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Abstract: Accurate delineation of object borders is highly desirable in echocardiography. Among other model-based 
techniques, active contours (or snakes) provide a unique and powerful approach to image analysis. In this 
work, we propose the use of a new external energy for a GVF snake, consisting of the optical flow data of 
moving heart structures (i.e. the perceived movement). This new external energy provides more information 
to the active contour model to combat noise in moving sequences. An automated primitive shape prior 
mechanism is also introduced, which further improves the results when dealing with especially noisy 
echocardiographic image cines. Results were compared with that of expert manual segmentations yielding 
promising sensitivities and system accuracies. 

1 INTRODUCTION 

Echocardiography, imaging the heart using 
ultrasound waves, has become the most widely used 
modality to observe heart motion and deformation 
over other modalities (e.g. Positron Emission 
computed Tomography, Cardiac Magnetic 
Resonance, Computer Tomography). This is due to 
the relatively inexpensive cost of the technology 
along with its non-invasive nature, yielding no 
known side-effects. Sophisticated enhancements to 
the acquisition devices over the years have yielded 
real-time dynamic observation of heart function.  

Unfortunately, US data still suffers from speckle 
noise. It may also exhibit occluded borders due to 
the erratic scattering of its impinging waves (once it 
encounters various tissue densities). Efforts have 
been made to compensate for these shortcomings, 
including filtering (Mazumdar, 2006) and 
incorporating the speckle noise effect directly into 
the algorithm (Tauber el al., 2008). Regardless, 
boundary detection techniques need to be employed 
in order to segment a region of interest (ROI). 
Analysis of these segmented regions has led to 
various works on endocardial borders (Choy and Jin, 
1996), stress and strain of the septum (Montagnat 
and Delingette, 2000), and wall motility (Amini et 
al., 1998), which all help to accurately diagnose 
cardiomyopathies. 

Many computer vision techniques have been 
introduced in order to accomplish boundary 
detection. One such example is the active contour 
model, also commonly known as snakes (Kass et al., 
1988). 

Active contours treat the surface of an object as 
an elastic sheet that stretches and deforms when 
external and internal forces are applied to it. These 
models are physically-based, since their behavior is 
designed to mimic the physical laws that govern 
real-world objects, (Cohen, 1991). Since this 
approach relied on variational calculus to find a 
solution, time complexity was a major drawback. 
Amini et al. (1990) and Williams and Shah (1992) 
proposed algorithms that reduced time complexity 
making the active contour model feasible for 
segmentation systems. 

Issues with large capture ranges (the failure of 
curve migration when initialized distant from the 
ROI to segment) and concavities (high internal 
energies may inhibit the capture of smaller features) 
are solved by other advances, which include 
inflation forces (Cohen and Cohen, 1993), 
robabilistic models (Mallouche et al., 1995), 
oriented particles (Szeliski and Tonnesen, 1992), 
and gradient vector flows (GVF) (Xu and Prince, 
2000). For the purposes of this study, focus will be 
placed on those advances best suited for 
echocardiographic images.  

111
K. Hamou A. and R. El-Sakka M. (2009).
ACTIVE CONTOURS WITH OPTICAL FLOW AND PRIMITIVE SHAPE PRIORS FOR ECHOCARDIOGRAPHIC IMAGERY.
In Proceedings of the First International Conference on Computer Imaging Theory and Applications, pages 111-118
DOI: 10.5220/0001804201110118
Copyright c© SciTePress



 

Since the left ventricle represents one of the most 
important heart functions, many semi-automatic 
techniques have attempted to segment this region 
from its surrounding tissue. 

Papademetris et al. (1999) proposed to measure 
the stress and strain of cardiac regional deformation 
of the left ventricle in ultrasound images by using a 
Markov random field (Kindermann and Snell, 1980). 
Texture data was incorporated into their model for 
use with a tracking algorithm. However, 
assumptions of uncorrelated data within their model 
are made (which may lead to a misclassification of 
structures due to noise) and complex calculations 
result in long computation times. 

Eusemann el al. (2002) proposed the use of a 
modality independent quantitative visualization of 
the peak velocities. Though set manually, the 
technique utilizes a set of polygon meshes to deform 
by means of the anatomical centerline of the left 
ventricle.  

Jolly (2003) proposed a semi-automatic 
segmentation algorithm with the use of three 
manually placed landmarks in order to estimate the 
location of various shape models. However, this 
system was designed for use on the end-systole and 
end-diastole images only, rather than the entire 
cardiac cycle. 

Felix-Gonzalez and Valdes-Cristerna (2006) 
proposed a technique using a series of standard 
algorithms (e.g. mean shift filtering, edge mapping, 
entropy extraction and confidence mapping) along 
with an active surface model in order to deal with 
the speckle. This model is made up of cubic splines 
and is based on gradient descent, however no 
explanation is given on parameterization and how 
the empirical data was set. 

Zhou el al. (2004) proposed the segmentation of 
MRI cardiac sequences using a generalized fuzzy 
GVF map along with a relative optical flow field. 
Optical flow measurements are computed on the 
cardiac sequence and a maximum a posteriori 
probability (MAP) is used as a window for the 
movement of the curve. The use of optical flow with 
GVF provides promising results, however since this 
technique is used exclusively on MRI data, there is 
no guarantee that it would work with US data given 
the presence of speckle noise.  

In practice, many of the stated segmentation 
algorithms can be used on normal echocardiographic 
data. This is true given an adequate amount of user 
intervention and when such data exhibits low levels 
of speckle noise (i.e. from newer machines generally 
found in a research environment under ideal 
conditions with healthy volunteers). However in a 

clinical setting, the objective is to be able to 
accurately identify myocardial borders on 
problematic echocardiograms with minimal time. 

In this paper, we will present an external energy 
for GVF snakes that takes advantage of the motion 
data within echocardiographic image cines. 
Furthermore, we incorporate the use of primitive 
shape priors such that the contour placement will 
improve, especially when dealing with noisy regions 
and improper initialization.  

The rest of the paper is organized as follows. 
Background information on relevant models will be 
briefly described in Section 2. The proposed scheme 
will be outlined in Section 3. Section 4 and Section 5 
will contain the experimental results and 
conclusions, respectively. 

2 BACKGROUND 

2.1 Active Contours 

A snake is an energy minimization problem. Its 
energy is represented by two forces (internal energy, 
Ein, and external energy, Eex) which work against (or 
independent of) each other. The total energy should 
converge to a local minimum; ideally at the desired 
boundary. A snake can be parametrically defined as 
v(s) = [x(s), y(s)]T, where s belongs to the interval 
[0,1]. Hence, the total energy to be minimized, EAC, 
to give the best fit between a snake and a desired 
object shape is: 

 ∫ +=
1

0
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 (1) 

where Ein decreases as the curve becomes smooth 
and Eex decreases as it approaches the ROI, such as 
image structures or edges (i.e. areas of high gradient 
information).  

As in Kass et al. (1988) the internal energy of the 
active contour formulation is further defined as: 
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where α(s) and β(s) are weighting factors of 
elasticity and stiffness, respectively. The first order 
term encourages the snake’s surface to act like a 
membrane, whereas the second order term 
encourages the snake to act like a thin plate. α(s) 
controls the tension along the spine (stretching a 
balloon or elastic band) whereas β(s) controls the 
rigidity of the spine (bending a thin plate or wire). 
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Figure 1: An example of the virtual electric field; (a) 
standard U-Image; (b) virtual electric field of image 
shown in (a). 

A typical external energy formulation for a given 
image, I(x,y), to identify edges is: 

 2),(),( yxIyxEex ∇−=  (3) 

where ∇ denotes the gradient operator. In the case of 
a noisier image the edges are further smoothed: 

 [ ] 2),(),(),( yxIyxGyxEex ∗∇−= σ  (4) 

where Gσ(x,y) is a two-dimensional Gaussian 
function with standard deviation σ, and ∗ denotes a 
convolution operator. σ must be large enough to 
compensate for the image noise that would interfere 
with the active contour’s capture range (the contour 
may get trapped by the noisy areas of the image).  

The standard snake algorithm suffers from poor 
range due to initialization and the inability to capture 
concavities. Xu and Prince (2000) largely solved this 
problem by the advent of the GVF snake, which 
provides a field for guiding the contour to regions of 
high gradient. The GVF field is used as an external 

energy and is characterized by the vector field 
z(x,y)=[u(x,y),v(x,y)] that minimizes the energy 
functional: 
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where f = −Eex is an edge map derived from the 
image and μ is the degree of smoothness of the field. 
Figure 1 shows an example of a GVF field on a 
standard U-Image. 

2.2 Optical Flow 

Optical flow approximates the apparent motion of an 
object over a series of images (or time). The 
relationship between the optical flow in the image 
plane and the velocities of objects in the three 
dimensional world is not necessarily obvious 
(Barron et al., 1994). For the sake of convenience, 
most optical flow techniques consider a particularly 
simple world where the apparent velocity of 
brightness patterns can be directly identified with the 
movement of surfaces in the scene. This implies that 
objects maintaining structure but changing intensity 
would break this assumption.  

Consider an image intensity, I(x,y,t) at time t. 
Time, in this instance, implies that next frame in an 
image cine. Assuming that at a small distance away, 
and some time later the given intensity is: 
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Given that the object started at position (x,y) at 
time t, and that it moved by a small distance of (∆x, 
∆y) over a period of ∆t, the following assumption 
can be made: 

 ),,(),,( tyxIttyyxxI =Δ+Δ+Δ+   (7) 

The assumption in (7) would only be true if the 
intensity of our object is the same at both time t and 
t + ∆t. Furthermore, if our ∆x, ∆y and ∆t are very 
small, our higher order terms would vanish:  
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Hence dividing (8) by ∆t will yield:  
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The equation in (10) is known as the optical flow 
constraint equation, where It at a particular pixel 
location, (x,y), is how fast its intensity is changing 
with respect to time, u and v are the spatial rates of 
change for any given pixel (i.e. how fast an intensity 
is moving across an image). However, effectively 
estimating the component of the flow (along with 
intensity values) cannot directly be solved in this 
form since it will yield one equation per pixel for 
every two unknowns, u and v. In order to do so, 
additional constraints must be applied to this 
equation.  

Horn and Schunck (1981) introduced a method 
for solving this problem using partial derivatives. A 
global regularization constraint is used which 
assumes that images consist of objects undergoing 
rigid motion, and so over relatively large areas the 
optical flow will be smooth. Figure 2 depicts a 
visual representation of the optical flow of a simple 
Rubik’s cube. Note that the grayscale image has few 
shadows. This helps to maintain consistency in the 
luminance of each pixel which in turn yields 
accurate results. 

3 DESCRIPTION OF PROPOSED 
MODEL 

The use of the GVF snake directly on 
echocardiograms will not provide an adequate 
solution due to the complication of noise and other 
valves that exist within the heart cavity. Hence our 
scheme will make use of a GVF snake with optical 

flow measurements. These measurements will be 
included in EGVF.  

By considering each image cine within an 
echocardiographic video loop, the Horn-Schunck 
technique is applied in order to detect the motion 
between various heart structures. These optical flow 
measurements will further filter noise from the cines 
since speckle tends to be stable throughout an image. 
As such, noise will be assigned smaller magnitudes 
of movement over surrounding structures and hence 
will be eliminated. 

The magnitude of these optical flow estimates 
are then median filtered and the canny edge map 
(Canny, 1986) is extracted in order to generate the 
GVF field for the snake’s external energy. 

Since the generation of the GVF field is 
computationally prohibitive using real world data, 
the external energy is generated using a virtual 
electric field (VEF) of the preprocessed edge map 
(Park and Chung, 2002). The VEF is defined by 
considering each edge as a point charge within an 
electric field. This can be accomplished by 
convolving the edge map with the following two 
masks:  
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where ε is sufficiently small. Given a sufficient 
mask size, the resulting field yields a vector flow 
identical to the GVF field defined in (5), without the 
high computational cost. For instance, the vector 
field shown in Figure 1 was generated with (11) and 
(12) with a mask size of 32. 

Since many of the anatomical structures (such as 
the left ventricle of the heart) are known shapes and 

 
(a) (b) (c) 

Figure 2: An example of an optical flow field on a Rubik’s cube rotated image; (a) Rubik’s cube at time t; (b) Rubik’s 
cube at time  t+∆t; (c) optical flow. 
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sizes, prior knowledge information can be directly 
used to increase the performance of a segmentation 
algorithm.  

Priors based on shape statistical models require 
modifications to the standard active contour model. 
An iterative solution can be directly incorporated 
into any optimization model by using the proposed 
framework first outlined by Hamou et al. (2007).  

Since it is desirable to incorporate shape priors 
into the model without directly involving the user,  
automated shape detection takes place on the set of 
discrete snake points, v(s). This is achieved by 
replacing Eex of our active contour with a least 
squares fit polynomial (specifically a third order 
hyperbola) of the current v(s) points. This allows the 
fitting of a primitive shape (or a series of primitives 
as needed for the left ventricle) to the curve set v(s). 
This will help compensate for the noise that inhibits 
the snake from migrating past a certain point. The 
user is able to increase or decrease the effect of the 
prior knowledge to the snake’s convergence cycle.  

Depending on the feature of interest to be 
segmented, different primitive priors can be used in 
order to improve the robustness of the technique. 
The priors are not limited to hyperbolas; rather a 
range of shapes can be selected by the user in order 
to best fit their feature of interest. This is useful in 
the medical arena where a specialist has a clear 
understanding of the underlying structure being 
detected, such as a liver, an artery, or a heart. A 
desired primitive shape can be selected before curve 
evolution takes place.  

Figure 3 portrays the means of generating a 
primitive prior for the left ventricle of the 4 chamber 
view US heart image. The left ventricle points were 
split into an upper region and a lower region 
representing two separate shape fitting equations. 
This can be tuned to give the best prior by selecting 
the separation line of the regions with the least 
amount of distance between the fitted hyperbolas 
and snake curve. Further advantages are that the 
prior knowledge is not built on a set of training 
samples that are expert delineated; rather they are 
generated from the current active contour control 
points. Figure 4 shows the results of the prior 
generation scheme on a echocardiogram.  

Once the prior is constructed, a VEF is generated 
of the prior and a single optimization iteration of the 
snake is executed before returning to the original 
optimization cycle. This is referred to as an omega 
iteration. This interruption to the snake optimization 

cycle is repeated throughout the snake’s evolution, 
until it achieves equilibrium. A flow chart of the 
proposed scheme is shown in Figure 5. 

4 EXPERIMENTAL RESULTS 

For this study, a series of B-mode echocardiogram 
cross sectional videos of the heart have been used to 
investigate the proposed snake algorithm. These 
videos were acquired using a SONOS 5500 by 
Philips Medical System. The transducer frequency 
was set at 2.5 Mhz in order to insure adequate 
penetration of tissue, while maintaining image 
quality with the existing speckle noise. Longitudinal 
views of the heart, which visualize the left ventricle, 
were acquired in order to verify the prior knowledge 
algorithm using more than one primitive shape.  

2/3 upper region

1/3 lower region

Snake of 
LV

Shift in order 
to attain 
optimal prior

Figure 3: Generation of primitive priors on active contour 
points. 

 
Figure 4: An example of a primitive prior formulation on 
the left ventricle. 
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The videos were parsed into image cines and 
each frame was considered with its direct 
neighbouring frame. Optical flow calculations for 
the edge map were completed using the Horn-
Schunck technique with a regularization constraint 
of 0.05 in order to compensate for the general 
speckle throughout the US images. Mask size for 
VEF generation was set to 64 and was normalized 
for active contour use. The initial contour placement 
was set to a circle of radius 30, which was placed by 
the user within the left ventricle of the heart.  

Snake parameters, α and β, were set to 4 and 0, 
respectively. α was set to 4 in order to add a 
substantial amount of weight to the internal energy. 
β was set to 0 since the second order differential 
does not influence the snake enough to warrant the 
added time complexity. Priors (omega iteration) 
were invoked every five iterations of the snake 
minimization.  

Figure 6(a) shows an expert manual 
segmentation of the left ventricle of the heart. Figure 
6(b) shows  the  final  contour  using  the traditional 

 
(a) 

 
(b) 

 
(c) 

Figure 6: Segmenting the left ventricle of the heart; (a) 
Expert manual segmentation (b) standard GVF 
segmentation (c) GVF-optical flow segmentation with 
priors. 

GVF snake. Figure 6(c) shows the final contour 
using the optical flow GVF snake with primitive 
priors. Expert examination of the results reveals that 
the shape priors improve regularity by allowing the 
snake to overcome noise, artifacts. This allows for 
proper delineation of the left ventricular endocardial 
lining. The optical flow measurements provide the 
necessary structural information used in the external 
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Figure 5: Flow Chart of Proposed Algorithm. 
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energy of the snake. 
Experiments were run on a complete cardiac 

cycle with various external energies. The first 
consisting purely of the optical flow measurements, 
the second on a combined energy of image gradient 
vectors and optical flow data.  

Overall, accuracy of the proposed system was 
measured by comparing the 87 indexed images to 
the expert manual segmentations by a clinician. 
These measurements include both type I and type II 
errors as defined by Neyman and Pearson (1928). 
Since the images were mainly small segmented 
foregrounds against vast backgrounds, the system 
would best be measured by means of its sensitivity 
and system accuracy.  

Sensitivity is the number of true positives 
divided by the number of true positives plus false 
negatives. System accuracy is the number of true 
positives and true negatives divided by the total 
number of pixels in the image. In other words, it 
classifies how accurate the results of the test are 
versus the total image.  

The sensitivity of the system, given a 95% 
confidence interval, yields 0.568-0.610 when using 
the optical flow exclusively. However this yield 
increased to 0.722-0.759 when combined with a 
image gradient vectors. Whereas, system accuracy, 
given the same confidence interval, yields 0.940-
0.946 for the optical flow energy and 0.954-0.958 
for the combined energy, respectively. 

Figure 7 shows the sensitivity of the system 
using various energies. Figure 8 shows the system 
accuracy of the system. We notice that there is a 
slight improvement when segmenting using both the 
optical flow and the image gradient over the optical 
flow exclusively. This illustrates that the optical 
flow measurements contributes enough information 
to the snake in order to segment out the left 
ventricle. 

5 CONCLUSIONS 

In this paper, we have shown that the use of optical 
flow calculations can be used as an external energy 
within the GVF active contour framework. By 
exclusively using the optical flow calculations, we 
have shown that it is possible that an active contour 
method can make use of the knowledge derived 
from the apparent motion of tissue. This strengthens 
the principle that the movement of tissue masses 
should be considered within segmentation 
techniques, where the data facilitates it.  

Furthermore, contour regularity and accuracy 

was improved by using primitive shapes priors. The 
inherent difficulties in segmenting echo-
cardiographic images, such as avoiding speckle 
noise and valve interference were also overcome by 
the primitive priors. Results were validated against a 
gold standard which was manually segmented by a 
clinician.  
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Figure 7: Sensitivity using different external energies. 
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Figure 8: System Accuracy using different external 
energies. 
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