
JWIG: YET ANOTHER FRAMEWORK FOR
MAINTAINABLE AND SECURE WEB APPLICATIONS

Anders Møller and Mathias Schwarz
Department of Computer Science, Aarhus University, Denmark

Keywords: Web programming, Web services, Java, XML, XHTML, AJAX, REST.

Abstract: Although numerous frameworks for web application programming have been developed in recent years, writ-
ing web applications remains a challenging task. Guided by a collection of classical design principles, we
propose yet another framework. It is based on a simple but flexible server-oriented architecture that coher-
ently supports general aspects of modern web applications, including dynamic XML construction, session
management, data persistence, caching, and authentication, but it also simplifies programming of server-push
communication and integration of XHTML-based applications and XML-based web services.The resulting
framework provides a novel foundation for developing maintainable and secure web applications.

1 INTRODUCTION

Web applications build on a platform of fundamen-
tal web technologies, in particular, XHTML, HTTP,
and JavaScript. Although these are relatively man-
ageable technologies, it is generally regarded as dif-
ficult to write and maintain nontrivial, secure appli-
cations. The programmer must master not only the
fundamental technologies but also techniques for ses-
sion management, caching, data persistence, form in-
put validation, and rich user interfaces. In addition,
most web applications are exposed to all hackers in
the world, so the programmer must also consider po-
tential security problems, such as, injection attacks,
cross site scripting, and insufficient authentication or
encryption.
In recent years, a multiplicity ofweb application
frameworkshave emerged, all claiming to make web
application development easier. Among the most
widely known are Struts (McClanahan et al., 2008),
Spring MVC (Johnson et al., 2008), Google Web
Toolkit (Google, 2008), Ruby on Rails (RoR) (Hans-
son et al., 2008), PHP (Lerdorf et al., 2008), and
ASP.NET (Microsoft, 2008). These frameworks rep-
resent different points in the design space, and choos-
ing one for a given task is often based on subjective ar-
guments. However, a general limitation is the lack of
a simple unified communication model that supports
both the traditional server-oriented structure and the
more modern style using AJAX, server-push/Comet,
and JSON or XML-based web services (Crockford,

2006; W3C, 2008).
In this paper, we try to take a fresh view on the prob-
lem. Based on essential design principles, we ex-
hibit some of the limitations of existing frameworks,
propose yet another web application framework, and
compare it with the existing ones. The main contribu-
tions can be summarized as follows:

• First, we identify and argue for a small collection
of requirements and design principles for creating
a Java-based web application framework.

• In Section 2 we propose a simple architecture
that supports the basic features of receiving HTTP
client input and producing XHTML output, in ac-
cordance with the design goals.

• In Sections 3–8 we demonstrate the flexibility of
the architecture by showing how it can smoothly
handle other important aspects that can be chal-
lenging to work with in other frameworks, includ-
ing server-push communication, session state,
persistence, and authentication.

• The resulting framework, which is evolved from
the 2003 version of JWIG (Christensen et al.,
2003), provides a clear structure of both control
and data. This makes the application program
code amenable to specialized static analysis. For
example, one analysis checks at compile-time that
only valid XHTML 1.0 data is sent to the clients
during execution.

• The new framework is evaluated through a series
of short but nontrivial example programs and a

47
MÃÿller A. and Schwarz M.
JWIG: YET ANOTHER FRAMEWORK FOR MAINTAINABLE AND SECURE WEB APPLICATIONS.
DOI: 10.5220/0001836800470053
In Proceedings of the Fifth International Conference on Web Information Systems and Technologies (WEBIST 2009), page
ISBN: 978-989-8111-81-4
Copyright c© 2009 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

case study that demonstrate the resulting system
in relation to the requirements and design princi-
ples, in comparison with alternative frameworks.

Premises and Requirements

To specify the aims of our task and narrow the design
space, we begin by formulating the basic premises
and requirements:

We assume that the browsers are capable of ren-
dering XHTML and executing JavaScript code, as in
Internet Explorer 8 and Firefox 3, but the framework
cannot use browser plugins. This means that the ap-
plications will be readily deployable to all users with
modern browsers.

We postulate that a majority of web applications
do not require massive scalability and have less than
a thousand concurrent uses. Our framework design
should focus on this category.

The framework must uniformly support both
XHTML applications (where the clients are browsers)
and XML-based web services (where the clients are
other types of software). It should be possible to
statically check that only valid XML output is pro-
duced, relative to a given XML schema. This requires
a clear flow of control and data in the code. For the
back-end, the framework must integrate with existing
object-relational mapping (ORM) systems, e.g. Hi-
bernate (O’Neil, 2008), such that data persistence can
be obtained with minimal effort to the programmer,
but without being tied to one particular system.

Representational state transfer (REST) is a collec-
tion of network architecture principles that the Web is
based on (Fielding and Taylor, 2002). We focus on
its use of URLs for addressing resources with generic
interfaces as HTTP methods (GET, POST, etc.) and
caching. In contrast, the remote procedure call (RPC)
approach encourages the use of URLs for address-
ing operations. Both approaches should be uniformly
supported by the framework.

Design Principles

To guide the design of the framework, we adhere to
the following key principles:

High Cohesion and Low Coupling. Cohesion
is a measure of how strongly related and focused the
responsibilities of a software unit is. The related con-
cept of coupling is a measure of how strongly depen-
dent one software unit is on other software units. It is
common knowledge in software engineering that high
cohesion and weak coupling are important to main-
tainability and reliability of the software (Stevens
et al., 1974). Nevertheless, many web programming
frameworks fail in these measures when considering,

SERVER CLIENT

request

response

web application

web methods

event handlers
XML producers

page event

page update

XML pageDispatcher

Database

ORM

Figure 1: The new JWIG architecture. The boxes and cir-
cles represent the main static components, and the arrows
show the dynamic interactions between the components.

for example, handling of form data and asynchronous
client–server communication. Examples of this are
shown in Sections 4 and 5.

Secure by Design.Buffer overruns are an exam-
ple of a security concern that has largely been elimi-
nated by the use of languages that are secure by de-
sign, for example Java or C# instead of C or C++.
However, injection attacks, cross-site scripting, in-
secure direct object references, broken session man-
agement, and failure to restrict URL access remain
among the most serious classes of web application
vulnerabilities (OWASP, 2007). We believe that the
principle of ‘secure by design’ should be applied at
the level of web application frameworks to address
those classes of vulnerabilities.

Convention over Configuration. All configura-
tion should have sensible defaults, in order to mini-
mize the number of detailed decisions that developers
need to make for the common cases. This principle
was popularized by Ruby on Rails.

In the following sections, we give examples of
how existing frameworks violate these principles and
explain our proposal for a solution. Due to the limited
space, many features of our resulting system are omit-
ted in this paper; for an extended version see (Møller
and Schwarz, 2009).

2 ARCHITECTURE

Web clients in general cannot be trusted, and es-
sentially all web applications contain sensitive data,
so according to the ‘secure by design’ principle and
for simplicity our starting point is a classicalserver-
orientedapproach where the application code is ex-
ecuted on the server rather than on the client. This

WEBIST 2009 - 5th International Conference on Web Information Systems and Technologies

48

public class Main extends WebApp {
public XML hello(String what) {

return [[
<html>
<head><title>Example</title></head>
<body>
<p>Hello <{ what }></p>
</body>

</html>
]];

}}

Figure 2: A “hello world” web application.

means that we avoid many of the security considera-
tions that programmers have if using a client-oriented
architecture, as e.g. GWT. A concrete example of this
advantage is shown in (Møller and Schwarz, 2009).
One of the typical arguments in favor of a client-
oriented approach is the opportunity to create rich
user interfaces—however, such effects are possible
also in server-oriented frameworks using tag libraries
containing JavaScript code. Also, pushing computa-
tion to the client-side may imply a decreased load on
the server, but, on the other hand, it often conflicts
with the use of ORM systems: It is difficult to ensure
high performance if the application code is physically
separated from the ORM system.

Figure 1 illustrates the basic architecture. As in
many other newer server-oriented frameworks, adis-
patcheron the server receives the client HTTP re-
quests and invokes the appropriate server code, here
calledweb methods. Many frameworks rely on sep-
arate configuration files for mapping from request
URLs to application code. To decrease coupling, our
web methods are instead discovered using introspec-
tion of the web application code, as in e.g. CherryPy.
The web methods have formal parameters for receiv-
ing arguments from the clients and return values to be
sent as response.

As an example, the tiny web application shown
in Figure 2 accepts HTTP GET requests of the form
http://example.org/Main/hello?what=World
and returns a small XHTML page as response.
The classMain is a web application that contains
a single web methodhello. We explain the XML
construction and the[[...]] notation in Section 3.
Following the ‘convention over configuration’
principle, no application specific configuration is
required to make this run—unlike the situation in, for
example, Struts or RIFE (Bevin, 2007).

The architecture is a variant of the Model-View-
Controller pattern that many other frameworks also
apply. Most importantly, the model is separated from
the main web application code. However, we propose
a less rigid division between the view and the con-
troller than used in other frameworks, as we explain

in Section 3.
In the following sections, we go into more details and
extend this basic architecture to fulfill the require-
ments we defined, which includes introducing the no-
tions of XML producersandevent handlersand the
page eventandpage updateactions appearing in Fig-
ure 1.

3 GENERATING XML OUTPUT

A common approach to generating XHTML output
dynamically in web application frameworks is to use
a template system, either where templates contain
code for dynamic construction of content (as in e.g.
ASP.NET, PHP, or RoR) or where templates contain
placeholders where the code can insert content (as
in e.g. RIFE). Another approach is to use GUI com-
ponents that are assembled programatically (as e.g.
GWT or Wicket). Web services, on the other hand,
need the ability to also receive and decompose XML
data, which is often done completely differently in a
DOM-style fashion.

All those systems lack the ability to ensure, at
compile time, that output is always well-formed and
valid XML data. This is known to affect reliability
and may lead to, for example, cross site scripting vul-
nerabilities.

We propose a solution that (1) unifies the template
approach and the DOM-style approach, (2) permits
static validation analysis, and (3) avoids many secu-
rity issues by design. This approach is a further devel-
opment of the JWIG framework presented in (Chris-
tensen et al., 2003).

We build on a new version of the XACT sys-
tem (Kirkegaard et al., 2004). XML data is repre-
sented as well-formed XML fragments that are first-
class values, meaning that they can be stored in vari-
ables and passed between methods (unlike most other
template systems). Figure 2 shows an XML value
constant (enclosed by[[...]], using a simple syn-
tax extension to Java) that contains a snippet of code
(enclosed by<{...}> in XML content or{...} in at-
tribute values), which at runtime evaluates to a value
that gets inserted. The syntax extension reduces the
burden of working with XML data inside Java pro-
grams and is desugared to ordinary Java code.

XML values may also contain namedgapswhere
other XML values or strings can be inserted, which
makes it easy to reuse them. As an example, the fol-
lowing code defines a wrapper for XHTML pages and
stores it in a variablew:
XML w = [[<html>
<head><title>My Pink Web App</title></head>

JWIG: YET ANOTHER FRAMEWORK FOR MAINTAINABLE AND SECURE WEB APPLICATIONS

49

<body bgcolor="pink"><[BODY]></body></html>
]];

This wrapper can then be used whenever a complete
page needs to be generated, for example in this web
method:

XML time() {
return w.plug("BODY", [[

<p>The time is: <{ new Date()}></p>
]]);

}

To obtain separation of concerns between program-
mers and web page designers, XML values can also
be stored in separate files. In fact, contracts can be
established to formalize and verify this separation, as
explained in the article by Böttget et al. (2006). XML
values can also be decomposed and transformed with
operations inspired by JDOM and XPath. By design,
XML values are always well-formed (i.e. tags are bal-
anced, etc.). When inserting text strings into frag-
ments, special characters are automatically escaped,
which eliminates a significant class of security vulner-
abilities. In addition, variables can be annotated with
XML Schema type information, and a program analy-
sis can perform type checking to ensure that output is
always valid according to a given schema (Kirkegaard
and Møller, 2005).

By default, web methods react only on HTTP
GET requests. This can be changed using an anno-
tation, for example@POST for web methods that are
unsafe in the HTTP sense.

4 XML PRODUCERS AND PAGE
UPDATES

The response of a web method is generally a view
of some data from the underlying database. When
the data changes, the view should ideally be updated
automatically while only affecting the relevant parts
of the pages to avoid interfering with form data be-
ing entered by the user. With many frameworks, this
is a laborious task that requires many lines of code
and insight into the technical details of JavaScript and
AJAX, so many web application programmers settle
with the primitive approach of requiring the user to
manually reload the page to get updates.

We propose a simple solution that hides the
technical details of the server-push techniques (aka.
Comet) and integrates well with the XACT system.
An XML produceris an object that can produce XML
data when itsrun method is called. When the ob-
ject is constructed, dependencies on the data model
are registered according to the observer pattern. An

XML producer can be inserted into an XHTML page
such that whenever it is notified through its depen-
dencies,run is automatically called and the resulting
XML value is pushed to all clients viewing the page.
All the technical details involving AJAX and Comet
are hidden inside the framework, and it scales well to
hundreds of concurrent uses.

Typically, the XML producer is created as an
anonymous inner class within the web method that
generates the XHTML page. This ensures high cohe-
sion for that software component and low coupling by
only depending on the model of the data that is shown
to the client. An example is shown in Section 6.

5 FORMS AND EVENT
HANDLERS

Forms constitute the main mechanism for obtaining
user input in web applications. With most frame-
works, the code that generates the form is separate
from the code that reacts on the input being submit-
ted, and these pieces of code are connected only indi-
rectly via the URLs being generated and the configu-
ration mapping from URLs to code. This violates the
principle of high cohesion and low coupling, and the
flow of control and data becomes unclear.

Our solution is to extend the architecture with
event handlersas a general mechanism for reacting
to user input. Due to the limited space, we here fo-
cus on forms although the mechanism also works for
other kinds of DOM events. The technique is related
to the use of action callbacks in Seaside.

Forms are created by building XML documents
that contains aform tag with relevant input fields. A
specialized event handler, called a submit handler, is
plugged into theaction attribute. The submit han-
dler contains a method that can react when the form
is submitted and read the form input data. (An ex-
ample is shown in Section 6.) As with XML produc-
ers, event handlers are typically anonymous classes
located within the web methods.

The consequence of this structure is a high degree
of code cohesion. Also, it becomes possible by static
analysis to verify consistency between the input fields
occurring in the form and the code that receives the
input field data.

6 EXAMPLE: MICROCHAT

The following example shows a tiny chat application
that uses the features explained in the previous sec-

WEBIST 2009 - 5th International Conference on Web Information Systems and Technologies

50

tions. It shows a list of messages and a text field
where users can write new messages.

public class MicroChat extends WebApp {
List<String> messages =
new ArrayList<String>();

public XML chat() {
return [[<html>

<head><title>MicroChat</title></head>
<body>
<{ new XMLProducer(messages) {
XML run() {
if (!messages.isEmpty())
return [[

<{ [[<[MSG]>]]

.plugWrap("MSG", messages) }>
]];

else
return [[]];

}}}>
<form method="post" action=[SEND]>
<p><input type="text" name="msg"/>
<input type="submit" value="Send"/></p>

</form>
</body></html>

]]
.plug("SEND", new SubmitHandler() {
void run(String msg) {
messages.add(msg);
update(messages);

}});
}}

For simplicity, the application state is here repre-
sented as a fieldmessages in the application class; we
discuss persistence in Section 8. The XHTML doc-
ument being created when the user invokes therun
web method contains an instance of anXMLProducer
that declares itself to be an observer ofmessages and
writes the messages in the document. TheplugWrap
method here builds a list of items containing the
messages. Secondly a submit handler is plugged into
theaction attribute of the form. The handler method
reads the form fieldmsg, adds it to the list of mes-
sages, and then invokeupdate to notify all observers
of the list, in this case the XML producer. The effect
is that whenever a user posts a new message, the list
of messages is automatically updated in all browsers
viewing the page.

Notice the high degree of cohesion within the
chat web method. In most other frameworks (with
Seaside and as a notable exception) the equivalent
code would be more fragmented and hence less main-
tainable.

7 PARAMETERS AND
REFERENCES TO WEB
METHODS

Web methods and event handlers can be parameter-
ized, as shown in the previous examples. Any Java
class that contains a static methodvalueOf can be
used for such parameters for deserializing values, as
known from the basic Java library. Conversely, seri-
alization for output is performed usingtoString (for
strings) ortoXML (for XML values). The dispatcher
then transparently handles the serialization and dese-
rialization. For example, JSON data is trivial to trans-
fer with this mechanism.

The URL format used in requests to web methods
can be controlled by an annotation, to support REST-
style addressing of resources. Links between pages
can be created using the methodmakeURL:

XML my_link = [[

click here

]];

The web method name is passed as a constant string
(since methods are not first-class values in Java), but
it is straightforward to statically type check that it
matches one of the web methods within the applica-
tion. Parameters are serialized as explained above,
and the resulting URL is generated according to the
URL pattern of the web method.

This approach ensures that the coupling between
web pages becomes explicit in the application source
code, in contrast to frameworks that involve URL
mappings in separate configuration files. As we ex-
plain in the next section, it additionally provides
a novel foundation for managing session state and
shared state.

8 SESSION STATE AND
PERSISTENCE

A classical challenge in web application program-
ming is how to represent session state on top of the
inherently stateless HTTP protocol. Although REST
prescribes the use of stateless communication, with-
out ever storing session state on the server, we believe
that the benefits of allowing session state on the server
outweigh the disadvantages—a concrete example is
shown in (Møller and Schwarz, 2009).

Our approach is to store session state in objects
derived from an abstract class namedSession. Us-
ing a class instead of a map means that the ordinary

JWIG: YET ANOTHER FRAMEWORK FOR MAINTAINABLE AND SECURE WEB APPLICATIONS

51

Java type checker will check that expected properties
are present when a web method accesses the session
state. The class defines thevalueOf andtoString
methods so the objects can be given as parameters to
web methods using the mechanism described in Sec-
tion 7. The following example extends the “Hello
World” example from Section 2 so it now saves the
what parameter in a newly created session object and
then redirects to thesayHi method, which reads the
session data and embeds it in its XML output:

URL hello(String what) {
return makeURL("sayHi",
new HelloSession(what));
}
class HelloSession extends Session {
String name;
public HelloSession(String s) { name = s; }
}
public XML sayHi(HelloSession s) {
return [[
<html>
<head><title>Example</title></head>
<body><p>Hello <{ s.name }></p></body>
</html>]];

}

Session state is here encapsulated in the
HelloSession objects, and it is clear from the
signature of thesayHi web method that it requires
the client to provide a session key. This way of track-
ing clients is effectively a variant of URL rewriting
that is integrated with the dispatching mechanism of
the framework.

For persistent data in the web applications,
we utilize the same pattern as for session state:
Persistable data must implement thePersistable
interface, which requires it to define an ID string for
each object. This ID can be used to query the object
from the database during deserialization. It can be
passed around in the URLs in a call-by-reference
style via themakeURL mechanism or hidden inside
session objects.

Among the currently most serious web application
vulnerabilities is insecure direct object references,
i.e. situations where malicious users can modify data
references passed in URLs with insufficient authenti-
cation on the server (OWASP, 2007). Employing the
‘safe by default’ principle, our framework requires
that permission must explicitly be given to use an ID
of a persistable object. This is done coherently by
defining a method namedaccess that returns true
when the use of the given ID is allowed in the context
of the HTTP request concerned.

9 CONCLUSIONS

We have presented a novel minimalistic Java-based
framework that provides uniform support for common
tasks in web programming. By the use of a reflection-
baseddispatcher, XACT for XML processing,XML
producersfor server-push communication,event han-
dlersfor user input processing, andfilters for caching
and authentication, we obtain a framework for making
maintainable and secure web applications with high
cohesion, low coupling, and security-by-design. Ex-
ample programs and a larger case study are presented
in the technical report (Møller and Schwarz, 2009).

As ongoing and future work, we aim to provide
a more detailed analysis of the capabilities and limi-
tations of other frameworks and their relation to the
one we have presented here. Also, we remain to show
how the framework can handle user input validation
through a combination of XML producers and event
handlers and rich user interfaces by integrating exist-
ing JavaScript libraries using tag-like XHTML exten-
sions.

REFERENCES

Bevin, G. (2007). RIFE.http://rifers.org/.

Christensen, A. S., Møller, A., and Schwartzbach, M. I.
(2003). Extending Java for high-level Web service
construction. ACM Transactions on Programming
Languages and Systems, 25(6):814–875.

Crockford, D. (2006). JavaScript Object Notation
(JSON). RFC4627.http://tools.ietf.org/
html/rfc4627.

Fielding, R. T. and Taylor, R. N. (2002). Principled design
of the modern web architecture.ACM Transactions on
Internet Technology, 2(2):115–150.

Google (2008). Google Web Toolkit.http://code.
google.com/webtoolkit/.

Hansson, D. H. et al. (2008). Ruby on Rails.http://www.
rubyonrails.org/.

Johnson, R. et al. (2008). Spring MVC.http://www.
springframework.org/.

Kirkegaard, C. and Møller, A. (2005). Type checking with
XML Schema in XACT. Technical Report RS-05-31,
BRICS. Presented at Programming Language Tech-
nologies for XML, PLAN-X ’06.

Kirkegaard, C., Møller, A., and Schwartzbach, M. I. (2004).
Static analysis of XML transformations in Java.IEEE
Transactions on Software Engineering, 30(3):181–
192.

Lerdorf, R. et al. (2008). PHP.http://www.php.net/.

McClanahan, C. R. et al. (2008). Struts.http://struts.
apache.org/.

Microsoft (2008). ASP.NET.http://www.asp.net/.

WEBIST 2009 - 5th International Conference on Web Information Systems and Technologies

52

Møller, A. and Schwarz, M. (2009). Designing yet another
framework for maintainable and secure web applica-
tions. Technical Report RS-09-02, BRICS.

O’Neil, E. J. (2008). Object/relational mapping 2008: hi-
bernate and the entity data model (edm). InProc.
ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD ’08.

OWASP (2007). The ten most critical web application
security vulnerabilities. http://www.owasp.org/
index.php/Top 10 2007.

Stevens, W. P., Myers, G. J., and Constantine, L. L. (1974).
Structured design.IBM Systems Journal, 13(2):115–
139.

W3C (2008). Web services activity.http://www.w3.org/
2002/ws/.

JWIG: YET ANOTHER FRAMEWORK FOR MAINTAINABLE AND SECURE WEB APPLICATIONS

53

