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Abstract. In the context of reverse engineering, the recognition of design pat-
terns provides additional information related to the rationale behind the design. 
This paper presents our approach to the recognition of design patterns based on 
dynamic analysis of Java software. The idea behind our approach is to identify 
a set of rules capturing information necessary to identify a design pattern in-
stance. Rules are characterized by weights indicating their importance in the 
detection of a specific design pattern. The core behavior of each design pattern 
may be described through a subset of these rules forming a macrorule. Macro-
rules define the main traits of a pattern. JADEPT (JAva DEsign Pattern deTec-
tor) is our software for design pattern identification based on this idea. It cap-
tures static and dynamic aspects through a dynamic analysis of the software by 
exploiting the JPDA (Java Platform Debugger Architecture). The extracted in-
formation is stored in a database. Queries to the database implement the rules 
defined to recognize design patterns. The tool has been validated with positive 
results on different academic implementations of design patterns and on sys-
tems as JADEPT itself. 

1 Introduction 

The use of design patterns in the context of forward engineering is a powerful mean 
to create effective software solutions. They guarantee the creation of transparent 
structures which allow software to be easily understood and extended. The descrip-
tion of design patterns [7] provides information about the structure, the participants’ 
roles, the interaction between participants and, above all, the intent for which they 
should be used. Information related to the presence of a pattern is useful to under-
stand not only the code, but to realize also the concepts behind its design. This has a 
significant implication for further improvement or adaptive changes. Implicitly, it 
leads to an enhancement of the life cycle with low maintenance costs. 

In the context of design pattern detection, it is possible to use different approaches 
both for the identification logic (e.g., searching for subcomponents of design patterns, 
identifying the entire structure of a design pattern at once) and for the information 
extraction method (e.g., static, dynamic, or both). Static analysis consists in the analy-
sis of static data gathered directly from source code or, if possible, from compiled 
code [4]. Dynamic analysis deals with data obtained during the execution of a system, 
gathered by means of third party applications as debuggers or monitoring interfaces. 
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One of the advantages of using static analysis is the complete coverage of the 
software under examination. This is not always achieved through dynamic analysis. 
Exploiting static analysis, it is not possible to determine properly the behavior of a 
system. One of the advantages of using dynamic analysis is the capability to monitor 
each of the functionalities of a software independently of the others. In this way it is 
possible to consider a smaller part of code to increase precision and limit false posi-
tive or false negative results. 

Problems raised by the identification of design patterns are related not only to the 
search aspect, but also to design and development choices. There are at least three 
important decisions that should be taken when developing a design pattern detection 
tool. These decisions may influence significantly the final results. The first issue 
regards the evaluation of how to extract the interesting data from the examined soft-
ware, including the type of the analysis to be performed. The second issue considers 
the data structure in which to store the gathered information: it may not model in a 
proper way the aspects of the software under investigation. The most important risk is 
related to the loss of knowledge at the data or the semantic level: this would generate 
inferences about something that is no more the analyzed software, but an incorrect 
abstraction of it. The third one highlights the importance to find a way to process the 
extracted data and to identify design pattern instances. Independently of the adopted 
data structure for the extracted information (e.g., a text file, XML, database), the 
following three issues should be considered: memory occupation, processing rate and, 
most important, the effective recognition process of design patterns with a minimum 
rate of false positives and false negatives. While the first two issues could be solved 
through an upgrade of the machine on which elaboration is performed, the last is 
strictly related to the efficiency of the recognition logic applied for design pattern 
detection due to the significant number of possible implementation variants. 

In this paper, we present a new approach based on dynamic analysis to detect be-
havioral design patterns. We define a set of rules describing the properties of each 
design pattern. Properties may be either structural or behavioral and may define rela-
tionships between classes or families of classes. We define a family of classes as a 
group of classes implementing the same interface or extending a common class. 
Weights have been associated to rules indicating how much a rule is able to describe 
a specific property of a given design pattern. Rules have been written after we have 
deeply studied the books on design patterns of [7] and [5], evaluated different imple-
mentations of patterns, and implemented ourselves various variants of patterns.  

JADEPT (JAva Design Pattern deTector) is our software prototype for design pat-
tern detection based on these rules. An early version of JADEPT has been presented 
in the context of the PCODA workshop [2]. JADEPT collects structural and beha-
vioral information through dynamic analysis of Java software by exploiting JPDA 
(Java Platform Debugger Architecture). Nevertheless part of the extracted informa-
tion can be obtained by a static analysis of the software, JADEPT extracts all the 
information during the execution of the software adopting an approach based exclu-
sively on dynamic analysis. The extracted information is stored in a database. The 
advantages of having information stored in database are: (1) the possibility to perform 
statistics and (2) the possibility to memorize information about various executions of 
the same software. A rule may be implemented by one or more queries. The presence 
of a design pattern is verified through the validation of its associated rules.  
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There are various approaches that aim to detect design patterns based on a static 
analysis of source code such as: FUJABA RE [11], [12], SPQR [18], [19], PINOT 
[17], PTIDEJ [9] or MAISA [21]. The design pattern detection mechanisms search 
for information defining an entire pattern or for sub-elements of patterns which can 
be combined to build patterns [1] or evaluate the similarity of the code structure with 
higher-level models as UML diagrams [3] or graph representations [20].  Other ap-
proaches exploit both static and dynamic analysis as in [10], [15] or only dynamic 
analysis as in [16], [22]. There are also several tools performing dynamic analysis of 
Java applications [6], [8], [23], but their main objective is not to identify design pat-
terns. For example, Caffeine is a dynamic analyzer for Java code which may be used 
also to support design patterns detection. 

The rest of the paper is organized as follows. Section 2 presents the identification 
rules and an example of their application on a behavioral design pattern, Section 3 
introduces the JADEPT prototype, Section 4 describes several aspects concerning the 
validation of JADEPT. Conclusions and further work are dealt within Section 5. 

2 Rules for Design Pattern Detection 

Our idea is to develop a new approach for design pattern detection exploiting dynam-
ic analysis. This kind of analysis allows the monitoring of the Java software at run-
time, thus it is strictly related to the behavior of the system under analysis. A set of 
rules capturing the dynamic properties of design patterns and the interactions among 
classes and/or interface of design patterns are necessary for the detection of patterns 
through dynamic analysis. 

Our identification rules consider those static aspects which provide information 
further exploited in dynamic rules. For example, to check the existence of a particular 
behavior, it is necessary to verify in the software under analysis the presence of a 
method having a specific signature. 

2.1 Rules, Weights, Relationships and Macrorules 

We consider behavioral design patterns because they are particularly appropriate for 
dynamic analysis. In fact, their traces may be better revealed at runtime by analyzing 
all the dynamic aspects including: object instantiation, accessed/modified fields, me-
thod calls flows. 

In the first step of our work, the identification rules have been written using natu-
ral language. This approach avoids introducing constraints regarding the implementa-
tion of rules. In JADEPT, rules are translated into queries, but they can be used also 
outside the context of our tool and hence, represented through a different paradigm 
(e.g., graphs). 

At the second step weights have been added to the rules. Weights denote the im-
portance of a rule in the detection process of a pattern. Weights’ range is 1 to 5. 
These values are used to compute the probability score indicating the probability of 
the presence of a pattern instance. A low weight value denotes a rule that describes a 

97



generic characteristic of a pattern like the existence of a reference or a method with a 
specific signature. A high weight value denotes a rule that describes a specific charac-
teristic of a pattern like a particular method call chain that links two class families. 

Even if each behavioral design pattern has its own particular properties, an abso-
lute scale for the weights value has been defined. Rules whose weight value is equal 
to 1 or 2 describe structural and generic aspects of code (e.g., abstract class inherit-
ance, interface implementation or the presence of particular class fields). Rules whose 
weight value is equal to 3 or higher, describe a specific static or dynamic property of 
a pattern. For example, the fifth rule of Chain of Responsibility in Table 1, specifics 
that each call to the handle() method has always the same caller-callee objects pair. 
This is the way objects are linked in the chain. A weight whose value is equal to 5 
describes a native implementation of the design pattern we are considering. The 
weights of rules are used to determine the probability of the pattern presence in the 
examined code.  

The next step regarded the definition of the relationship between rules [14]. There 
are two types of relationships. The first one is logical: if the check of a rule does not 
have a positive value, it does not make sense to proof the rules related to it. For ex-
ample, the fifth rule of Chain of Responsibility in Table 1 cannot be proved if the 
fourth rule has not been proved first. The second one is informative: if a rule depends 
on another one, and the latter is verified by the software detector, its weight increases. 
The second type of relationship determines those rules which are stronger for the 
identification of design patterns.  

Table 1. Detection rules for the Chain of Responsibility design pattern. 

 
 
Finally we have introduced macrorules. A macrorule is a set of rules which de-

scribes a specific behavior of a pattern. If the rules that compose a macrorule are 
verified, the core behavior of a pattern has been detected so the final probability value 
increases. The value added to the probability is different for each pattern because the 
number of rules which belong to a macrorule varies from one macrorule to another. 
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2.2 Chain of Responsibility Detection Rules 

The rules we have defined for the Chain of Responsibility pattern are shown in Table 
1. In the first column we assign a unique identifier to the rule in the context of a spe-
cific design pattern. The second column contains a textual description of each rule. In 
the third column are indicated the weights associated to each rule. A question mark 
after a weight value indicates a variable weight. For example, the sixth rule has a 
variable weight because of its relation with rule number four and number five. If the 
fourth or the fifth rule or both are verified then the weight of the sixth rule is in-
creased by one, hence associating a higher probability to the pattern instance recogni-
tion. 

The fourth column indicates the type of information needed to verify a rule. If a 
rule describes a static property, which can be verified through an analysis of static 
information, then the value in this column is S (indicating static). If a rule describes a 
dynamic property, which can be verified through an analysis of dynamic information, 
then the value in this column is D (indicating dynamic). In the case we have to verify 
a property by performing analysis of static and dynamic information, then the value 
specified is S-D (indicating static and dynamic). However, in JADEPT both static and 
dynamic information are extracted through a dynamic analysis of the software under 
inspection.  

A relationship among two or more rules is indicated in the fifth column.  
Table 2 shows the name of the macrorule, called sequential redirection defined for 

the Chain of Responsibility pattern and its consisting rules. For this pattern it is im-
portant to identify clues which capture its chain structure and behavior. Rules from 1 
to 4 define the static properties related to its structure, while rules 5 and 6 the dynam-
ic ones related to its behavior. 

Rules 1 and 2 require that chain classes must implement a common interface or 
extend a common class. 

For the Chain of Responsibility pattern the common class/interface must declare a 
method for sending a request to its successor in the chain. In the following we call 
this method handle(). 

Rule 3 claims for the presence in each chain class of a field whose type is the im-
plemented interface or the extended class. At runtime, this reference indicates the 
successor of an instance in the chain, and it is used to call the handle() method. This 
reference is assigned to the successor during execution and it is used to call the han-
dle() method. 

Rule 4 is verified if the interface or considered class declares a method which can 
be a handle() method. Rules 3 and 4 are preconditions for the fifth rule. These rules 
define the Chain of Responsibility peculiar behavior. 

Rule 5 specifies that each object in the chain must always be called by the same 
object, which is its predecessor if objects are unchanged during execution. In fact, 
each time a request management is needed, if the chain elements have not been mod-
ified, the chain is preserved  

Eventually, rule 6 checks if the name of the common interface or common class 
contains the chain or handle string. 

A logical dependency is between rule four and five. Rule five cannot be proved if 
rule four is not previously verified. 
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Table 2. The Macrorule for the Chain of Responsibility Pattern. 

 
 
The informative dependency we have defined for this pattern involves the 4th, 5th 

and 6th rules. Rule 6 can increment by one its weight if rules 4 and 5 are verified. 
The macrorule for this pattern is called sequential redirection (see Table 2). It in-

cludes the rules that describe the core of the Chain of Responsibly pattern. If rules 4 
and 5 are checked the macrorule is verified. This means that code satisfies the basic 
criteria for the recognition of this pattern. If the macrorule is proved the total proba-
bility score increases. This score indicates the confidence of the presence of the Chain 
of Responsibility pattern in the examined software. 

3 JADEPT 

JADEPT is a Java application composed of four main modules: Graphic User Inter-
face (GUI), Launcher and Capture Module (LCM), Design Pattern Detector Module 
(DPDM) and JDEC Interface Module (see Figure 1). 

JADEPT's GUI allows users: (1) to set up a JADEPT XML configuration file, (2) 
to launch the software to be monitored, (3) to start the analysis on the stored informa-
tion and (4) to create the JDEC database. 

 

 
Fig. 1. JADEPT Architecture. 

The Capture and Launcher Module is composed of (1) the Launcher, which starts 
the execution of the software under analysis and the execution of the Catcher Module, 
and (2) the Catcher, which captures events occurred in the JVM created by the 
Launcher for the analyzed software. Events regard classes and interfaces loading, 
method calls, field accesses and modifications. Through these events JADEPT ex-
tracts various types of information exploited in the detection process. 

At the end of user's software execution the Catcher Module writes the XML Re-
port File containing all the collected information and invokes the Communication 
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Layer insertion method. Thus, the XML Report File is inserted in the JDEC database. 
In this way, information is available to the Design Pattern Detector Module (DPDM).  

The Communication Layer represents the link between JDEC and the other soft-
ware modules. Its functions are provided by XML2DBTranslator and Query Genera-
tor. XML2DBTranslator interprets the XML Report File created by the Catcher Mod-
ule and creates inserting queries to fill JDEC. The Query Generator is used during the 
analysis phase to create the appropriate queries.  

The Design Pattern Detector Module is composed of: the Design Pattern Recog-
nizer, the Result and Metric Information Dispenser (ReMInD) and the Result Writer. 

The Design Pattern Recognizer contains the classes used in the detection process. 
Each class defines a thread representing a specific pattern role and each thread per-
forms the analysis on a class family. A thread checks the rule on the family assigned 
to it and writes the results on an object metaphorically called whiteboard [13]. The 
ReMInD module provides objects which support the analysis threads. Each ReMInD 
object is a whiteboard used by a thread to store information about temporary results 
obtained during the analysis. The Result Writer receives results coming from the 
Design Pattern Recognizer and it disposes them into an output file, called Result File. 
The last is divided into various sections; each of them referring to a different pattern.  

For more details on JADEPT see [2]. 

4 Validation 

JADEPT has been validated using different implementation samples of design pat-
terns more or less closer to their GoF's definitions [7].  

The results of the analysis on different implementations of design patterns are 
shown in Tables 3, 4 and 5 and are related to the detection of three of the behavioral 
design patterns: Chain of Responsibility, Observer and Visitor. Table 6 shows the 
results of JADEPT that analyzes itself.  

The first column of each table contains the identification name for the implemen-
tations considered. The remaining columns show the results provided by the Chain of 
Responsibility, Observer and Visitor detectors. The `-' symbol means that JADEPT 
has not detected any instance for a given design pattern. The `X' symbol indicates that 
the considered sample does not provide any implementation of a specific pattern.  

Table 3 illustrates the results obtained during the detection of Chain of Responsi-
bility pattern. The second column indicates the results obtained through the Chain of 
Responsibility detector, while column three and four the results obtained through the 
Observer and Visitor detectors. The last two detectors have been used to verify if they 
provide false negatives. The same approach has been applied in Table 4 and Table 5.  

JADEPT recognizes the Chain of Responsibility pattern in three implementations 
with reliable values. The Chain implementation in fluffycat is detected as a false 
negative because JADEPT is not able to find a good handle() candidate in this pattern 
instance. This argument indicates the request that should be managed by one of the 
classes which implements the interface. Moreover, each class implementing the inter-
face declares a field whose type is the type of the common interface. The successor 
element in the chain is assigned to this field during execution. 
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Table 3. Chain of Responsibility implementation analyzed by three design pattern detectors. 

 
 

Figure 2 shows the class diagram related to the implementation of the Chain of 
Responsibility in the fluffycat example. According to the GoF’s definition, this pat-
tern should define a common interface (e.g., called Chain) which is implemented 
further by two or more classes. The interface defines a method (e.g., called sendTo-
Chain(String)) which accepts only one argument. 

 

 
Fig. 2. Class diagram for the Chain of Responsibility pattern in fluffycat. 

The fluffycat implementation is not closed to the GOF's definition: it defines a 
common interface called TopTitle, but this interface declares methods which accept 
no arguments. One of the purposes of the Chain of Responsibility pattern is to build a 
structure which is able to handle requests generated by a sender. Hence, it is not poss-
ible that the handle() method accepts no parameters. Moreover, the three classes do 
not declare any field for a successor whose type is the interface type. DvdCategoryC-
lass does not declare any field which indicates a reference to its successor. The 
DvdSubCategory class declares a field of DvdSubSubCategory type. The instances of 
these classes can be chained only in one way: the knowledge indicating which object 
must be used as a successor of another is built-in the classes and not in an external 
class which should define how the chain must be created. Hence, such an implemen-
tation is unacceptable and does not comply with the GoF's definition. This is reflected 
in the low values associated to the fluffycal implementation in Table 3. 

The Observer and Visitor detectors obtain satisfying results. There are cases (e.g., 
earthlink, fluffycat and kuchana) in which detectors have not even start their analysis 
due to the absence of a common class or interface in these implementation instances. 
Moreover, the Chain structure is deeply different from the Observer and Visitor struc-
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tures. It requires only one role, while the Observer and Visitor require two. This is the 
main reason why the two detectors cannot perform the analysis. In the Observer and 
Visitor implementations of the cooper sample it is revealed a Chain instance with a 
very low probability score, hence it cannot be even considered significant. 

The results of the detection of the Observer pattern are shown in Table 4.  

Table 4. Observer implementation analyzed by three design pattern detectors. 

 
 

The Observer detector provides significant results for kuchana and cooper imple-
mentations. It obtains false negative values for earthlink2 and sun implementations 
and it does not provide any result for earthlink and fluffycat. The reason why the 
Observer detector cannot perform the analysis is related to the correctness of the 
implementations and to how JADEPT partitions the software system under examina-
tion to perform analysis. Even if Observer and Visitor are similar, the Visitor detector 
provides false positive results. The highest values were obtained for kuchana and sun 
implementations. It may be possible that the notify() and update() methods are consi-
dered by the static rules as accept() and visit() candidates. The fluffycat implementa-
tion cannot be analyzed due to the lack of the common classes/interfaces. The Chain 
of Responsibility detector provides very low probability scores, and also it cannot 
analyze the fluffycat implementation. 

Table 5 shows the results obtained during the detection of the Visitor pattern.  

Table 5. Visitor implementation analyzed by three design pattern detectors. 
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The Visitor detector provides satisfying results for five implementations. The Ob-
server detector provides low false positive results, and it cannot analyze kuchana and 
composite implementations. The Chain of Responsibility detector obtains low false 
positive results, except for the composite3 and cooper implementations. In these cas-
es, one method is wrongly considered as a handle() candidate. The Chain of Respon-
sibility detector cannot perform the analysis on the visitorContact implementation. 
This result depends on the differences between the two pattern structures. 

Table 6 shows the results of JADEPT that analyzes itself. JADEPT is composed 
of 151 classes. Analysis reveals the presence of Chain of Responsibility and Observ-
er, which are actually implemented in the code. In JADEPT there are no Visitor in-
stances, and this analysis was performed only to test if any false positives are re-
vealed.  

Table 6. JADEPT analyzed by JADEPT. 

 
 

To summarize, there are two main reasons why JADEPT cannot perform analysis 
on some implementations. The first is related to the quality of implementations them-
selves because they are very different from the UML structure of patterns defined by 
GoF. For example, classes do not implement the same interface or extend the same 
class. We mean that such implementations cannot be retained as valid ones. Common 
interfaces and classes are used to easily extend software and their use is a principle of 
good programming as much as other design pattern features. 

The second problem concerns the information partitioning technique of JADEPT. 
Our tool can work on families retrieved from the information collected in JDEC. 
Before starting the analysis, JADEPT identifies all the possible families and assigns 
to each family a specific role, according to the design pattern it is looking for. If the 
analyzed system is unstructured, meaning that common interfaces or classes are ab-
sent, JADEPT cannot build correctly the families and perform further analysis. 

5 Conclusions and Further Work 

In this paper we have presented our approach to detect design patterns in Java appli-
cations. As mentioned in the introduction section, there are several main issues which 
should be addressed during the development of a design pattern detection tool. Con-
sidering these issues, our contribution includes the definition of the recognition rules, 
the use of dynamic analysis to extract all the information needed in the detection 
process and the specification of an entity-relationship schema to store and organize 
the extracted information from Java applications to be easily used for the recognition 
of design pattern instances. 

Our recognition rules regard the dynamic nature of patterns. Rules focus on the 
behavior of the design patterns and not on their static aspects. Rules capturing static 
properties have been introduced because they express pre-conditions for the dynamic 
ones. Furthermore we have defined logical and informative dependencies among 
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rules, established the importance of rules in the detection process through scores, and 
identified a group of rules characterizing the particular behavior of each pattern 
through macrorules.  

Dynamic analysis may obviously provide significant information for design pat-
tern recognition. Through dynamic analysis it is possible to observe objects, their 
creation and execution during their entire life-cycle and overcome part of the limita-
tions of the static analysis (i.e., polymorfism) which may be determinant in pattern 
recognition. There are also two disadvantages of the dynamic approach. The first is 
related to the reduced performance of the analyzed application. To improve its per-
formance we have used a filtering system to trace only the meaningful events. Never-
theless the execution time of the monitored applications is still longer than the ordi-
nary execution time, especially for software having a Graphic User Interface. If the 
software under examination does not require user interaction, execution time should 
not be a critical factor. The second, concerns the code coverage problem. If the ana-
lyzed software needs a user interaction, it could be necessary a human-driven selec-
tion of code functions to reveal all possible behaviors. Thus, it is necessary to cover 
the entire code and test all code functions one by one. 

We have validated our idea through the implementation of the JADEPT prototype. 
Modularity is one of the main characteristic of the JADEPT architectural model. 
Furthermore, the tool can be easily extended to other programming languages. It may 
use alternative ways to extract information or to perform analysis. It is possible to 
exclude the database and to use another approach to detect design patterns due to 
existence of the XML Report file. Or, the database model can be used in another 
design pattern detector or a software architecture reconstruction tool. 

The decision to use a database to store the extracted information is due to two 
main reasons. The first is related to the large amount of information which should be 
extracted during software execution and which should be further considered to identi-
fy design patterns. The second is related to the traceability/persistence in time of the 
extracted information, the comparison among two or more executions of the software 
code or among executions of different applications, and the statistics which may be 
done. The issues related to this second aspect are not implemented in the current 
version of our prototype but will be addressed in the future developments of 
JADEPT. 

Further work will regard also the extension of JADEPT to the creational and 
structural design patterns, as well as to its validation on systems of larger dimensions. 
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