
ASSESSING DATABASES IN .NET
Comparing Approaches

Daniela da Cruz and Pedro Rangel Henriques
Department of Computer Science, University of Minho, Braga, Portugal

Keywords: Databases, LINQ, LINQDataSource, SQLDataSource, ObjectDataSource, Performance.

Abstract: Language-Integrated Query (LINQ) appeared recently as the new language of the.NET framework —is the
new kid of the town.
This query-language, an extension toC# andVisual Basic, allows the query expressions to benefit from the
features previously available only to imperative code — the rich metadata, IntelliSense, compile-time syntax
checking, and static typing.
In this paper, we intend to compare the methods provided by.NET to query databases (LINQ, SQL and
Object). This comparison will be done in terms of performance and in terms of the approach used. To guide
this comparison, a running-example will be used.

1 INTRODUCTION

When writing programs to implement database-
centered Information Systems (IS),operations to ac-
cess databasesare frequent and important, but inef-
ficient. The importance derives from the fact that al-
most all the work in a IS is based on transactions of
data to or from the database; the inefficiency is due to
the time inherent to read/write operations from/to the
disk.

This is even more critical in the context of Web
Information Systems (WIS), whereHTML pages and
WWW browsers are used to build the application inter-
face. In this case, the read/write operations increase
the traffic of data over the Web; this delay, in addition
to the above referred inefficiency of the data transfer-
ence operations between the central memory and the
disk, justifies the previous statement.

SQL–the Structured Query Language, appeared in
the early 70s (Codd, 1970; Chamberlin and Boyce,
1974) and ten years after became an international
standard—ANSI, in 1986, andISO, in 1987—for
database querying and management.

SQL incorporates natural and powerful commands
to: create tables, insert or update values into the
record fields, select records (lines) or fields (columns)
from a table, and join records of different tables. But
more than a collection of database access operations,
SQL is the reification of the relational data model

paradigm. This is, usingSQL strongly influences
the rationality behind the program, the programming
style.

Object-orientation completely changed the soft-
ware development approaches, from problem analy-
sis to programming style and techniques as well as
program testing. Object-oriented approaches pose a
new challenge in what concerns data persistency. Al-
though there exist some object-oriented databases, the
most usual is to stream object data and archive it into
a relational database. Adopting this last policy, re-
quires anobjectification layer, to make that relational
data available to the OO programs at the business or
interfaces layers.

Recently, Microsoft came out withLINQ, the
.NET Language Integrated Query.LINQ is supposed
to be a natural extension toC# or Visual Basic to in-
tegrated the access to relational databases with those
programming languages commonly used in the.NET
framework.

This paper is concerned with the performance
of C# when usingLINQ, comparing this approach
against the previous ones based on SQL or Objects.

Moreover, we also discuss wetherLINQ extension
to C# introduces or not any shift in the programming
paradigm We reason about the previous and actual
way of planning (or schematize) the program, in what
concerns database access, to understand if use ofLinq
induces a new way of thinking, this is a new program-

278 da Cruz D. and Rangel Henriques P. (2009).
ASSESSING DATABASES IN .NET - Comparing Approaches.
In Proceedings of the 11th International Conference on Enterprise Information Systems - Databases and Information Systems Integration, pages
278-282
DOI: 10.5220/0001953402780282
Copyright c© SciTePress



ming style.
To attain these objectives, we compare the ap-

proaches that can be followed in the.NET framework
to access a database and also the methods provided
by .NET along Section 3. To guide this comparison,
a running-example (introduced in Section 2) will be
used. Section 4 closes the paper with some remarks.

2 RUNNING EXAMPLE

The example that we would consider in this paper
is related with an Information System that we de-
velop one year ago (before the latest stable version
of LINQ) in the context of promoting the Portugal’s
northern region.

This information system, calledSIGON.2, is
aimed at supporting applicants (private companies or
government institutions) in the the fulfillment of the
application-forms that they should submit to apply for
funds. Under that financial programme, an applica-
tion is eligible if the funds demanded will be used to
promote projects that contribute to the development
of the northern region of Portugal.

Because the application-form is a complex ob-
ject1, its fulfillment can not be accomplished at once
(actually this task can last days or even weeks). As
a consequence, it should be possible to perform the
task in several phases. However, no rule should be
imposed, stating where or when these phases start or
end; the applicant should be allowed to interrupt his
work whenever he wants, and then continue in another
moment without loosing data.

This statement led us to store (temporarily) the
data fulfilled by each applicant in an intermediate
object, aDataSet, that is then streamed into a line
of a database table, as aXML document. After the
complete fulfillment of the application-form, this data
is convenient stored into the tables of a relational
database. That is the core (the central component) of
SIGON.2.

An application will contain one or more projects
of the same type or of different types. A project can
be one of the type:immaterial(when the contribution
is at the knowledge level);infra-structural(as can be
deduced from the name, this type is concerned with
the development of infra-structures); andmixed(is a
composition of projects that will contribute with both
knowledge improvements and new infra-structures).

Over these undergoing applications,SIGON.2
should be capable of compute some statistics to dis-

1Composed by a long list of interrelated items that can
vary from a call to another, many of them being dynamic
lists on tables.

play the type of each project. Besides its main func-
tionality, SIGON.2 should be capable of computing
statistics over the undergoing applications (those not
yet closed and submitted, but under fulfillment) by
project type (immaterial, infra-structural, mixed).

To compute these statistics it is necessary to tra-
verse eachXML’s DataSet, search for the correct ele-
ment, and count it.

As can be easily deduced, this task requires a con-
siderable amount of time, for the reason that each
XML reflects the structure of a complex application-
form and stores all the fulfilled information.

Because of the great amount of time required to
compute these statistics, we choose this example to
show how it can be implemented using the data source
controls referred previously, as well as, to compare
the performance between them.

3 COMPARING APPROACHES

In this section we compare the three approaches to
access a database, by discussing the resolution of the
practical case-study introduced in Section 2. Besides
the methodological discussion, we will also measure
their performance.

To implement theSIGON.2 statistical feature, as
described in Section 2, all that is necessary is to per-
form a traversal to eachXML document (that repre-
sents an application-form) and test if it is of typeInfra-
structural, Immaterial or both, to increment the respec-
tive counter.

3.1 LINQ Approach

As the data we want to access is stored in a rela-
tional database, the first thing that we need to pre-
pare before being able to useLINQ with SQL is a data
context class (namedDataContext). The purpose of
this class is to translate requests for objects intoSQL
queries addressed to the database and then assemble
objects out of the results. The data context provides
access to the tables in the database.

Essentially, the data context class maps database
tables into classes, table’s columns in properties, and
relationships between tables are represented by addi-
tional properties.

This class can be automatically generated using
the graphicalLINQ to SQL Designer tool (provided
by Microsoft Visual Studio 2008 (Powers and Snell,
2008)) or using the command-lineSqlMetal tool (Mi-
crosoft, 2009).

Table 1 displays the code that implements the sta-
tistical feature.

ASSESSING DATABASES IN .NET - Comparing Approaches

279



Table 1: Computation of statistics usingLINQ.

SigonDataContext sigon = new SigonDataContext();

var applications = from r in sigon.DataSetTemporarios
select r.dataSet;

var elementsInfra = from application in applications.ToList()
where application.Elements("infra-structural").Count() > 0

&& application.Elements("immaterial").Count() == 0
select application;

var elementsIma = from application in applications.ToList()
where application.Elements("infra-structural").Count() == 0

&& application.Elements("immaterial").Count() > 0
select application;

var elementsMix = from application in applications.ToList()
where application.Elements("infra-structural").Count() > 0

&& application.Elements("immaterial").Count() > 0
select application;

countInfra = elementsInfra.Count();
countImma = elementsImma.Count();
countMix = elementsMix.Count();

As can be seen, this implementation uses both
LINQ to SQL (first query) andLINQ to XML (other 3
queries).

With respect toLINQ to XML provider, it ex-
tends the language-integrated query features offered
by LINQ to add support forXML. It offers the expres-
sive power ofXPath andXQuery but embedded in the
programming language of our choice, with type safety
andIntelliSense.

Looking carefully into the code of the Table 1, we
observe that the first retrieves from the database all
the XML into a list. After that, we separate the list
of applications into three sublists by type, querying
the XML documents in the same way (with the same
syntax) that we query the database.

One of the first advantages ofLINQ, that stands
out from this example, is the expressiveness it offers:
we can express declaratively what we want to achieve
using queries instead of writing convoluted pieces of
code.

3.2 SQL Approach

Table 2 shows the typical way to access a database in
a .NET program.

In this approach, we typically start by defining
a ConnectionString that contains information with
respect to the database that we want to access.

After that, theselectcommand to retrieve data
is hard-coded (written explicitly in the source code).
Then, we can go through the retrieved data using the
specificAPI’ provided by .NET framework (e.g., the
SqlDataReader).

Inspecting carefully the code in Table 2, we can
list several limitations of this approach:

• Although we want to perform a simple task, sev-
eral steps and verbose code are required;

• Queries are expressed as quoted strings, which
means that no compile-time checking is available.
Then, some questions raise up: what if the string
does not contain valid queries? And if a column
is renamed in the database?

• The query results are loosely defined w.r.t. type
(always retrieved asStrings).

• The classes we are using are dedicated toSQL
Server and cannot be used with another database
server.

Usually, this approach is used forRAD2 or Proto-
typing.

3.3 Objectification Approach

Table 3 shows the implementation of the statistical
feature using objects in theData Access Layer (DAL),
in a 3-tier approach.

The first thing that is necessary is to define a set
of classes (objects) to deal with the database. These
objects define the connection mode to the database
(similarly to theConnectionString referred above)
as well as a set of methods that enable us to query the
database.

DataSetTemporarioDAO (in Table 2) class spec-
ifies how we connect to the database; similarly,
DataSetTemporario defines the referred methods to
retrieve data.

The main advantage of this approach is that busi-
ness logic can be defined once within the business
layer and then shared with all the components within

2Rapid Application Development

ICEIS 2009 - International Conference on Enterprise Information Systems

280



Table 2: Computation of statistics usingSQL.

string connectionStr = ConfigurationManager.
ConnectionStrings["SigonConnectionString"].ConnectionString;

int countInfra = 0, countIma = 0, countMix = 0;

using (SqlConnection connection = new SqlConnection(connectionStr))
{

connection.Open();
SqlCommand command = connection.CreateCommand();
command.CommandText = @"SELECT dataset FROM DataSetTemporario";

using (SqlDataReader reader = command.ExecuteReader()) {
while (reader.Read()) {

string xmlContents = reader.GetString(0);
XElement element = XElement.Parse(xmlContents);
countInfra += (element.Elements("infra-structural").Count() > 0

&& element.Elements("immaterial").Count() == 0) ? 1 : 0;
countIma += (element.Elements("infra-structural").Count() == 0

&& element.Elements("immaterial").Count() > 0) ? 1 : 0;
countMix += (element.Elements("infra-structural").Count() != 0

&& element.Elements("immaterial").Count() != 0) ? 1 : 0;
}
}

}

Table 3: Computation of statistics using Objects.

Sigon.DAL.DAO.DataSetTemporarioDAO datasetDAO = new DataSetTemporarioDAO();
List<Sigon.DAL.DataSetTemporario> datasets = datasetDAO.SelectAll();
int countInfra = 0, countIma = 0, countMix = 0;

foreach (Sigon.DAL.DataSetTemporario d in datasets) {
StringWriter sw = new StringWriter();
d.DataSet.Save(sw);
XElement element = XElement.Parse(sw.ToString());

countInfra += (element.Elements("infra-structural").Count() > 0
&& element.Elements("immaterial").Count() == 0) ? 1 : 0;

countIma += (element.Elements("infra-structural").Count() == 0
&& element.Elements("immaterial").Count() > 0) ? 1 : 0;

countMix += (element.Elements("infra-structural").Count() != 0
&& element.Elements("immaterial").Count() != 0) ? 1 : 0;

}

the presentation layer (Sheriff, 2002). Any changes
to business rules can therefore be made in one place
and be instantly available throughout the whole appli-
cation.

The strongest reason to use this approach is reuse:
logic placed in a business layer increases the reusabil-
ity of an application. It is possible to change the con-
tents of any one of tiers (layers) without having to
make corresponding changes in any of the others. It
also enables parallel development of the different tiers
of the application.

However, there some disadvantages using this ap-
proach: there is more processing on the web server;
a more complex structure is involved; it is more diffi-
cult to setup and maintain; and the physical separation
of application servers (containing business logic func-
tions) and database servers (containing databases)
may moderately affect performance.

Even if we use a code generator or one of the
several object-relational mapping tools available, the
generated code has its own limitations. For instance,
that code is designed for accessing databases, and

that code do not deal with other data sources such as
XML. Also, that code do not integrate data-access and
data-querying features right into the language of our
choice. So, mapping tools are a partial solution for
the problem.

3.4 Measuring the Performance

In this subsection, we present the execution time
when running the three variants of the case-study over
a database with 1105 Application-forms (Table 4, col-
umnQ1), in order to rank the three approaches.

To sustain the conclusion, we also implement
other three queries, coded according to the three ap-
proaches under comparison. The execution times ob-
served are also registered in Table 4.

The new queries are:

Q2 Retrieve and display all the partners of an Appli-
cation promoter (this problem requires the inter-
connection of 3 tables);

Q3 Retrieve and display the name of all the
Application-forms;

ASSESSING DATABASES IN .NET - Comparing Approaches

281



Table 4: Computation times to Queries 1-4.

Q1 Q2 Q3 Q4

LINQ 21,108 0,022 0,036 0,18
SQL 5,981 0,001 0,029 0,439

Object 87,274 0,008 0,631 2,071

Q4 Retrieve and display all the projects included in
all Applications;

To display the retrieved results, we used the data-
bound controls referred previously (GridView and
FormView).

As can be deduced from Table 4, SQL is the
fastest. The objectification is the second. And the
last is theLINQ.

However, combining the objectification approach
with the features ofLINQ we obtain much better re-
sults, concerningQ1: 10,986 seconds — a reduction
of 78%.

4 CONCLUSIONS

At present moment, before starting the development
of a new software project, the programmer or the soft-
ware engineer should invest a lot of effort in selecting
the appropriate working environment. After choosing
the programming framework, he will face other chal-
lenges that deserve some deep work: it is important
to be aware of the new technological trends, but it is
also mandatory to understand which of them consti-
tute a true paradigm shift, or those that are just new
technical resources.

As reported along the paper, we tackled some ex-
periments to measure the actual impact of usingLINQ
in C# programs, concerning execution time, when
compared withSQL or Objectificationclassical ap-
proaches; we also studied the impact in the program-
ming style. As we foresaw, the use ofLINQ im-
plies a new style of include inC# data access op-
erations; it is more high level, more natural and let
us check the correctness of the statements at compile
time. Of course, the tradeoff is the execution time,
that is much bigger. Analyzing the three compared
approaches from a compilers perspective, it was not
difficult to forecast the ranking obtained withSQL—
theassemblyof database engines—in the first position
(the faster), andLINQ in the last position (the slower).
Concerning theObjectificationapproach, it occupies
the second pole position, closer toSQL or LINQ de-
pending on the style adopted; if we combine it with
XElement(LINQ) its performance is not sp far of that
obtained withSQL.

To conclude, we would say thatSQL approach—

completely tuned for extracting information just from
databases—should be used forRAD3 or Prototyping.
It is dependent on the data source and is similar to
hard-code the select command in the high-levelC#
oo-programs. For a 3-tiers programming approach,
in classical object-oriented style with a DAO in the
DAL, the second approach is a good one, and is the
one we recommend if efficiency is the concern. The
use ofLINQ clearly proved to the be more declarative
and better style, keeping the source code independent
of the data source, and should be used every time that
execution performance is not critical.

REFERENCES

Chamberlin, D. D. and Boyce, R. F. (1974). Sequel: A
structured english query language. InFIDET ’74:
Proceedings of the 1974 ACM SIGFIDET (now SIG-
MOD) workshop on Data description, access and con-
trol, pages 249–264, New York, NY, USA. ACM.

Codd, E. F. (1970). A relational model of data for large
shared data banks.Commun. ACM, 13(6):377–387.

Microsoft (2009). Code generation tool.http://msdn.
microsoft.com/en-us/library/bb386987.aspx.

Powers, L. and Snell, M. (2008).MicrosoftR©visual studio
2008 unleashed. Sams, Indianapolis, IN, USA.

Sheriff, P. D. (2002). Designing a .net application.

3Rapid Application Development

ICEIS 2009 - International Conference on Enterprise Information Systems

282


