
MODULAR BEHAVIOUR MODELLING OF
SERVICE PROVIDING BUSINESS PROCESSES

Ella Roubtsova, Lex Wedemeijer, Karel Lemmen
Open University of the Netherlands, The Netherlands

Ashley McNeile
Metamaxim Ltd, U.K.

Keywords: Service providing business process, Requirements modelling, Standard requirements, Flexibility, Modular
model, Executable model, Composition.

Abstract: We examine possibilities for modularizing the executable models ofService Providing Business Processesin
a way that allows reuse of common patterns across different applications. We argue that this requires that
we can create independent models for different aspects of the process, and then compose these requirements
related partial behavioral models to form a complete solution. We identify two areas of modeling that should
be separable from the main, application specific, process model: the underlying subject matter with which the
process is concerned, and standard reusable process-level behavior that is common across many processes.
Using an example of a Service Providing Business Process concerned withAccreditation of Prior Learning
we show that theProtocol Modelingapproach has the capability to support modularization of functional and
non-functional requirements, when other paradigms cannot completely support it.

1 INTRODUCTION

A Service Providing Business Process (SPBP)is an
interactive process that transforms the requests of
users and the information presented in rules, law reg-
ulations or databases of official organizations into a
physical product or a document. A Service Providing
Business Processes (SPBP) may be either an indepen-
dent process or an elementary process of a service-
oriented business process in the context of SOA (Erl,
2004; Reisig et al., 2007).

SPBPs are subject to constant change caused by
social and technological factors. The changes have to
be reflected both at the modelling and the implemen-
tation level. The need to support continual change
motivates the use of modular and compositional ap-
proaches in development of SPBPs, both at the mod-
eling and implementation level.

To provide its service, any SPBP utilizes some un-
derlyingsubject matterimplemented as databases, re-
sources of the semantic web or official information
sites. These provide the raw material on which the
service acts. The underlying subject matter may be
represented by anunderlying model. The underlying

model has its own dynamics, because the business ob-
jects of the underlying model have own life cycle.

Conceptually separate from this, an SPBP itself
has aprocess modelthat describes how it:
(1) Uses and acts on the state and data content of the
underlying subject matter to perform tasks (such as
data transformation and analysis) specific to the ap-
plication;
(2) Provides such common (or standard) process-level
functions as registration, archiving, security, payment
and acknowledgement (of business steps and deci-
sions) to the service-consumer.

In this paper we show that theProtocol Model-
ing approach (McNeile and Simons, 2006) has the
capability to support modularization of the underly-
ing model and crosscutting functional requirements,
when other paradigms cannot completely support it.
Section 2 of this paper describes an example in the
SPBP domain. Section 3 presents the modeling se-
mantics that allows separating standard and specific
requirements for an SPBP and relate them to models
to make models manageable and flexible. Section 4
draws conclusions about flexibility and reuse of Pro-
tocol Models.

338 Roubtsova E., Wedemeijer L., Lemmen K. and McNeile A. (2009).
MODULAR BEHAVIOUR MODELLING OF SERVICE PROVIDING BUSINESS PROCESSES.
In Proceedings of the 11th International Conference on Enterprise Information Systems - Information Systems Analysis and Specification, pages
338-341
DOI: 10.5220/0001949803380341
Copyright c© SciTePress



2 EXAMPLE OF AN SPBP

An example of an SPBP is the process of Accredi-
tation of Prior Learning (APL)(LIFELONG LEARN-
ING, 2008).

The APL service is triggered by a student who fol-
lows an education provided by a university. The stu-
dent requests the university to grant exemptions from
the officially listed courses of the current education.
The request form contains the student number, the of-
ficial name of the current education, the official name
of the former education of the student and the cer-
tificate of the former education. If the former edu-
cation is not on the list of educations recognized for
exemption, the request is rejected and the student is
informed. If the former education is on the list of rec-
ognized educations, the request is registered, the stu-
dent receives an acknowledgement and a request for
payment. When payment has been received, the as-
sessment team receives the request of the student.

The assessment of the certificate of former edu-
cation is fulfilled by a trained assessor. If the certifi-
cate is complete and valid, the student gets exemption
from a set of courses of his current education. The
student is informed by receiving an official document
about the exemptions. If the certificate is not valid,
the assessment is negative. If the certification is in-
complete, the student gets one chance to send a com-
plete certificate and have the assessment repeated.

The APL process transforms a request of a stu-
dent and the information in the official sources into
a product: a document of assessment. The official
sources aboutEducation, Exemption, StudentandAs-
sessorform the underlying subject matter of the ser-
vice. The APL process also implements the process-
level functions of request registration, payment, ac-
knowledgement and security.

3 MODULARIZATION OF SPBPS

In order to achieve modularization of requirements
in behavioural models we have investigated many
popular modeling techniques: Coloured Petri
Nets (Jensen, 1997), statecharts (Harel and Politi,
1998) and several UML profiles. We have built
executable models of our case study using all those
techniques and trying to localize requirements in the
models. Although sequential functional requirements
defining the APL process (registration, payment,
assessment) are localisable, such requirements as
security, acknowledgement and archiving demand
copies of all other models and cannot be localized
in conventional modelling notations. We have found

that there are three reasons for this. The conventional
techniques do not have
- Event-refusal semantics needed to model interaction
and so do not allow behavior synchronization within
a SPBP. Synchronization is usually used to present
collaboration of SPBPs (Su. et al., 2008).
- A concept of a derived state. Without this con-
cept, handling changes in a state value that is not
represented as a single data attribute requires the
generation of artificial internal events.
- Event and state abstractions needed for specification
of cross-cutting functional requirements.
We show that the Protocol Modelling technique (Mc-
Neile and Simons, 2006) possesses the listed concepts
and allows localization and composition of functional
and non-functional requirements in models.

Protocol Model. A unit of a Protocol Model is a Pro-
tocol MachinePM = (S,D,E,T), where

• S= {s1,s2, ...sn}, n ∈ N, is a non-empty finite set of
stored states. A stored state has a corresponding set of
attribute values, including the state name.

• D = {d1,d2, ...,dk}, k ∈ N, is a finite set of derived
states calculated using the states of the machine itself
and other protocol machines.D can be empty.

• E = {e1,e2, ...,em}, m ∈ N is an alphabet of events,
i.e. a non-empty finite set of recognized events com-
ing from environment.

• T = {t1, ...,tp}, p∈ N is a set of transitions. A transi-
tion t can be of typest = (s1,e,s2),
t = (d1,e,any state) or t = (any state,e,d2).

A protocol machine (Figures 1,2) may be represented
as a set protocol state diagrams, where

• a stored state is depicted as an ellipse;

• the values of attributes in a stored state are presented
near the state in a bubble;

• a derived state is presented as a double line ellipse;

• the rules of derivation of a derived state are presented
as an expression of the protocol machine;

• a transition is depicted

– as an arc, i.e. a pair states labeled by the events that
cause this transition or

– as an arrow coming from or to a derived state and
labeled by the events that cause this transition.

The semantics of a protocol state diagram is different
from the UML state diagram (OMG, 2003) and
statecharts (Harel and Politi, 1998).

Behavior of a Protocol Machine.The state diagram
of a protocol machine has the following behavioral
semantics.

• If an event does not belong to the alphabet of recog-
nized events, the machine ignores it.

MODULAR BEHAVIOUR MODELLING OF SERVICE PROVIDING BUSINESS PROCESSES

339



• If the machine is in the state that has an output arc la-
beled by the alphabet-event, it accepts the event and
transitions to another state. This is the only possible
cause of a transition.

• If the machine is in the state that has no output arc la-
beled by the alphabet-event, it refuses the event.

– If the arrow labeled by an event has no start state,
it presents the transition fromanystate to the given
derived state.

– If the arrow labeled by an event has no end state, it
presents a transition from the given derived state to
anystate.

The final two rules apply only to machines that have a
derived state, where the state is given by a derivation
function rather than stored by the machine.

SetUpExemption [CurrentEducation], 
Modify Education,
ModifyExemption [CurrentEducation]
Request [CurrentEducation]

Education

Register
Education

SetUpExemption [FormerEducation]
ModifyExemtion [FormerEducation]
RegisterStudent
ModifyStudent, Request [FormerEducation]

DiscontinuedRegistered

Discontinue
Education 

Exemption Modify Exemption 

Setup 

Exemption

RemovedSetUp

Remove 
Exemption 

ModifyAssessor
Assess
IncompleteDoc

Assessor

Register-
Assessor

ArchivedRegistered

Archive
Assessor 

Underlying model

Student
ModifyStudent, 
Request.,Pay, CompleteDoc

Registered

Archive
Student 

Register

Student

Archived

Figure 1: Underlying model of the APL system.

Composition of Protocol Machines. The rules
of the composition of protocol machines are the
CSP parallel composition rule (Hoare, 1985): If
there are several protocol machines that recognize an
event then this event will be only accepted if all those
machines can accept it.

A Protocol Model of the APL system is a compo-
sition of protocol machines shown in Figures 1,2.

SetUpExemption [CurrentEducation], 
Modify Education,
ModifyExemption [CurrentEducation]
Request [CurrentEducation]

Education

Register
Education

SetUpExemption [FormerEducation]
ModifyExemtion [FormerEducation]
RegisterStudent
ModifyStudent, Request [FormerEducation]

DiscontinuedRegistered

Discontinue
Education 

Exemption Modify Exemption 

Setup 

Exemption

RemovedSetUp

Remove 
Exemption 

ModifyAssessor
Assess
IncompleteDoc

Assessor

Register-
Assessor

ArchivedRegistered

Archive
Assessor 

Underlying model

Student
ModifyStudent, 
Request.,Pay, CompleteDoc

Registered

Archive
Student 

Register

Student

Archived

Figure 2: Process Model of the APL System.

The event synchronization semantics allows easy sep-
aration and composition the functionalities of the
APL service providing business process. The syn-
chronization works as follows.
- If a student initiates a request, he/she should cor-
rectly enter his password, i.e. theSecuritymachine
should be in stateActive.
- If the password corresponds to the saved password,
then student may initiate theRequestevent. If the
model is presented with event
Request: (StudentNumber, Password, FormerEducation,
CurrectEducation, Certificate),
the protocol machinesRegistration, Validity, Student,
CurrentEducation, FormerEducation, Payment, Ac-
knowledgementandSecurityrecognize this event.
- The protocol machineValidity checks if there is an
exemption that corresponds to the current and the for-
mer education mentioned in the request. If there is
such an exemption, the request is registered. This
means that theRegistrationmachine goes to the state
Registered, theAcknowledgementmachine generates
an acknowledgement for registration, and thePay-
ment machine goes to the stateIssued, so that the

ICEIS 2009 - International Conference on Enterprise Information Systems

340



eventPaybecomes possible for the student. This way
all the machines combine to produce the system be-
havior.
Event Abstractions. Protocol machines may use
genericevents, i.e. the aliases of events from a set.
For example, eventAcknowledge={Request, Pay, Assess,
IncompleteDoc, CompleteDoc}.
Each event that belongs to an alias causes the same
behavior of the protocol machine that reacts to the
alias. For example, each event of the last set has to
be acknowledged. A generic event is a means to sep-
arate and reuse the models of requirements.
Local Reasoning. It is proven in (McNeile and
Roubtsova, 2008) that the composition of protocol
machines results in behavior that preserves the in-
dividual behavior of its component machines. This
property of models allows local reasoning on behavior
of parts about behavior of the complete system. For
example, analyzing only theAssessmentmodule we
can say that the sequence of events”Pay, Incomplete-
Doc, CompleteDoc, IncompleteDoc, CompleteDoc”does
not belong to the behavior of the system, i.e. it is im-
posable to update documents more than once.

4 FLEXIBILITY AND REUSE OF
PROTOCOL MODELS

Separate models of requirements make Protocol Mod-
els manageable and allow modification of the model
without remodeling. A new requirement may
(1) Reduce the set of models. For example, if theAs-
sessmentwere free of charge, then the generic event
Start = {Register} and Paymentprotocol machine
should not be used;
(2) Modify a condition for acceptance of an existing
event in terms of the pre-state or the post-state. For
this case, modification is needed of the machine that
embodies the state-based condition for event accep-
tance (as, for example, theValidity machine does for
theRequestevent);
(3) Modify the results of event acceptance in terms
of states. This means modification of the topology
and/or state calculation of the corresponding machine.
(4) Define a set of sequences of related reactions on
new and old events. This extension usually means
modeling additional functionality as a separate pro-
tocol machine, and synchronizing it with the rest of
the protocol model using shared events.
Each the model modifications outlined above is local,
i.e. has to be done in one protocol machine and does
not demand modification to the states or transitions of
other protocol machines.

Protocol Models corresponding to requirements

are easy to reuse. For example, theRegistration, Pay-
ment, Acknowledgementand Securitymachines can
be reused in a different SPBP. The same set of ma-
chines may be reused for anExaminationservice. The
Assessmentprotocol machine will be replaced with
the Examinationprotocol machine and the generic
events will be changed in correspondence with service
events, i.e.Serve= {Examine}. With some extension
the same model can be used for a hotel reservation or
a conference registration services.

This means that Protocol Modelling supports
reuse of common requirements-oriented patterns and
simplifies building of executable models among dif-
ferent applications in the SPBP domain.

REFERENCES

Erl, T. (2004). Service-Oriented Architecture (SOA): Con-
cepts, Technology, and Design. Prentice Hall.

Harel, D. and Politi, M. (1998).Modeling Reactive Sys-
tems with Statecharts: The STATEMATE Approach.
McGraw-Hill.

Hoare, C. (1985). Communicating Sequential Processes.
Prentice-Hall International.

Jensen, K. (1997).Coloured Petri Nets. Springer.

LIFELONG LEARNING (2008). http://ec.europa.
eu/education/llp/.

McNeile, A. and Roubtsova, E. (2008). CSP parallel com-
position of aspect models. InAOM ’08: Proceedings
of the 2008 AOSD workshop on Aspect-oriented mod-
eling, pages 13–18, New York, NY, USA. ACM.

McNeile, A. and Simons, N. (2006). Protocol Mod-
elling. A modelling approach that supports reusable
behavioural abstractions.Software and System Mod-
eling, 5(1):91–107.

OMG (2003).Unified Modeling Language: Superstructure
version 2.1.1 (with change bars) formal/2007-02-03.

Reisig, W., Bretschneider, J., Fahland, D., Lohmann, N., as-
suthe, P., and Stahl, C. (2007). Services as a Paradigm
of Computation.LNCS 4700, pages 521–538.

Su., J., Bultan, T., Fu, X., and Zhao, X. (2008). Towards a
Theory of Web Service Choreographies.LNCS 4937,
pages 1–16.

MODULAR BEHAVIOUR MODELLING OF SERVICE PROVIDING BUSINESS PROCESSES

341


