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Abstract: Multimedia content is uploaded, tagged and recommended by users of collaborative systems such asYouTube
andFlickr. These systems can be represented as tagged-graphs, where nodes correspond to users and tagged-
links to recommendations. In this paper we analyze the online computation of user-rankings associated to
a set of tags, called afacet. A simple approach to faceted ranking is to apply an algorithm that calculates
a measure of node centrality, say, PageRank, to a subgraph associated with the given facet. This solution,
however, is not feasible foronline computation. We propose an alternative solution: (i) first, a ranking for
each tag is computedofflineon the basis of tag-related subgraphs; (ii) then, a faceted order is generatedonline
by merging rankings corresponding to all the tags in the facet. Based on empirical observations, we show that
step (i) is scalable. We also present efficient algorithms for step (ii), which are evaluated by comparing their
results to those produced by the direct calculation of node centrality based on the facet-dependent graph.

1 INTRODUCTION

In collaborative tagging systems, users assign key-
words ortagsto their uploaded content or bookmarks,
in order to improve future navigation, filtering or
searching (Marlow et al., 2006). These systems gen-
erate a categorization of content commonly known as
a folksonomy.

Two well-known collaborative tagging systems
for multimedia content areYouTube1 and Flickr 2,
which are analyzed in this paper. These systems
can be represented as tagged-graphs such as the one
shown in Figure 1. In this example, there are four
users,A, B, C andD. M is the set of contents and as-
sociated tags. For example, userB has uploaded one
multimedia content,song2, to which it has associated
the tag-set{blues,jazz}. V is the set of recommenda-
tions; e.g., userA recommendssong2of userB, which
is represented in the graph as an arrow fromA to B
with tagsblues,jazz.

Users can be ranked in relation to a set of tags,
which we call afacet. Some applications offaceted

1http://www.youtube.com/
2http://www.flickr.com/

M = {(A, song1,{blues}) V = {(A, song2)
(B, song2,{blues,jazz}) (B, song4)
(C, song3,{blues}) (B, song5)
(C, song4,{jazz}) (A, song3)
(D, song5,{blues}) (A, song4)
(D, song6,{rock}) } (C, song6)}
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Figure 1: Example of construction of a tagged-graph from
a set of contentsM and a set of recommendationsV.

(i.e., tag-associated) rankings are: (i) searching for
content through navigation of the best users with re-
spect to a facet; (ii) measuring reputation of users by
listing their best rankings for different tags or tag-sets.
Both applications lead to detection of field experts and
web personalization.

The order or ranking can be determined by a cen-
trality measure, such as PageRank (Page et al., 1998;
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Langville and Meyer, 2003), applied to a recommen-
dation graph. Given a facet, a straightforward solu-
tion is to compute the centrality measure based on an
appropriate facet-dependent subgraph of the recom-
mendation graph. However,online computation of
the centrality measure is unfeasible because its high
time complexity, even for small facets with two or
three tags. Moreover, the offline computation of the
centrality measure for each facet is also unfeasible be-
cause the number of possible facets is exponential in
the number of tags. Therefore, alternative solutions
must be looked for. A simple solution is to use a
general ranking computed offline, which is then fil-
tered online for each facet-related query. The use of
a single ranking of web pages or users within folk-
sonomies has the disadvantage that the best ranked
ones are those having the highest centrality in a global
ranking which is facet-independent. In the informa-
tion retrieval case, this implies that the returned re-
sults are ordered in a way which does not take into
account the focus on the searched topic. This prob-
lem is calledtopic drift (Richardson and Domingos,
2002).

In this paper we propose a solution to the prob-
lem of topic drift in faceted rankings which is based
on PageRank as centrality measure. Our approach
follows a two-step procedure: (i) a ranking for each
tag is computed offline on the basis of a tag-related
subgraph; (ii) a faceted order is generated online by
merging rankings corresponding to all tags in the
facet.

The fundamental assumption is that step (i) in this
procedure can be computed with an acceptable over-
head which depends on the size of the dataset. This
hypothesis is validated by two empirical observations.
On one hand, in the studied tagged-graphs ofFlickr
andYouTube, most of the tags are associated to very
small subgraphs, while only a small number of tags
have large associated subgraphs (see Sect. 3). On the
other hand, the mean number of tags per edge is finite
and small as explained in Sect. 4.1.

The problem then becomes to find agoodandeffi-
cientalgorithm to merge several rankings in step (ii),
and we devote Sect. 4 to that task. The“goodness”
of a merging algorithm is measured by comparing its
results to those produced by the naive approach of
applying the PageRank algorithm on facet-dependent
graphs (see Sect. 5). Theefficiencyof an algorithm is
evaluated by means of its time complexity.

We concentrate our effort on facets that corre-
spond to thelogical conjunction of tags (match-
all-tags-queries) because this is the most used logi-
cal combination in information retrieval (Christopher,
2008).

The remaining of the paper is organized as fol-
lows. We discuss prior works and their limitations
in Sect. 2. In Sect. 3 we explore two real examples
of tagged-graphs. In particular, we analyze several
important characteristics of these graphs, such as the
scale-free behavior of the node indegree and assorta-
tiveness of the embedded recommendation graph (see
Sect. 3.1). Several rank-merging algorithms are in-
troduced in Sect. 4 and their scalability is analyzed in
Sect. 4.1. We discuss experimental results in Sect. 5
and we conclude with some final remarks and possi-
ble directions of future work in Sect. 6.

2 RELATED WORK

Theory and implementation concepts used in this
work for PageRank centrality are based on the com-
prehensive survey in (Langville and Meyer, 2003).
Basic topic-sensitive PageRank analysis was at-
tempted biasing the general PageRank equation to
special subsets of web pages in (Al-Saffar and Heile-
man, 2007), and using a predefined set of categories
in (Haveliwala, 2002). Although encouraging results
were obtained in both works, they suffer from the
limitation of a fixed number of topics biasing the
rankings. In other variations of personalized PageR-
ank, the ranking was augmented with weights based
on usage (Eirinaki and Vazirgiannis, 2005) and on
access time length and frequency by previous users
(Guo et al., 2007). However, these approaches built
a unique PageRank which was neither user dependent
nor query dependent.

(Hotho et al., 2006) adapted PageRank to work
on a tripartite graph of users, tags and resources cor-
responding to a folksonomy. They also developed
a form of topic-biasing on the modified PageRank,
but the generation of a faceted ranking implied a new
computation of the adapted algorithm on the graph for
each new facet.

Recent advances on collaborative tagging systems
include the extraction of more structured metadata
from these systems (Al-Khalifa et al., 2007) and the
introduction of groups of tagged resources with their
appropriate tagging by users that carries new valuable
information about the structure of Web content (Abel
et al., 2008).

There is a broad literature on the automatic dis-
covery of topics of interest, e.g., (Li et al., 2008). In
this paper, however, we focus on user-selected facets
(topics).

There has also been some work done on faceted
ranking of web pages. For example, the approach of
(DeLong et al., 2006) involves the construction of a
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larger multigraph using the hyperlink graph with each
node corresponding to a pair webpage-concept and
each edge to a hyperlink associated with a concept.
Although (DeLong et al., 2006) obtain good ranking
results for single-keyword facets, they do not support
multi-keyword queries.

Query-dependent PageRank calculation was intro-
duced in (Richardson and Domingos, 2002) to extract
a weighted probability per keyword for each web-
page. These probabilities are summed up to gener-
ate a query-dependent result. They also show that
this faceted ranking has, for thousands of keywords,
computation and storage requirements that are only
approximately 100-200 times greater than that of a
single query-independent PageRank. As we show
in Sect. 4.1, theofflinephase of our facet-dependent
ranking algorithms has similar time complexity.

Scalability issues were tackled by (Jeh and
Widom, 2002) criticizing offline computation of mul-
tiple PageRank vectors for each possible query and
preferring another more efficient dynamic program-
ming algorithm for online calculation of the faceted
rankings based on offline computation of basis vec-
tors. They found that their algorithm scales well with
the size of the biasing page set.

As in (Jeh and Widom, 2002) we also avoid com-
puting offline the rankings corresponding to all pos-
sible facets and our solution requires only the offline
computation of a ranking per tag. A faceted ranking is
generated online by adequately merging the rankings
of the corresponding tags. Sect. 4 deals with different
approaches to the merging step.

3 TAGGED-GRAPHS

In this section, we present two examples of collabora-
tive tagging systems,YouTubeandFlickr, where con-
tent is tagged and recommendations are made. Al-
though these systems actually rank content, to our
knowledge, no use of graph-based faceted ranking is
made.

The taxonomy of tagging systems in (Marlow
et al., 2006) allows us to classifyYouTubeandFlickr
in the following ways: regarding the tagging rights,
both areself-taggingsystems; with respect to the ag-
gregation model, they aresetsystems; concerning the
object-type, they are callednon-textualsystems; in
what respects to the source of material, they are clas-
sified asuser-contributed; finally, regarding tagging
support, whileYouTubecan be classified as asug-
gestedtagging system,Flickr must be considered a
blind tagging system.

In our first example the content is multimedia in

the form of favorite videos recommended by users.
We collected information from the serviceYouTube
using the public API crawling 185,414 edges and
50,949 nodes in Breadth-First Search (BFS) order
starting from the popular userjcl5m that had videos
among in the top twenty rated ones during April 2008.
We only considered nodes with indegree greater than
one, because they are the relevant nodes to PageR-
ank. ¿From this information, we constructed a full
tagged-graphG. We have also constructed subgraphs
by preserving only those edges that contain a given
tag (e.g.,G(music) and G( f unny) corresponding to
the tagsmusicand f unny, respectively), any tag in
a set (e.g.,G(music∨ f unny)) or all tags in a set
(e.g.,G(music∧ f unny)). Table 1 presents the num-
ber of nodes and edges of each of these graphs. We
must note that mandatory categorical tags such as
Entertainment, Sportsor Music, always capitalized,
were removed in order to include only tags inserted
by users.

Table 1: Sizes ofYouTube’s graph and some of its sub-
graphs.

Graph nodes edges
G 50,949 185,414
G(music∨ f unny) 4,990 13,662
G(music) 2,650 5,046
G( f unny) 2,803 6,289
G(music∧ f unny) 169 188

In our second example the content are pho-
tographs and the recommendations are in the form of
favorite photos3. We collected information from the
serviceFlickr by means of the public API, crawling
225,650 edges and 30,974 nodes in BFS order start-
ing from the popular userjunku-newcleusand includ-
ing only nodes with indegree grater than one. The full
tagged-graphG and the sample subgraphsG(blue∨
f lower), G(blue), G( f lower) andG(blue∧ f lower)
were constructed. The number of nodes and edges of
these graphs are shown in Table 2.

Table 2: Sizes ofFlickr’s graph and some of its subgraphs.

Graph nodes edges
G 30,974 225,650
G(blue∨ f lower) 5,440 14,273
G(blue) 3,716 6,816
G( f lower) 2,771 6,370
G(blue∧ f lower) 280 327

3Only the first fifty favorites photos of each user were
retrieved.
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Figure 2: Binned correlation of indegree of in-neighbors
with indegree.

3.1 Graph Analysis

We have verified that node indegree, in bothYouTube
and Flickr graphs, is characterized by a power-law
distribution:P(k) ≈ k−γ, with 2< γ < 3. Experience
with Internet related graphs shows that the power-law
distribution of the indegree does not change signifi-
cantly as the graph grows and, hence, the probabil-
ity of finding a node with an arbitrary degree even-
tually becomes non-zero (Pastor-Satorras and Vespig-
nani, 2004).

Since recommendation lists are made by individ-
ual users, node outdegree does not show the same
kind of scale-free behavior that node indegree. On the
contrary, each user recommends only 20 to 30 other
users on average. Moreover, since node outdegree is
mostly controlled byhumanusers, we do not expect
its average to change significantly as the graph grows.

In YouTube’s graph there is no clear correlation of
indegree of in-neighbors with node indegree, but in
Flickr’s graph there is a slight assortativeness (New-
man, 2002), indicating a biased preference of nodes
with high indegree for nodes with high indegree (see
Figure 2).

4 FACETED RANKING

Given a setM of tagged content, a setV of favorite
recommendations and a tag-set or facetF, thefaceted
ranking problemconsists on finding the ranking of
users according to facetF. The naive solution is to
find a graph associated to the facet and apply the
PageRank algorithm to it. This approach leads to
two algorithms, callededge-intersection andnode-
intersection, which turn out to too costly for online
queries. Indeed, their computation requires the ex-
traction of a subgraph which might be very large in a

large graph4 and the calculation of the corresponding
PageRank vector. However, they serve as a basis of
comparison for more efficient algorithms.

Edge-intersection. Given a set of tags, a ranking is
calculated by computing the centrality measure of the
subgraph corresponding to the recommendation edges
which includeall the tags of a certain facet. The
main idea is to find those edges having all tags and
then compute PageRank only on this subgraph which
yields therelevant nodes.

Node-intersection. Consider the example given in
Fig. 1 under the queryblues∧ rock. According to
the edge-intersection algorithm, there is no node
in the graph satisfying the query. However, it is
reasonable to return nodeD as a response to such
search. In order to take into account this case, we
devised another algorithm callednode-intersection.
In this case, the union of all edge recommendations
per tag is used when computing the PageRank, but
only thosenodesinvolved in recommendations for
all tags are kept (hence,node-intersection). This is
another possible way to obtain a subgraph having
only a specific facet-related information.

In the following paragraphs, we describe several
efficient algorithms for the online computation of
facet-dependent rankings.

Single-ranking. A simple online faceted ranking
consists of a monolithic ranking of the full graph,
without any consideration of tags, which is then fil-
tered to exclude those nodes that are not related to all
tags in the facet.

Winners-intersection. In this case, as well as in the
next two algorithms, theoffline phaseconsists of run-
ning PageRank on each tag-related subgraph (such as
G(music)) and storing only the best-w ranked users.
The choice of an adequate numberw is application-
dependent. For this paper, we have arbitrarily chosen
w= 128. We shall show that reasonably good results
are obtained even for this small value ofw. Given a
conjunction-of-tags facet, a new graph is constructed
by considering only thew “winners” corresponding
to each tag and the edges connecting them. A facet-
related ranking is then calculated by means of the
PageRank algorithm applied to this reduced graph.

4We have observed that as the graph grows the relative
frequency of tags usage converges. Similar behavior was
observed for particular resources by other authors (Golder
and Huberman, 2006).
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Probability-product. Let us recall that PageRank
is based on the idea of a random web-surfer and nodes
are ranked according to the estimated stationary prob-
ability of such a surfer being at each node at any given
time. This basic concept together with the product
rule for the joint probability of independent events
motivated theprobability-product algorithm. This
algorithm pre-computes ranking for each tag-related
subgraph. A ranking associated with a conjunction-
of-tags facet is then calculatedonline by multiply-
ing, on a node-by-node basis, the probabilities cor-
responding to each tag in the facet.

Rank-sum. Consider a recommendation graphG
larger than that in Fig. 1 and the queryblues∧ jazz.
Assume that the PageRank of the top three nodes in
the rankings corresponding the subgraphsG(blues)
andG( jazz) are as given in Table 3. Ignoring other
nodes, the ranking given by theprobability-product
rule is A, B andC. However, it may be argued that
nodeB shows a better equilibrium of PageRank val-
ues than nodeA. Intuitively, one may feel inclined
to rank B over S given the values in the table. In
order to follow this intuition, we devised therank-
sum algorithm which is also intended to avoidtopic
drift within a queried facet, that is, any tag prevailing
over the others. Given a conjunction-of-tags facet, the
rank-sum algorithm adds-up the ranking position of
nodes in each tag-related subgraph. The correspond-
ing facet-related ranking is calculated by ordering the
resulting sums (see Table 3).

Table 3:Probability-product vs. rank-sum in an example.

Node G(blues) G( jazz) Prob.-pr. Rank-sum
A 0.75 0.04 0.03 4
B 0.1 0.1 0.01 3
C 0.01 0.05 0.005 5

The first two columns show the probability of each node ac-
cording to PageRank on the corresponding tag-related sub-
graph.

4.1 Scalability Analysis

As noticed in (Langville and Meyer, 2003), the num-
ber of iterations of PageRank is fixed when the toler-
ated error and other parameters are fixed. As each it-
eration consists of a sparse adjacency matrix multipli-
cation, the time complexity of PageRank is linear on
the number of edges of the graph. Sinceprobability-
product, rank-sum andwinners-intersection algo-
rithms require the offline computation of PageRank
for each tag-related subgraph, it is clear that, if the
average number of tags per edge is constant or grows

very slowly as the graph grows, then theoffline phase
of these algorithms is scalable, i.e., linear on the num-
ber of edges of the complete tagged-graph. Fig. 3
shows that the distribution of tags per edge falls
quickly, having a mean of 9.26 tags per edge for
the YouTubetagged-graph and 13.37 for theFlickr
tagged-graph. These arenot heavy-tailed distribu-
tions and, since tags are manually added to each up-
loaded content, we do not expect the average num-
ber of tags per recommendation to increase signifi-
cantly as the graph grows. In other words, Fig. 3 val-
idates the hypothesis on which the scalability of the
offline phaseof the probability-product, rank-sum
andwinners-intersection algorithms is based.
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Figure 3: The distribution of number of tags per edge.

The time complexity of theedge-intersection al-
gorithm can be estimated by decomposing it into three
phases. The first step is to find the graph associated
to a facet withk tags, which takesO (k ·Etag), where
Etag is the number of edges of the largest tag-related
subgraph. The second step is to apply the PageR-
ank algorithm to the resulting graph, takingO (Ef acet)
time, whereEf acet is the number of edges of the
graph and, clearly,Ef acet ≤ k ·Etag. Finally, the list
of Nf acet nodes of the graph must be ordered, taking
O (Nf acetlog(Nf acet)). We have found thatNf acet is, in
general, much smaller thanEf acet (see Tables 1-2).

For the node-intersection algorithm, the time
complexity is the same that in the former case, but
Ef acet andNf acet are usually larger because the asso-
ciated facet-dependent graph includes more edges.

In the case ofsingle-ranking, theonlinecomputa-
tion takesO (k·Ntag) time, whereNtag is the maximum
number nodes of a tag-related subgraph. Indeed, as-
suming that there is an ordered list of nodes related to
each tag, its (ordered) intersection can be computed
in time that grows linearly with the sum of the lengths
of the lists.

The winners-intersection, probability-product
andrank-sum algorithms have the same time com-
plexity, O (k), because they only consider the top-w
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ranked users of each tag in the facet and, hence, their
complexity depends only on the number of tags (i.e,
the number of operations for each tag is fixed by the
constantw).

5 EXPERIMENTAL RESULTS

In this section, we compare the behavior of the algo-
rithms presented in Sect. 4. As a basis of comparison
we use two algorithms whose online computation is
unfeasible, but which are reasonably good standards:
edge-intersection andnode-intersection.

In order to quantify the “distance” between the
results given by two different algorithms, we use
two ranking similarity measures,OSim(Haveliwala,
2002) andKSim (Kendall, 1938; Haveliwala, 2002).
The first measure,OSim(R1,R2) indicates the degree
of overlap between the topn elements of rankingsR1
andR2, i.e., the number of common nodes. The sec-
ond measure,KSim(R1,R2) is a variant of Kendall’s
distance that considers the relative orderings, i.e.,
counts how many inversions are in a fixed top set. In
both cases, values closer to 0 mean that the results are
not similar and closer to 1 mean the opposite.

We have run our algorithms on all facets of
tag pairs extracted from the 100 most used tags5

in each of the graphs,YouTubeand Flickr. For
each tag pair, the proposed merging algorithms
(single-ranking, probability-product, rank-sum
and winners-intersection) were compared to the
reference algorithms (edge-intersection and node-
intersection) using OSimandKSim to measure the
rankings’ similarity.

Tables 4-5 present a summary of the comparisons,
where we display averaged similarities for different
sizes of top-sets of ranked users. Figures 4 and 5 show
a more detailed summary of results for theOSimmet-
ric in the case of theYouTubegraph. We do not in-
clude gray-scale figures corresponding toFlickr be-
cause they are very similar. Thex-axis in the figures
corresponds to the number of nodes resulting from
the basis of comparison algorithm (edge-intersection
or node-intersection) and they-axis to the top num-
bern of nodes used to compute the similarities. The
similarity results ofOSimwere averaged for log-log
ranges. Observe that darker tones correspond to val-
ues closer to 1, i.e., more similar results. White spaces
correspond to cases for which there are no data, e.g.,
whenever they coordinate is greater than intersection
size.

5Some tags likeyou, video or youtubewhich give no
information were removed from the experiment.

Table 4:YouTube: Comparison of ranking algorithms.

Average similarity to edge-intersection
Algorithm OSim|KSim

top 8 top 16 top 32
Single-ranking 0.08|0.48 0.10|0.50 0.13|0.51
Winners-inters. 0.06|0.48 0.04|0.49 0.04|0.50
Prob.-product 0.72|0.71 0.80|0.78 0.86|0.83
Rank-sum 0.73|0.72 0.81|0.79 0.86|0.84

Average similarity to node-intersection
Algorithm OSim|KSim

top 8 top 16 top 32
Single-ranking 0.31|0.53 0.34|0.55 0.39|0.56
Winners-inters. 0.10|0.49 0.08|0.50 0.08|0.51
Prob.-product 0.42|0.59 0.52|0.66 0.67|0.74
Rank-sum 0.41|0.58 0.50|0.64 0.67|0.72

Table 5:Flickr: Comparison of ranking algorithms.

Average similarity to edge-intersection
Algorithm OSim|KSim

top 8 top 16 top 32
Single-ranking 0.07|0.48 0.09|0.49 0.11|0.50
Winners-inters. 0.30|0.53 0.23|0.53 0.11|0.51
Prob.-product 0.57|0.63 0.64|0.66 0.72|0.71
Rank-sum 0.57|0.63 0.64|0.67 0.72|0.72

Average similarity to node-intersection
Algorithm OSim|KSim

top 8 top 16 top 32
Single-ranking 0.17|0.50 0.21|0.51 0.27|0.53
Winners-inters. 0.19|0.50 0.19|0.52 0.18|0.53
Prob.-product 0.32|0.55 0.42|0.59 0.56|0.67
Rank-sum 0.31|0.53 0.41|0.58 0.56|0.66

5.1 Discussion

As can be appreciated from Tables 4-5 and Figures 4-
5, thesingle-ranking algorithm gave the worst results
in most cases.

The winners-intersection algorithm, which is
based on retaining only the 128 top-ranked users
for each tag, gives worse results thanprobability-
product and rank-sum, even for smaller intersec-
tions. This fact is explained by the relevance of
a large number of recommendations of low-ranked
users when computing the PageRank in both theedge-
intersection and thenode-intersection cases. Also
note that thewinners-intersection approach gave
better results forFlickr than forYouTube. A possi-
ble cause is the assortativeness ofFlickr’s graph (see
Sect. 3.1). Indeed, since assortativeness implies that
users with many recommendations are preferentially
recommended by users with also many recommenda-
tions, the relevance of low-ranked users in the com-
putation of the centrality measure is lower.
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The probability-product and rank-sum algo-
rithms exhibit a similar behavior and clearly out-
perform other ranking algorithms when considering
the similarity to theedge-intersection and thenode-
intersection standards.

We should note that we have run experiments with
larger values ofw, the number of “winners” which are
stored for each tag, but the behavior of the algorithms
was similar.

6 SUMMARY

We have proposed different algorithms for merging
tag-related rankings into complete faceted-rankings
of users in collaborative tagging systems. In partic-
ular, two of our algorithms,probability-product and
rank-sum are feasible for online computation and
give results comparable to those of two reasonable,
though computationally costly, standards.

A prototypic application which uses therank-
sum and the probability-product algorithms, is
available online (Egg-O-Matic, 2008).

A matter of future research is the possibility of re-
ducing the the complexity of the proposed algorithms
by first clustering the tags into topics of interest as
done by (Li et al., 2008).

This work also opens the path for a more complex
comparison of reputations, for example by integrating
the best positions of a user even if the tags involved
are not related (disjunctivequeries) in order to sum-
marize the relevance of a user generating content on
the web. It is also possible to extend the algorithms
in Sect. 4 to merge rankings generated from different
systems (cross-system ranking).
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Figure 4: Average similarity (OSim) to edge-intersection
in YouTube.
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Figure 5: Average similarity (OSim) to node-intersection
in YouTube.
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