

ON THE SOLUTIONS OF NP-COMPLETE PROBLEMS
BY MEANS OF JNEP RUN ON COMPUTERS

Emilio del Rosal García1,2, José Miguel Rojas Siles2, Rafael Núñez Hervás1
Carlos Castañeda Marroquín2 and Alfonso Ortega de la Puente2

1 Escuela Politécnica Superior de la Universidad San Pablo CEU, Madrid, Spain
2 Departamento de Ingenieria Informática, Universidad Autónoma de Madrid, Madrid, Spain

Keywords: NEP, Natural computing, Multi agent systems, Simulation.

Abstract: We have used jNEP (a JAVA simulator of a natural computing device named Networks of Evolutionary
Processors) to solve some cases of well-known NP-complete problems. We have followed the most relevant
papers in the literature. In this paper, we describe the difficulties found in this process and some conclusions
about the design, the simulation and some useful tools for NEPs.

1 INTRODUCTION

1.1 Bio Inspired Computational
Devices

The so-called natural computing devices (such as
multiagent systems, P systems, cellular automata, L
systems and NEPs) are formal complex systems that
are able to compute and could, therefore, be used as
computers. All of them share two main
characteristics: their inspiration in the way in which
Nature efficiently solves complex tasks and an
intrinsic parallelism that makes it possible to
develop algorithms which improve the temporal
performance of classic von Neumann architectures.
This paper is specifically devoted to NEPs. As they
could be considered as an alternative to the von
Neumann architecture, a great research effort is
currently being made to study the necessary tools to
program them. We tackle this goal in two forms:
studying the techniques to design NEPs which solve
given problems, and developing and using a real
hardware/software platform to run these NEPs.

1.2 NP-Complete Problems

In this section we informally introduce this topic. A
formal description could be found in any manual
(Garey and Johnson, 1979) on complexity and is out
of the scope of this paper.

NP may be informally defined as the set of
decision problems that can be solved in polynomial
time on a no deterministic Turing machine.

An NP problem is also complete if and only if
every other problem in NP can be easily (in
polynomial time) transformed into it.

Polynomial performance on a non-deterministic
Turing machine frequently corresponds to at least
exponential performance on a deterministic Turing
machine. Classical von Neumann computers can be
considered the closest implementation of
deterministic Turing machines.

Even more informally, the reader can consider a
non-deterministic Turing machine as a set of as
many Turing machines as needed, searching in
parallel for a solution of the problem. Such a device
will stop as soon as the first solution is found. Each
Turing machine is expected to check its solution in
polynomial time. In the previous statement, “as
many Turing machines as needed” usually means
“an exponential number of machines”.

The reader can easily understand that if the same
work has to be done by a single Turing machine, it
has to check each of the possible solutions (an
exponential amount of them) in a polynomial time,
which results in a final exponential performance.

1.3 NEPs

NEP (Castellanos, 2001), (Castellanos, 2003) stands
for Network of Evolutionary Processors. NEPs are

 605

del Rosal Garcı́a E., Miguel Rojas Siles J., Núñez Hervás R., Castañeda Marroquı́n C. and Ortega de la Puente A. (2009).
ON THE SOLUTIONS OF NP-COMPLETE PROBLEMS BY MEANS OF JNEP RUN ON COMPUTERS.
In Proceedings of the International Conference on Agents and Artificial Intelligence, pages 605-612
Copyright c© SciTePress

an abstract model of distributed/parallel symbolic
processing inspired by biological cells. They
distribute a set of simple string processors in the
nodes of a fixed graph. Processors contain strings of
symbols, change them in a predefined way and filter
them to communicate some of these words to the
other processors of the graph.

Despite the simplicity of each processor, the
entire net can efficiently carry out very complex
tasks. Many different works demonstrate the
computational completeness of NEPs (Csuhaj-Varju,
2005), (Manea, 2007) and their ability to solve NP
problems with linear or polynomial resources
(Manea, 2006), (Castellanos, 2001). The emergence
of such a computational power from very simple
units acting in parallel is one of the main interests of
NEPs.

A NEP is built from the following elements:

a) a set of symbols which constitutes the
alphabet of the words which are
manipulated by the processors,

b) a set of processors,
c) an underlying graph where each vertex

represents a processor and the edges
determine which processors are connected
so they can exchange words,

d) an initial configuration defining which
words are in each processor at the
beginning of the computation and

e) one or more stopping rules to halt the NEP.

An evolutionary processor has three main
components:

a) a set of evolutionary rules to modify its
words,

b) some input filters that specify which words
can be received from other processors and

c) some output filters that delimit which
words can leave the processor to be sent to
others.

The variants of NEPs mainly differ in their
evolutionary rules and filters. They perform very
simple operations, like altering the words by
replacing all the occurrences of a symbol by another,
or filtering those words whose alphabet is included
in a given set of words.

NEP's computation alternates evolutionary and
communication steps: an evolutionary step is always
followed by a communication step and vice versa.

Computation follows the scheme below: when
the computation starts, every processor has a set of
initial words.

At first, an evolutionary step is performed: the
rules in each processor modify the words in the same
processor. Next, a communication step forces some
words to leave their processors and also forces the
processors to receive words from the net.

The communication step depends on the
constraints imposed by the connections and the
output and input filters.

The model assumes that an arbitrary number of
copies of each word exists in the processors,
therefore all the rules applicable to a word are
actually applied, resulting in a new word for each
rule.

The NEP stops when one of the stopping
conditions is met, for example, when the set of
words in a specific processor (the ouput node of the
net) is not empty. A detailed formal description of
NEPs can be found in (Castellanos, 2003), (Csuhaj-
Varju, 2005) or (Manea, 2007).

1.4 Clusters of Computers running
Java

Java is currently one of the most popular object
oriented programming languages. Java may be
slower than other programming languages for
computation-intensive problems. Nevertheless it is
possible to run Java programs on a cluster of
computers by means of a special Distributed Java
Virtual Machine (DJVM), which supports parallel
execution of Java threads. In this way, a
multithreaded Java application runs on a cluster just
as if it were running on a single machine, but with
the same performance as a big multi-processor
machine.

DJVMs are not included in the Sun's standard
Java distributions. There are several different kinds
of DJVM, for example: Java-Enabled Single-
System-Image Computing Architecture 2
(JESSICA2), the cluster virtual machine for Java
developed by IBM (IBM cJVM), Proactive PDC
(Proactive), DO! (Launay 97), JavaParty
(JavaParty), Jcluster (Jcluster), MPJ Express (MPJ),
and Terracota (Terracota, 2008).

The simulator used in this paper has been
developed with both, standard JVM and JavaParty.

2 JNEP

In a previous work (Rosal, 2008) we have explained
the reasons to develop a NEP simulator to be run in
a cluster of computers.

ICAART 2009 - International Conference on Agents and Artificial Intelligence

606

Figure 1: Simplified class diagram for jNEP.

jNEP offers an implementation of NEPs as
general, flexible and rigorous as possible. This is not
an obvious goal, because we have observed that
different authors understand the model definition in
slightly different ways. These subtle differences
imply, nevertheless, hard to overcome problems in
the development of a computer application that
implements all of them.

As shown in figure 1, the design of the NEP
class mimics the NEP model definition. In jNEP, a
NEP is composed of evolutionary processors and an
underlying graph (attribute edges) to define the net
topology and the allowed inter processor
interactions. The NEP class coordinates the main
dynamic of the computation and rules the processors
(instances of the EvolutionaryProcessor class),
forcing them to perform alternate evolutionary and
communication steps. It also stops the computation
when needed.

The core of the model includes these two classes,
together with the Word class, which handles the
manipulation of words and their symbols.

jNEP is kept as general and rigorous as possible
by means of the following mechanisms: Java
interfaces and the development of different versions
to widely exploit the parallelism available in the
hardware platform. Further details can be found in
(Rosal, 2008) and at (http://jnep.e-delrosal.net).

jNEP currently has two lists of choices
(concurrency approach and platform) to select the
parallel/distributed platform on which it runs (jNEP
versions for any possible combination of them are
available in http://jnep.e-delrosal.net).

Concurrency is implemented with two different
Java approaches: Threads and Processes.

The supported platforms are standard JVM and
clusters of computers (by means of JavaParty).

jNEP reads the definition of the NEP that is
being simulated from a configuration file that

follows XML conventions. Roughly speaking the
configuration file contains special tags for any
relevant component in the NEP (alphabet, stopping
conditions, the complete graph, each edge, each
evolutionary processor with its rules, filters and
initial contents).

Although some fragments of these files will be
shown in these pages, all the configuration files
mentioned in this paper can be found at
(http://jnep.e-delrosal.net). Despite the complexity
of these XML files, the interested reader can see that
these tags and their attributes have self-explaining
names and values.

3 SOLVING NP-COMPLETE
PROBLEMS WITH JNEP

In our previous work (Rosal, 2008) we showed, as
an example, how to solve the propositional logic
SAT problem for three variables by means of a NEP
with a kind of special rules (splicing) taken from
(Manea, 2007).

In this work we show how jNEP has been used to
solve some instances of other two well-known NP-
complete problems: the Hamiltonian path problem
and the 3-coloring problem.

3.1 Hamiltonian Path Problem

This well-known NP-complete problem searches an
undirected graph for a Hamiltonian path, that is, one
that visits each vertex exactly once.

In his work (Adleman, 1994) Adleman proposed
a way to solve this problem with polynomial
resources by means of DNA manipulations in the
laboratory. Figure 2 shows the graph used by
Adleman. The solution is in this case obvious (path

ON THE SOLUTIONS OF NP-COMPLETE PROBLEMS BY MEANS OF JNEP RUN ON COMPUTERS

607

0-1-2-3-4-5-6) Despite its simplicity, Adleman
described a general algorithm applicable to almost
ny graph with the same performance.

a

Figure 2: Graph studied by Adleman.

an’s algorithm can be summarized as
o

hose paths that begin and end in the
p

paths that contain exactly the
l

ose paths that contain some node

remaining paths are solutions for the
pro

definition of the stopping

 the initial content of

 the string received from the

ble

ng filters by

x regular expression or a greater

l). Some of their sections are explained
bel

 example defines the

tent of node 0 in the

 are defined as follows

 of the alphabet
and no string is forb e

_3_4_5_6"

_3_4_5_6"
ingContext="" />

/FILTERS>

n empty node

 to this string

ext steps only nodes 1,

e respectively i_0_1, i_0_3 and

Adlem
foll ws:

1. Generating randomly all the possible paths.
2. Selecting t
pro er nodes.
3. Selecting only the
tota number of nodes.
4. Removing th

 s

more than once.
5. The

blem.

The present work follows a similar approach.

• The NEP graph is very similar to the one
studied above: an extra node is added to
ease the
condition.

• The set {i,0,1,2,3,4,5,6} is used as the
alphabet. Symbol i is
the initial vertex (v0)

• Each node (except the final one) adds its
number to
network.

• Input and output filters are defined to allow
the communication of all the possi
words without any special constraint.

• The input filter of the final node excludes
any string which is not a solution. It is easy
to imaging a regular expression for the set
of solutions (those words with the proper
length, the proper initial and final node and
where each node appears only once). The
NEP basic model allows defini 3
means of regular expressions.

• It is also easy to devise a set of additional
nodes that performs the previous filter
following Adleman’s checks (proper

beginning and end, proper length, and
number of occurrences of each node). For
the shake of simplicity we have used
explicitly the solution word
(i_0_1_2_3_4_5_6) instead of a more
comple
NEP.

The reader will find at http://jnep.e-delrosal.net
the complete XML file for this problem
(Adleman.xm

ow:

• The XML file for this

alphabet with this tag
<ALPHABET symbols="i_0_1_2_3_4_5_6" />

• the initial con
following way

<NODE initCond="i">
• The rules for adding the number of the

node to its string
(here for node 2)

<RULE ruleType = "insertion"
 actionType = "RIGHT"

ymbol = "2" newSymbol="" />
• There are several ways of defining filters

for the desired behavior (to allow the
communication of all the possible words
without any special constraint). We have
used only the permitted input and output
filters. A string can enter a node if it
contains any of the symbols

idd n.

<FILTERS>
 <INPUT type="2"
 permittingContext="i_0_1_2
 forbiddingContext="" />
 <OUTPUT type="2"
 permit ingContext="i_0_1_2t
 forbidd
<

The behavior of the NEP is sketched as follows:

1. In the initial step the only no
is 0 and contains the string i

2. After the first step, 0 is added
and thus, node 0 contains i_0

3. This string is moved to the nodes connected
with node 0. In the n

and 6 contain i_0.
4. These nodes add their number to the

received string. In the next step their
contents ar
i_0_6

ICAART 2009 - International Conference on Agents and Artificial Intelligence

608

5. This process is repeated as many times as
needed to produce a string that meets the
conditions of the solution. In this final step

NEP model poses
som

 a set of strings. This mechanism contains
obv

eneral agreement
of the researchers to ease and simplify the

 have
to

ws one of the examples studied
in this paper. It is ease to prove that there is no
solution to this map.

the solution string (i_0_1_2_3_4_5_6 is
sent to node 7 and the NEP stops.

The definition of filters in
e difficulties to the design of NEPs and, thus, to

the development of a simulator.
These filters are defined (Castellanos, 2001) and

(Castellanos, 2003) by means of two couples of
filters (forbidden and allowed) to each operation
(input and output). There exist, in addition, different
ways of combining and apply the filters to translate
them into

ious redundancies that make it difficult to design
NEPs.

It could be advisable a more g

development of NEPs simulators.

3.2 Coloring Problems

This problem introduces a map whose regions
be colored with only three colors, and with a

different one for each pair of adjacent regions.
We have used the NEP defined in (Castellanos,

2003). The map is translated into an undirected
graph whose nodes stand for the regions and whose
edges represent the adjacency relationship between
regions. Figure 3 sho

Figure 3: Example of a map and its adjacency graph. In
this case, there is no solution for the 3-colorability
pro

aph. These nodes perform the tasks
utlined below. Next paragraphs describe them with

the map are grouped in three couples (one

cate with the set of

 performs this task in the

associated with the pair of

 first

ode of the

e are red-blue
and red-green.

he complete NEP could be

. In this way, the process

e to see that these strings are

w to
escribe the above behavior with more detail:

abet of the NEP is defined as
follows:

r4_g4_b5_r5_g5_B1_R1_G1_B2_R2_G2_B3_R3_

 co

blem.

The NEP has a complete graph with two special
nodes (for the initial and final steps) and a set of
seven nodes associated to each edge of the
adjacency gr
o
more detail:

• The initial (final) node is responsible of
starting (stopping) the computation.

• The seven nodes associated with an edge of

for each color). There is, in addition, a
special node to communi
nodes of the next edge.

• Each couple is responsible of the main
operation in the NEP: to check that a
coloring constraint is not violated for the
current edge. It
following way:

o Let us suppose that the color red is
the one
nodes.

o The first node in the NEP
associates the color red to the
node of the edge in the map.

o The second node in the NEP
simultaneously keeps all the
allowed coloring (two, in this
case) for the second n
edge: (blue and green)

o It is clear that the only acceptable
colorings for this edg

The behavior of t
sketched as follows:

1. The initial node generates all the possible
assignment of colors to all the regions in
the map and adds a symbol to identify the
first edge to be checked. These strings are
communicated to all the nodes of the graph.

2. The set of nodes associated to each edge
accepts only the strings marked with the
symbol of the edge. These nodes remove all
the strings that violate the coloring
constraint for the regions of the edge. One
special node in the set replaces the edge
mark with that which corresponds to the
next edge

ntinues.
3. The final node of the NEP collects the

strings that satisfy the constraints of all the
edges. It is eas
the solutions.

Some fragments of the XML file for this
example (3Coloring.xml) are shown belo
d

• The alph

 <ALPHABET
symbols="b1_r1_g1_b2_r2_g2_b3_r3_g3_b4_

ON THE SOLUTIONS OF NP-COMPLETE PROBLEMS BY MEANS OF JNEP RUN ON COMPUTERS

609

G3_B4_R4_G4_B5_R5_G5_a1_a2_a3_a4_a5_X1_
X2_X3_X4_X5_X6_X8_X9"/>

• This alphabet contains the following
subsets of symbols:

o {a1,…,a5} represents the initial
situation of the regions
(uncolored).

o {b1, r1, g1,…, b5, r5, g5}
represents the assignment of the
colors to the regions.

o {B1, R1, G1,… B5, R5, G5} is a
copy of the previous set to be used
while checking the constraint
associated with a couple of
adjacent regions.

• The string contained in the initial node at

the beginning represents the complete map
uncolored and the number of the first edge
to be tackled (X1)

<NODE initCond="a1_a2_a3_a4_a5_X1">

• The rules of the initial node assign all the

possible colors to all the regions. The
following rules refer to the second region:

<RULE ruleType = "substitution"
 actionType = "ANY"
 symbol="a2" newSymbol="b2"/>
<RULE ruleType="substitution"
 actionType="ANY"
 symbol="a2" newSymbol="r2"/>
<RULE ruleType="substitution"
 actionType="ANY"
 symbol="a2" newSymbol="g2"/>

• The node in the NEP that assigns a color

(red, in this case) to the first region (1 in the
example) of an edge in the map uses the
following rule:

<RULE ruleType="substitution"
 actionType="ANY" symbol="r1"

 newSymbol="R1"/>

• The other node ensures that the adjacent

region (2 in this case) has a different color
by means of these rules:

<RULE ruleType="substitution"
 actionType="ANY"
 symbol="b2"
 newSymbol="B2"/>

 <RULE ruleType="substitution"

 actionType="ANY" symbol="g2"
 newSymbol="G2"/>

• The node used for starting the process in

the next edge removes any special
(capitalized) color symbol and sets the edge
marking to the next one. The following
rules correspond to the first edge

<RULE ruleType="substitution"
 actionType="ANY" symbol="R1"
 newSymbol="r1"/>

 <RULE ruleType="substitution"
 actionType="ANY" symbol="B1"
 newSymbol="b1"/>

<RULE ruleType="substitution"
 actionType="ANY" symbol="G1"
 newSymbol="g1"/>
<RULE ruleType="substitution"
 actionType="ANY" symbol="R2"
 newSymbol="r2"/>
<RULE ruleType="substitution"
 actionType="ANY" symbol="B2"
 newSymbol="b2"/>
<RULE ruleType="substitution"
 actionType="ANY" symbol="G2"
 newSymbol="g2"/>
<RULE ruleType="substitution"
 actionType="ANY" symbol="X1"
 newSymbol="X2"/>

• We have found difficulties when applying

the input and output filters as they are in
(Castellanos 2003). We have previously
explained our opinion on the advisability of
a greater standardization to minimize this
situations.

• Notice that the nodes associated with the
last edge (in this case with the number 8)
mark its strings with the following number
that does not correspond with any edge in
the graph (9 in our example). This is
important for the design of the final node.

• A special node of the NEP checks the
stopping condition (Non Empty Node
Stopping Condition). This final node only
accepts strings with the corresponding mark
(one that does not correspond to any edge
in the adjacency graph).

Figure 4 shows other map that could be colored

with 3 colors. Splitting region 3 and 4 in figure 3
generates this map. Figure 4 also summarizes the
sequence of steps for one of the possible solutions. It
is worth noticing that all the solutions are

ICAART 2009 - International Conference on Agents and Artificial Intelligence

610

simultaneously kept in the configurations of the
NEP.

The behavior of the NEP for this map could be
summarized as follows:

• The initial content of the initial node is
a1_a2_a3_a4_a5_X1.

• This node produces all the possible
coloring combinations. In the second step
of the computation, for example, it contains
the following strings:

b1_a2_a3_a4_a5_X1 r1_a2_a3_a4_a5_X1
g1_a2_a3_a4_a5_X1 a1_b2_a3_a4_a5_X1
a1_r2_a3_a4_a5_X1 a1_g2_a3_a4_a5_X1
a1_a2_b3_a4_a5_X1 a1_a2_r3_a4_a5_X1
a1_a2_g3_a4_a5_X1 a1_a2_a3_b4_a5_X1
a1_a2_a3_r4_a5_X1 a1_a2_a3_g4_a5_X1
a1_a2_a3_a4_b5_X1 a1_a2_a3_a4_r5_X1
a1_a2_a3_a4_g5_X1

Figure 4: Sequence of steps in the solution of a 3-coloring
problem by jNEP.

• The NEP still needs a few more steps to get
all the combinations.

• After that, the coloring constraints are
applied simultaneously to all the possible
solutions and those assignments that violate
some constraint are removed. We describe
below a sequence of strings generated by

the NEP that corresponds to the solution
graphically shown in figure 4:

o r1_g2_b3_b4_r5_X1 is generated
in the initial steps.

o After checking the 1st edge
(regions 1 and 2) the NEP contains
these two strings

R1_g2_b3_b4_r5_X1 and R1_G2_b3_b4_r5_X1
o After checking the 2nd edge

(regions 1 and 3)
R1_g2_B3_b4_r5_X2

o And after checking the edges 3, 4,
5, 6 and 8 (remember that edge 7
was removed to make the map
colorable) associated respectively
with the pairs of regions 1-4, 2-3,
2-4, 2-5 and 4-5, the following
strings are in the NEP:

R1_g2_b3_B4_r5_X3 r1_G2_B3_b4_r5_X4
r1_G2_b3_B4_r5_X5 r1_G2_b3_b4_R5_X6
r1_g2_b3_B4_R5_X8

o Finally, the complete solution is
found

r1_g2_b3_B4_R5_X9 and r1_g2_b3_b4_r5_X9

• This NEP processes all the solutions at the
same time. It removes all the coloring
combinations that violate any constraint.
The final node contains in the last step all
the solutions found.

(Castellanos, 2003) describes one of the kinds of
NEPs (simple NEPs) that is simulated by jNEPs. As
we have briefly mentioned before, we have observed
that the authors have used slightly different filters
for the 3-coloring problem. We could not use these
filters and we had to change some of them (most of
the output filters) in order to get a proper behavior of
the NEP. The complete XML file is available at
http://jnep.e-delrosal.net.

4 CONCLUSIONS AND
FURTHER RESEARCH LINES

We have tackled the solution of several NP-
complete problems found in the literature by means
of jNEP. We have observed that there exist different
ways of implementing the same formal model,
mainly with respect to input and output filters. These
open aspects have to be defined when the model is
implemented to solve given problems. We conclude
that simulation needs both: a formal definition and

ON THE SOLUTIONS OF NP-COMPLETE PROBLEMS BY MEANS OF JNEP RUN ON COMPUTERS

611

also some standardization in the way in which
different authors particularize these open aspects in
the implementation of their own NEPs. These
differences make it very difficult to fully understand
the behavior of the proposed NEPs as well as their
simulation. Although we have not found any
significant mistake in the simulation of the formal
model, we had to modify and improve jNEP in
several subtle details in order to ease the handling of
the NEPs described in the literature.

We have also identified some common
techniques to these different NP problems. They
suggest us some tools that could be added to jNEP to
increase the comfort of the NEPs designer. In the
future we plan to develop a more abstract input
format. For example, most of the NEPs defined to
solve NP problems uses complete graphs. The
current XML configuration file explicitly defines
each edge, which implies a big amount of tedious
and mechanical work. It will be very useful some
automatic mechanism to do this task.

It could be also very useful adding some
diagnose tool to check the correctness of the NEPs.

It is worth noticing that jNEP is just a block that
will be used to build more complex applications.
One of them is a full graphic simulation
environment for NEPs that ease their design to solve
given problems. Our research group is also
interested in some evolutionary techniques to
automatic design NEPs. jNEP will be used as a part
of the fitness function that this kind of algorithms
needs.

ACKNOWLEDGEMENTS

This work was supported in part by the Spanish
Ministry of Education and Science (MEC) under
Project TSI2005-08225-C07-06. We want to thank
to Manuel Alfonseca his help in the preparation of
this paper.

REFERENCES

Adleman, 1994. Molecular Computation of Solutions To
Combinatorial Problem. In Science, 266: 1021-1024,
(Nov. 11) 1994.

Castellanos, J., Martin-Vide, C., Mitrana, V., and
Sempere, J.M., 2001. Solving NP-Complete Problems
With Networks of Evolutionary Processors In
Connectionist Models of Neurons, Learning Processes
and Artificial Intelligence: 6th International Work-
Conference on Artificial and Natural Neural

Networks, IWANN 2001 Granada, Spain, June 13-15,
Proceedings, Part I, 2001.

Castellanos, J., Martin-Vide, C., Mitrana, V., and
Sempere, J.M., 2003. Networks of evolutionary
processors. In Acta Informatica, 39(6-7):517-529,
2003.

IBM cJVM,
http://www.haifa.il.ibm.com/projects/systems/cjvm/in
dex.html

Csuhaj-Varju, E., Martin-Vide, C., and Mitrana, V., 2005.
Hybrid networks of evolutionary processors are
computationally complete. In Acta Informatica, 41(4-
5):257-272, 2005

Garey, M.R., Johnson, D.S., 1979. Computers and
intractability: a guide to the theory of NP-
completeness. New York: W.H. Freeman. ISBN 0-
7167-1045-5.

JavaParty http://wwwipd.ira.uka.de/JavaParty/
Jcluster http://vip.6to23.com/jcluster/
JESSICA2 http://i.cs.hku.hk/~wzzhu/jessica2/index.php
Launay, P., Pazat J.L., 1997. A Framework for Parallel

Programming in Java. INRIA Rapport de Recherche
Publication Internet - 1154 decembre 1997 - 13 pages

Manea, F., Martin-Vide, C., and Mitrana, V., 2007.
Accepting networks of splicing processors:
Complexity results. In Theoretical Computer Science,
371(1-2):72-82, February 2007.

Manea, F., Martin-Vide, C., and Mitrana, V., 2006. All
np-problems can be solved in polynomial time by
accepting networks of splicing processors of constant
size In DNA Computing, pages 47-57, 2006.

MPJ http://mpj-express.org/
ProActive http://www-sop.inria.fr/sloop/javall/
del Rosal, E. del, Nuñez, R., Castañeda, C., Ortega, A.,

2008. Simulating NEPs in a cluster with jNEP. In
International Conference on Computers,
Communications and Control, ICCCC 2008, to be
held in European Union, Romania, Oradea, Băile
Felix (Spa), May 15-17, 2008. Proceedings.

Terracotta, Inc, 2008. The Definitive Guide to Terracotta:
Cluster the JVM for Spring, Hibernate and POJO
Scalability (The Definitive Guide), Apress Publishing.
Expert's Voice in Open Source Series June 2008.
ISBN:9781590599860.

ICAART 2009 - International Conference on Agents and Artificial Intelligence

612

