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Abstract: Today’s Information Society demands complete access to available information, which is often 
heterogeneous and distributed. A key challenge in building the Semantic Web is integrating heterogeneous 
data sources. This paper presents an incremental algorithm for maintaining integration in evolving 
ontologies. For example, an increased number of smaller, task oriented ontologies, are emerging across the 
Bioinformatics domain to represent domain knowledge; integrating these heterogeneous ontologies is 
crucial for applications utilizing multiple ontologies. Most ontologies share a core of common knowledge 
allowing them to communicate, but no single ontology contains complete domain knowledge. Recent papers 
examined integrating ontologies using bipartite graph matching techniques. However, they do not address 
the issue of incrementally maintaining the matching in evolving ontologies. In this paper we present an 
incremental algorithm, OntoMaintain, which incrementally calculates the perfect matching among evolving 
ontologies and simultaneously updates the labels of the concepts of ontologies. We show that our algorithm 
has a complexity of O(n2) compared to complexity O(n3) of traditional matching algorithms. Experimental 
results prove that our algorithm maintains the correctness of a ‘brute force method’ while significantly 
reducing the time needed to find a perfect matching in evolving ontologies. 

1 INTRODUCTION 

Information today is dispersed in a variety of 
disparate sources like public or proprietary 
databases, books, journals, scientific publications 
and national archives. A significant amount of this 
data exists in heterogeneous format. Unfortunately 
analysts and scientists are not able to identify and 
exploit this information easily because of the variety 
of semantics, interfaces and data formats used by the 
underlying data sources (Reichhardt, 1999). 

Semantic heterogeneity, also referred to as 
conceptual heterogeneity and logical mismatch, 
underlines the differences in modelling the same 
domain of interest. Fundamental to resolving 
semantic and organizational differences is the task of 
matching ‘semantically heterogeneous data’.  

Ontologies are an important paradigm for 
managing the exponential growth of valuable data 
generated by new technologies (Gruber, 1993). 
Ontologies model the structure of data in terms of 
classes and their attributes; they also represent the 
semantics of data in the form of axioms, such as 

inheritance relationships. These semantics explain 
the relationship between structure and data in 
different ontologies, to create a consistent integrated 
ontology.  However, existing integration approaches 
(Mowbray and Zahavi, 1995), (Paolucci, et. al., 
2002), (Pinto and Martins, 2000) result in a static 
ontology, which is hard to evolve as the core sub-
ontologies evolve and expand. 

A primary task in designing a data integration 
method is, establishing a mapping scheme between 
the data sources; mappings represent semantics of 
relationships and are used to create an integrated 
ontology (Doan, et. al., 2002).  

Our mapping scheme represents concepts of 
ontology as vertices of a bipartite graph (Melnik, et. 
al., 2002); it then invokes a bipartite graph matching 
algorithm (Bellur and Kulkarni, 2007) to find a 
perfect matching between these vertices. 
Furthermore, we use the semantics of ontologies, to 
create a coherent and consistent integrated ontology. 

In this paper we propose an incremental 
algorithm, OntoMaintain, based on the concept of 
weighted bipartite graph matching. Our algorithm 
incrementally computes the new perfect matching 
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between ontologies and updates the labels of vertices 
as a new pair of vertices are added to the ontology. 

 Experimental results prove that our algorithm 
maintains the accuracy of the “brute force” method 
and significantly reduces the computation time in 
finding the perfect matching of the extended 
ontology O’. Our algorithm results in a time 
complexity of O(n2) compared to complexity O(n3) of 
running the Hungarian algorithm (Kuhn, 1955). 

2 RELATED WORK 

In order to accommodate both semantic and 
schematic differences between heterogeneous data 
sources, it is crucial to integrate ontologies across 
various knowledge domains such as anatomy, drug 
and disease ontology in biomedical domains. A good 
example is the Gene Ontology (GO). GO provides a 
consistent description of genes in different 
biological databases. Each term in GO has a unique 
numerical identifier and a name; terms are further 
assigned to an ontology like molecular function, 
cellular component or biological process. Past 
publications like OASIS (Song et. al., 2006) have 
cited GO in their proposed matching system. 

GO represents two forms of relationships: is_a 
and part_of relationships. The is_a relationship 
represents a simple class subclass relationship, 
where A is_a B means that A is a subclass of B. The 
part_of relation is slightly more complex; C part_of 
D means that whenever C is present, it is always a 
part of D, but C does not always have to be present. 
An example would be nucleus part_of cell; nuclei 
are always part of a cell, but not all cells have nuclei. 

(Bellur and Kulkarni, 2007) propose an 
improved version of semantic matchmaking 
algorithm by (Paolucci, et al., 2002) to dynamically 
discover and invoke a web service. They use the 
Hungarian algorithm (Kuhn, 1955) to compute a 
complete matching of a bipartite graph but minimize 
the maximum weighted edge of graph to get an 
optimal matching; this optimization criterion is 
different from the Hungarian algorithm. 

None of the works cited above discusses the 
issue of maintaining mappings in evolving 
ontologies; how to calculate a perfect matching 
incrementally, every time new vertices are added to 
the graph?  

3 ONTOLOGY MAPPING 

3.1 Similarity Measures 

By comparing terms of ontologies, we first calculate 
the similarity values between them, based on certain 
metrics; each metric establishes a value based on 
certain characteristics. Similarity values are in the 
range [0, 1]. Larger the value, more similar the two 
terms are. 

Linguistic Similarity. Is based on term names. A 
string match algorithm is used to match the names. 

Definition Similarity. Certain terms in the ontology 
database have definitions attached; a text 
classification algorithm compares two definitions 
and calculates a similarity value between two terms. 

Structure Similarity. Neighbours of a term are 
parents and children of the node; probability of a 
term being similar to another is high if neighbours of 
both terms are matched. 

Based on the above three metrics, a similarity 
chart is computed. If we have n similarity charts, 
each of which has similarity values Simi (a, b), i = 
1..n, for any pair of elements (a, b); the overall 
similarity for each pair (a, b) is calculated as: 
 

 

Higher the weight wi, more is its importance and 
preference. 

Table 1: Match according to similarity values. 

Value Range Match 
0.50 – 1.00 Exact 
0.25 – 0.50 Subsumption 
0.25 – 0.00 Conditional 

3.2 The Gene Ontology 

The Gene Ontology is a well known web based bio-
ontology; an open source of bioinformatics 
knowledge. We will use two key GO ontologies; 
cellular component and molecular function as 
examples to explain how the Match conditions 
mentioned in Table 1 are assigned. 

The cellular component and molecular function 
ontologies are each represented as a directed acylic 
graph or DAG. Relationships between any two 
concepts in a DAG are depicted by semantic edges. 
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A gene may have more than one annotation in 
different branches of GO. For example, the gene 
nuclear chromosome is annotated as GO: 0000228 
(Figure 1a) and GO: 0000784 (Figure 1b); it is 
located in more than one cellular component, during 
which it performs more than one molecular function. 

Exact. Is the most desirable match. The degree exact 
is assigned when a term in one ontology is 
equivalent to or superclass of a term in another 
ontology. 

Subsumption. The degree subsumption is assigned 
when a term of ontology includes a term in another 
ontology i.e. it could be used as a substitute. 

Conditional. The degree conditional is assigned 
when a term of ontology doesn’t necessarily match a 
term in the other ontology but may still be used to 
achieve the desired result. 

 
Figure 1a: Ontology O1.         Figure 1b: Ontology O2. 

Table 2: Weights according to degree of Match. 

Match Weight 
Exact w1 

Subsumption w2 
Conditional w3 

Exact > Subsume > Conditional 
 

The criteria in Table 2 are implemented as follows:  

Algorithm 1: match(value)  

1: if value ≥ 0.50 then  
2: return Exact  
3: else if  0.50  ≤  value  ≥ 0.25 then  
4: return Subsume  
5: else if value < 0.25 then  
6: return Conditional  
7: else  
8: return Fail  

   9: end if 
 
We match the concepts of ontologies O1 and O2 
based on the matching criteria proposed in Table 1. 
The final match is an integrated ontology O shown 
in Figure 2 below. 

 
Figure 2: Ontology O. 

4 BIPARTITE GRAPH 
MATCHING 

4.1 Overview  

A Bipartite Graph is a graph G = (V, E) in which the 
vertex set can be partitioned into two disjoint sets, 
V=V1 U V2 such that every edge e א E has one 
vertex in V1 and the other in V2. 

A weighted bipartite graph G = (X U Y, X × Y) 
having partitions with size V can be represented by a 
weight matrix W of size V × V. In the weight matrix, 
rows correspond to the X partition and columns 
correspond to the Y partition of vertices. Each entry 
wij represents the weight of the edge between the 
vertices xi and yj. 

Feasible vertex labelling l is defined on the 
vertices of both partitions of the bipartite graph as 
follows: 

l (xi) + l(yj) ≥ wij   ׊ xi א X, ׊ yj א Y 
The subgraph corresponding to the feasible 

vertex labeling l defined by the edges satisfying the 
following equality is called the equality subgraph Gl 

l (xi) + l(yj) = wij 

We seek the max-weighted perfect matching in 
bipartite graphs. 

5 INCREMENTAL ALGORITHM 

Our algorithm is based on the Hungarian algorithm, 
which produces the feasible vertex labelling of the 
vertices together with the max-weighted matching. 
OntoMaintain updates the new feasible vertex 
labelling of the extended graph while producing the 
max-weighted matching or so called perfect 
matching. 

The Hungarian algorithm assumes the existence 
of a weighted bipartite graph, G = (X U Y, X × Y) as 
described in Section 4.1. The edge weights, wij are 
stored in a matrix W. An edge (xi, yj) is matched if xi 
is matched to yj and unmatched otherwise. We 
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represent matched edges with solid lines and 
unmatched edges with dotted lines. Furthermore, let 
S ك X and T be neighbour of S i.e. T = nhbor(S) but 
T ≠ Y. So T contains only those vertices from 
partition Y, which are matched to a vertex in S. 

The Hungarian algorithm outputs a complete 
matching M*V. 

The incremental algorithm adds a new pair of 
vertices to the max-weighted matched bipartite 
graph whose feasible vertex labelling is also given, 
together with the max-weighted matching. Then, it 
assigns any feasible labelling to the newly added 
pair of vertices and, by using this labelling, 
determines the maximum-weighted matching of the 
whole extended bipartite graph.  

When we add a new pair of vertices to the max-
weighted-matched graph, a new weight matrix is 
generated by adding a new row and a new column to 
the previous weight matrix as the (V + 1)st row and 
column corresponding to the edges incident to the 
new vertices. 

 
Algorithm 2: OntoMaintain. 
 
Input: The extended bipartite graph  
           G’= (X U Y, X × Y), with partitions of size    
           V+1 represented by a weight matrix W’of size 
           (V + 1) × (V + 1) 
           A feasible vertex labeling l of the first V  
           vertices such that it corresponds to Gl  

                  containing the max-weighted matching  
           among the first V vertices 
           The max-weighted matching M*V among  
           the first V vertices of the partitions 
 

Output: Perfect matching M*V+1 and the updated   
              labels l of the vertices of the extended  
              bipartite graph G’. 
 
1. Begin with matching M*V derived by Hungarian  
     algorithm. 
     Assign labels to new vertices Y V + 1 and X V + 1  
     as follows: 

                   l(YV+1) = 0 
                        l(XV+1)= max yj א Y (wv+1,j) 
 

2. On the equality subgraph Gl, pick an unmatched 
vertex in partition X (called U) using matching 
M*V. Grow a Hungarian tree rooted at this 
vertex, while doing so; include all vertices 
encountered in X (with U) into S and all vertices 
encountered in Y into T.  

 

3. If an augmenting path A is found, interchange 
matched and unmatched edges in the augmenting 

path. Calculate new matching by increasing size 
by one. 

 

4. If no augmenting path is found, revise the 
labeling l. After label revision, labels of vertices 
in S are decreased by the smallest possible 
amount which adds at least one edge between S 
and Y-T. Concurrently, labels of vertices in T are 
increased by the same amount in order to 
maintain the current matching between S and T. 
Adding such edges will increase the chance of 
finding an augmenting path. Revise labels as: 

 
αl = min xi א S, yj א Y - T { l (xi) + l(yj) - wij} 
 
                      l(v) + αl 
     l’(v)  =    l(v) -  αl 
                      l(v) otherwise 
 

5. Go to Step 2 to search for an augmenting path 
with the new equality subgraph G’l defined by 
the new labeling 

5.1 Complexity Analysis 

Our Incremental Algorithm, OntoMaintain, has a 
time complexity of O(n2), where n denotes the total 
number of vertices in the bipartite graph. Finding the 
feasible labelling for the new row and column takes 
linear time, so it has time complexity of O(n). In 
order to find an augmenting path, provided we don’t 
find one straight away, we have to modify the labels 
of the vertices. This adds at least one edge to the 
tree, so in the worst case after n iterations we will 
find an augmenting path. Each iteration requires 
O(n) operations. The computation of αl requires 
O(n2) complexity, adding edges from S to Y – T 
requires O(n2) operations. Thus, the total complexity 
of our algorithm is O(n2). 

5.2 Correctness of the Algorithm 

When we add a new pair of vertices to the 
maximum-weighted-matched bipartite graph, 
feasible labelling for the extended bipartite graph 
can be determined by using the labelling on the 
already determined max-weighted-matched part of 
the graph. After adding the new vertices, all the 
matched edges will be in the equality subgraph. 

If there is no edge between the new pair of 
vertices, then they will be the only unmatched 
vertices in the graph. Because there is only a single 
unmatched vertex pair, it is possible to find only a 
single augmenting path in the equality subgraph. So 
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when the augmenting path is discovered and the 
matching inverted, the size of the matching must 
only be increased by one. This in turn would give us 
the perfect matching. 

If we don’t discover an augmenting path, we 
modify the vertex labels to add another edge to the 
tree. In the end, an augmenting path starting with the 
only unmatched vertex in one partition and ending 
with the only unmatched vertex in the other partition 
will be discovered. That equality subgraph will 
contain the perfect matching or the max-weighted 
matching of the bipartite graph. 

6 PERFORMANCE ANALYSIS 

We implemented our algorithm in Java and tested it 
on a Windows operating environment under optimal 
conditions.   

6.1 Experimental Results 

Environment: The code was tested on a Windows 
System, running Windows Vista Home Premium, 
Intel Core 2 Duo 2.4 GHz with 2037 MB of RAM. 

Table 3: Computation Time. 

   No. 
    of   
 Nodes 

Hungarian 
Algorithm 
    (ms) 

OntoMaintain 
    Algorithm 

  (ms) 

   From 
  Scratch 
     (ms) 

     3  0     0  0 
    10  0     0  0 
    50 16     0 31 
   100      187    16      202 
   200     2980   140     2777 
   300    14118         312    14102 
   400    39873        1280    40528 
   500    91369  2168    97407 
   600   209602  2824   212206 

 
In Table 3: Column 1. Shows number of nodes, 
column 2. Shows time taken to run the original 
algorithm, column 3. Shows time taken to run the 
incremental algorithm and column 4. Shows time 
taken to recalculate matching from scratch. 

6.2 Performance Graph 

The performance results of our algorithm are shown 
in Figure 7 below. As is evident from the graph, the 
time taken by the Incremental Algorithm to calculate 
the new matching is significantly less than the time 
taken to run the complete algorithm from scratch. 

Until 50 nodes, the Incremental Algorithm takes 
about the same time as the Hungarian run from 
scratch. However with 100 nodes and onwards, the  
Incremental Algorithm takes dramatically less time 
to calculate the new perfect matching than the 
Hungarian Algorithm run from scratch. As the 
number of nodes in the graph increases, a significant 
difference in performance time is observed. 

 
Figure 3: Performance Graph. 

6.3 An Illustrative Example 

The max-weighted matching M*V  among the first V 
vertices of the partition and the corresponding 
weight matrix are displayed in Figure 4a. and Figure 
4b.  

 
Figure 4a: Max-weighted matching M*V. 

                                Y 1 0            Y2 2          Y3 0 
      
                    X1 4 
         
                       X2 6 
 
                    X3 4 
 

Figure 4b: Weight Matrix. 

Now consider the (V + 1) x (V + 1) weight matrix 
W’ in Figure 4c. The last row and column 
correspond to the newly added vertices. Feasible 
labels  are  assigned  to  X4  and  Y4  as  discussed  in 
Section 4.1 

0 6 0 

0 0 6 

4 0 0 
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                           Y1 0     Y2 2     Y3 0      Y4 9 
 

                X1 4 
 
                X2 6 
 
                X3 4 
 
                X4 5 
 

Figure 4c: Extended Weight Matrix W’. 

   
Figure 4d: Unsaturated nodes X4 and Y4. 

In Figs. 4c and 4d X4 and Y4 are the only unsaturated 
vertices and there is no augmenting path in the 
equality graph, so we revise labels. Figure 5a shows 
the new labelling after labels are revised using Step 
4 of OntoMaintain. Figure 5b shows the equality 
subgraph corresponding to the new labelling; the 
augmenting path, in bold, is shown in the Final 
Matching in Figure 5c. 
 
                        Y1 0      Y2 2     Y3 0      Y4 9 
 

             X1 4 
  
                X2 6 
 
                X3 4 
 
                X4 3 
  

Figure 5a: New Labelling. 

 
Figure 5b: Equality Subgraph. 

 
Figure 5c: Final Matching. 
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