +

 cir1(pbxid-xid) +
 c2r2(lbid-xid);
 xid=xid+vid;
 end
 end
 perform mutation;
 until Maximum number of

 generations;
 scheduling resources;
end

From a higher level point of view our approach

transform an existing plan to a more efficient, by a
PSO technique, modifying the set of resources
allocated to a part of the query plan.
Transformational approaches to query optimization
have already been employed for constructing query
plans (Ioannidis, 1996), however not for scheduling
resources.

4 RELATED WORK

There is one previous work (Gounaris, 2006) that
deals with the scheduling of resources in
heterogeneous environments to support arbitrary
degrees of partition parallelism; however, it
mitigates the problem of devising a near optimal
workload distribution of tuples among the selected
databases. In other words, they assume that all the
available machines are similar in terms of workload,
so they simplified the problem of resource
scheduling by neglecting the problems of a near
optimal distribution due to its NP-hard complexity.

In the literature, different approaches can be
found that relate to ours in certain ways. Due to its
theoretical and practical relevance, the evolutionary
computing research community has started to
examine the Grid resource scheduling (Di, 2004;
Abraham, 2000; Zomaya, 2001; Meijer, 2004;
Braun, 2001). However, the existing approaches in
the literature show several limitations: in some
works just the uni-objective case is considered and
usually either concrete grid environments.
Moreover, the schedulers's performance has been
studied only on small size instances. Dynamic
aspects of this problem have not been addressed so
far to Grid enabled databases environments.

Particularly in the database field, distributed
query processing has mostly been influenced by
some pioneering systems. The most influential,

System R* (Mackert, 1986), but they simplified the
problem of resource scheduling by neglecting the
benefits of partitioned parallelism. In other words,
the data are retrieved from a single site only, and are
joined on a single site, which is either the site of one
of the inputs or the site that asked for the data.
Distributed Ingres (Epstein, 1978) took a step
forward; they used a fragment and replicate query
processing strategy. A query is partitioned into
equal-sized fragments, each fragment is sent to a
computer processor, and all other relations are
replicated in all computer processors, however,
different machines may have different processing
speeds and/or different access methods for accessing
required data, thus equal-distribution of fragments
may lead to load imbalance. In (Rahm, 1995)
discusses an approach for load balancing employing
partitioned parallelism, although it refers to
completely homogeneous environments, it does not
force the system to employ all the available nodes
when there are not needed. Other existing techniques
for parallel and distributed databases (Garofalakis,
1997; Mayr, 2003, DeWitt, 1986) do not consider
partitioned parallelism or completely ignore the
resource selection phase by assuming a fixed set of
resources then they try to schedule tasks over these
resources. In other words, they also assume
homogeneous and stable environments in terms of
capabilities, connection speed and ownership.

5 EXPERIMENTAL SETTINGS
AND RESULTS

For the evaluation of our proposal; we built a
simulator by extending the cost model in (Sampaio,
2002), which is a detailed and validated simulator
developed for parallel object database systems, it has
been adapted to operate in a heterogeneous and
autonomous environment and has been incorporated
in the query engine.

In our simulation, we define 156 cost models,
each one is a database; each one estimates the
response time by estimating the cost of each
operator instance separately in time units. The
communication costs are also considered; these costs
are composed of fixed costs per message, per-byte
costs to transfer data, and CPU costs to pack and
unpack tuples. Each database in our simulation is
heterogeneous because we change several system
parameters, which are described in Table 1.

We assumed that the processing speeds of each
machine/resource, budget(G$) and network of each

ICEIS 2009 - International Conference on Enterprise Information Systems

134

query are known. Hence, Expected Time to
Compute matrix (ETC) is updated by the time units
that are generated by our cost models; where the
position ETC[i][j] indicates the expected execution
time of partition i in machine m. This ETC matrix is
needed in order to compute our fitness function.

Table 1: System parameters.

Description Unit
Seek time of disk s

Time to probe hash table s
Size of the network packet bytes

Network bandwidth Mb/s
Size of the exchange producer cache tuples
Size of the exchange consumer cache tuples

Time to insert into hash table tuples

Table 2: Tables from TPC-H.

Name Short Name Cardinality Tuple Size
Part P 200,000 159

PartSupp PS 800,000 144
Orders O 1,500,000 104

LineItem L 6,000,000 112
Supplier S 10,000 159

Table 3: Parameter settings of PSO and GA algorithm.

Name Parameter
description

Parameter value

PSO Size of swarm 100
Self-recognition
coefficient (c1)

2

Social coefficient
(c2)

2

Weight (w) 0.9 0.4
Max velocity 100

GA Size of population 100
Probability of

crossover
0.8

Probability of
mutation

0.03

Scale for
mutations

0.1

For the experiment, we used a variety of queries,

which makes relations from Table 2, and all queries
make use of the TPC-H database. Finally, we totally
submitted 4000 queries consecutively to the Grid in
two stages; and the computational complexity of all
these queries was randomly chosen (about three to
five joins). In first stage, we submitted 2000 queries
to the Grid and the queries were scheduled by our
PSO Query Scheduler algorithm. After the first 2000
queries were all finished, we submitted the second
2000 queries that were allocated with the Genetic
Query Scheduler (Di, 2004).

Thus, we compared the performance of PSO
algorithm with Genetic algorithm (GA) that has
many similarities. The experimental parameter
settings of PSO and GA algorithms are described in
Table 3.

Figure 1: Total no. of queries in execution during time
optimization strategy.

Figure 2: Total no. of queries in execution during cost
optimization strategy.

In our experiments, this randomly generated
scenario was used for two reasons: (1) it is desirable
to obtain data that demonstrate the effectiveness of
the approach over a broad range of conditions, (2) it
is not clear what characteristics a “typical”
heterogeneous computing queries would exhibit. So
we conducted experiments for two different
optimization strategies:

1. Optimize for time (produce results as early
as possible).

2. Optimize for cost (produce results by
deadline, but reduce cost)

The number of queries in execution on resources
(Y-axis) at different times (X-axis) during the
experimentation is shown in Figure 1 and 2 for Time
and Cost Optimization strategies respectively.

For example, in bioinformatics databases, this
provides consumers the ability to trade-off between
time frame and cost that they would like to invest for
solving the problem in hand. When the deadline is
too tight and results are needed at the earliest
possible time, then consumers should be prepared to
spend more money. This can be shown in Figure 3,

PSO-BASED RESOURCE SCHEDULING ALGORITHM FOR PARALLEL QUERY PROCESSING ON GRIDS.

135

the amount of budget consumed by Cost
Optimization strategies.

Figure 3: The total amount spent during cost optimization
strategy.

6 CONCLUSIONS

Grid computing technologies are enabling the
creation of virtual enterprises for sharing distributed
resources and changing the way we compute,
communicate, and interact with database systems
and people. Current distributed database applications
operating in heterogeneous settings, like
computational Grids, tend to run queries with a sub
optimal degree of partitioned parallelism, with
negative consequences for performance when the
queries are computation and data intensive. On the
fly creation of Internet-scale virtual computing
environments is becoming more of a reality than
dream. Hence, the system managing resources in this
complex environment need to be smart, adaptable to
changes in the environment and user requirements.
At the same time, they need to provide a scalable,
controllable, measurable, and understandable policy
for management resources. The main contribution of
this work is the proposal of PSO resource scheduler
that allows a near optimal degree of partitioned
parallelism so as to complete the queries in a
minimum time as well as utilizing the resources in a
computational economy approach and compare it
with genetic algorithm under the same condition. To
the best of our knowledge, this is the first such
proposal.

From the simulated experiment, the results
demonstrate that PSO algorithm can get better effect
for a large scale optimization problem. Nowadays
we are working with more complex scenarios, such
as scenarios with changing levels of contention.
Finally, another research direction is to create
different heuristic based algorithms for problems
arising in grid computing.

ACKNOWLEDGEMENTS

The first author gratefully acknowledges support
from CONACyT through a scholarship to pursue
studies at CIC-IPN’s Computer Science Department.
The second author acknowledges support from SIP-
IPN through project 20091245 and 20091317. The
third author acknowledges support from SIP-IPN
through project 20091712.

REFERENCES

Abraham, A., Buyya, R., and Nath, B., 2000. Nature's
heuristics for scheduling jobs on computational grids.
In the 8th IEEE Int. Conference on Advance
Computing and Communications. India.

Alpdemir, N., Mukherjee, A., Paton, N.W., Watson, P.,
Fernandes, A.A.A., Gounaris, A., and Smith, J.,
2003. Service-based distributed querying on the grid.
In Proc. Of ICSOC, pp. 467-482.

Amir, Y., Awebuch, B., Barak, A., Borgstrom, S., Keren,
A., 2000. An opportunity cost approach for job
assignment in a scalable computing cluster. IEEE
Transactions on Parallel and Distributed Systems
11(7):760-768.

Braun, T.D., Siegel, H.J., Beck, N., Bölöni, L.L.,
Maheswaran, M., Reuther, A.I., Robertson, J.P.,
Theys, M.D., and Yao, B., 2001. A comparison of
eleven static heuristics for mapping a class of
independent tasks onto heterogeneous distributed
computing systems. Journal of Parallel and
Distributed Computating, Vol 61, No 6, p. 810-837.

Buyya, R., Abramson, D, Giddy, J., 2001. A case for
economy Grid architecture for service-oriented Grid
computing. In proceedings of the International Parallel
and Distributed Processing Symposium. 10th IEEE
International heterogeneous Computing Workshop,
CA. IEEE Computer Society Press: Los Alamitos, CA.

Buyya, R., Abramson, D, Giddy, J., 2000. An economy
driven resource management architecture for global
computational power Grids. PDPTA '00, In
proceedings of the 2000 International Conference on
Parallel and Distributed Processing Techniques and
Applications. CSREA Press.

Chrétienne, P., 1992. Task scheduling with interprocessor
communication delays. European Journal of
Operational Research, 57:348-354.

Clerc, m., Kennedy, J., 2002. The particle swarm-
explosion, stability and convergence in a
multidimensional complex space. IEEE Transactions
on Evolutionary Computation 6(1) 58-73 .

DeWitt, D.J., Gerber, R., Graefe, G., Heytens, M., Kumar,
K., and Muralikrishna, M., 1986. GAMMA- A high
performance dataflow database machine. In Proc. Of
the 12th VLDB Conf., pp. 228-237.

ICEIS 2009 - International Conference on Enterprise Information Systems

136

Di Martino, V., and Mililotti, M., 2004. Sub optimal
scheduling in a grid using genetic algorithms. In
Parallel Computing, Vol. 30, p. 553-565 .

Epstein, R., Stonebraker, M., and Wong, E., 1978.
Distributed query processing in a relational database
system. In Proc. Of the ACM SIGMOD Conf., pp. 169-
180.

Epstein, R., Stonebraker, M., and Wong, E., Distributed
query processing in a relational data base system,
1978. In proc. Of the ACM SIGMOD Conf., pp. 169-
180.

Foster, I., and Kesselman, C., 1998. The Grid – Blueprint
for a New Computing Infrastructure. Morgan
Kaufmann Publishers.

Freund, R.F., 1994. The challenges of heterogeneous
computing. Parallel Systems Fair at the 8th
International Parallel Processing Symp. IEEE
Computer Society, Cancun, Mexico, pp. 84-91.

Garofalakis, M., and Ioannidis, Y., 1997. Parallel query
scheduling and optimization with time- and space-
share resources. In Proc. Of VLDB, pp. 296-305.

Gounaris, A., Sakellariou, R., Paton, N.W., Fernandes,
A.A.A., 2006. A novel approach to resource
scheduling for parallel query processing on
computational grids. Distrib. Parallel Databases 19(2-
3),87-106.

Heiser, G., Lam, F., Russell, S., 1998. Resource
managment in the Mungi single-address-space
operating system. In proceedings of Australasian
Computer Science Conference, Perth, Australia, 4-6.
Springer.

Ioannidis Y., 1996. Query Optimization. ACM Computing
Surveys, vol. 28, no. 1.

Kossmann, D., 2000. The State of the art in distributed
query processing. ACM Computing Surveys, vol. 32,
no. 4, pp. 422-469,

Liu, D.T., Franklin, M., Parekh, D., 2003. GridDB: A
relational interface for grid. In ACM SIGMOD, ACM
Press, pp. 660-660.

Mackert, L.F., Lohman, G.M., 1986. R* optimizer
validation and performance evaluation for distributed
queries. In Proc. Of the 12th VLDB Conf. pp. 149-159.

Mayr, T., Bonnet, P., Gehrke, J., Seshadri, P., 2003.
Leveraging non-uniform resources for parallel query
processing. In 3rd IEEE CCGrid.

Meijer, M., 2004. Scheduling parallel processes using
Genetic Algorithms. Master thesis. Universitat van
Amsterdam, Faculteit der Natuurwetenschappen,
Wiskunde en Informatica.

Narayanan, S., Catalyurek, U., Kurc, T., Zhang, X., Saltz,
J., 2003. Applying database support for large scale
data driven science in distributed environments. In
Proc. Of GRID.

Rahm, E., Marek, R., 1995. Dynamic multi-resource load
balancing in parallel database systems. In 21th VLDB,
Conf. pp. 395-406.

Sampaio, S., Paton, N.W., Smith, J., Watson, P., 2002.
Validated cost models for parallel OQL query
processing. In Proc. Of OOIS, pp. 60-75.

Shi, Y., Eberhart, R.C., 1998. A modified particle swarm
optimizer. In Procedings of the IEEE Congress on
Evolutionary Computation, CEC, Piscataway, NJ. 69-
73.

Shroff, P., Watson, D. W., Flann, N.S., and Freund, R.F.,
1996. Genetic simulated anneling for scheduling data-
dependent tasks in heterogeneous environments. In
Proc. Heterogeneous Computing Workshop. IEEE
Computer Society, Honolulu, HI, pp. 98-104.

Singh, H., Youssef, A., 1996. Mapping and scheduling
heterogeneous task graphs using genetic algorithms. In
Proc. Heterogeneous Computing Workshop. IEEE
Computer Society, Honolulu, HI, pp. 86-97.

Smith, J., Gounaris, A., Watson P., Paton N.W. ,
Fernandes, and Sakellariou, 2003. Distributed query
processing on the Grid. International Journal of Hight
Performance Computing Applications, vol. 17, no. 4,
pp. 353.367.

Stonebraker, M., Devine, R., Kornacker, M., Litwin, W.,
Pfeffer, A., Sah A., Staelin, C., 1994. An economic
paradigm for query processing and data migration in
Mariposa. Proceedings 3rd International Conference
on Parallel and Distributed Information Systems,
Austin, TX, 28-30. IEEE Computer Society Press: Los
Alamitos, CA.

Wilschut, A.N., Flokstra, J., Apers, P., 1992. Parallelism
in a main-memory DBMS: The performance of
PRISMA/DB. In Proceedings of the 18th VLDB Conf.

Zomaya, A.Y., Teh, Y.H., 2001. Observations on Using
Genetic Algorithms for Dynamic Load-Balancing.
IEEE Transactions On Parallel and Distributed
Systems, Vol 12, No 9.

PSO-BASED RESOURCE SCHEDULING ALGORITHM FOR PARALLEL QUERY PROCESSING ON GRIDS.

137

