

GENERATING 3D PLANTS USING LINDENMAYER SYSTEM

Kamil Ciosek and Pawel Kotowski
Faculty of Mathematics and Information Science, Warsaw University of Technology

Pl. Politechniki 1, 00-661 Warszawa, Poland

Keywords: Modeling, Lindenmayer system.

Abstract: The main focus of this paper is the analysis of modern methods of algorithmic plant generation. First, a brief
introduction is given to the necessary formalism: Lindenmayer system. It is followed by a description of
each stage of plant generation process. These include algorithms for obtaining: leaf venation graph, leaf
texture, stem texture, and the geometry and topology of the whole plant. In particular, the following
approaches have been used: textures are obtained from transformed noise, a general plant description is
generated with a parametric Lindenmayer system and a purpose-built particle-based algorithm is used to
simulate leaf venation. The last section gives a detailed description of four sample systems used to generate
different plants, outlining the reasons why a given system gives the desired graphical result.

1 INTRODUCTION

It is beyond doubt that plant modeling is one of the
milestones that computer graphics needs to achieve
to finally get to the holy grail of movie-quality real-
time image synthesis for games and other virtual
worlds. Indeed, after programmers mastered the
ways to reproduce simpler elements of our world on
the computer screen, it is now primarily in the
foliage that the struggle goes on to stun the user with
the realism of artificial imagery. While each new
generation of games presents a considerable
improvement over its predecessors, the results are
still not entirely satisfying and usually apply to only
a specific class of plants. Therefore plant generation
truly stands out as an area that is worthwhile to
research into and learn about.

With most objects, realistic display boils down to
hand-crafting a model with a polygon count
sufficient to display the necessary detail. This
approach has quite limited use because no model
designer could possibly reproduce the level of
complexity represented by a plant, if the model is to
be looked at from a close enough distance. Also, it is
impossible to achieve the variety of plants within the
same species, or trace the development of plants
over time with manual modeling. Therefore we need
a descriptive formalism that enables us to compress
the plant structure into a workable formula that can
be hand-modified and intuitively understood. In fact,

it is one of the central concepts of mathematics to
describe some aspect of the structure of a complex
object in a simple fashion. One feature of plants that
seems to be helpful in doing so is the fact that they
display a certain degree of self-similarity. Of course,
this fractal-like behavior does not encompass every
aspect of the plant at every scale, but still, it is quite
helpful. In this respect, this paper describes the
concept of Lindenmayer systems: a type of formal
grammars that is especially wellsuited for the
modeling of plants and that allows the user to easily
exploit whatever self-similarity the plant has.

The following chapters give an account of
experiments with Lindenmayer systems, as well as
of efforts to patch them up by adding external
algorithms to model the aspects of the plant that they
poorly represent (most notably, leaf venation
patterns).

2 LINDENMAYER SYSTEMS

This section introduces the concept of Lindenmayer
systems, a variation of formal grammars widely
applied to plant generation. They were first
introduced by Aristid Lindenmayer as a means of
modeling the growth of algae, but were later given a
more thorough theoretical description and applied to
many different problems.

 76
Ciosek K. and Kotowski P. (2009).
GENERATING 3D PLANTS USING LINDENMAYER SYSTEM.
In Proceedings of the Fourth International Conference on Computer Graphics Theory and Applications, pages 76-81
DOI: 10.5220/0001785300760081
Copyright c© SciTePress

A deterministic context free Lindenmayer system
(D0L-system) is a tuple <V, ω, P> where

• V - is a set of symbols.
• ω∈V - is the axiom or start symbol.
• P⊂V×V* : (∀a)(∃!p)((a, p)∈P) is the set of

productions.
Note that the right side of the production may be

empty (erasable productions are permissible) and
that Lindenmayer systems do not differentiate
between terminal or non-terminal symbols. Also
note that each symbol is the left side of exactly one
production (hence the determinism).

The arrow relation → ⊂ V+×V* is defined as
follows: P → Q iff P can be expressed as a sequence
of symbols P = p1, p2, ..., pn : pi∈V and Q can be
expressed as a sequence of strings Q = q1, q2, ..., qn
∈ V* such that n > 0 and for each i there exists a
production from pi to qi, i.e. (∀i)(pi, qi) ∈P.

The difference between ordinary grammars and
Lindenmayer systems lies in the fact that we
substitute all symbols at once. Also note that, given
a string from V*, the concatenation of the
transformations of each constituent letter of the
string is defined unambiguously and is trivial to
compute. This is in strict opposition to context-free
grammars, where special care needs to be taken to
avoid ambiguity.

In practical applications, we start off with the
axiom and iterate the → relation a fixed number of
steps. The number of steps is considered a
parameter. Normally, this parameter represents the
”depth” of simulation, for example the level of
development of the plant being modeled. Below, a
simple example of a deterministic context-free
Lindenmayer system is presented. A more elaborate
example, which can be used to model plants will be
given later.

V = {A,B,C}
ω = A

The set P contains the following productions:
A → BC
B → AC

Note that we have omitted the production from
C. This is common practice, and means that C → C.
After three iterations, this system yields:

ω = A → BC → ACC → BCCC
It has been decided that context-free parametric

Lindenmayer systems provide enough flexibility to
model an adequate scope of plants. The plant is
constructed in that the string resulting from iterating
a Lindenmayer system a specified number of times

is scanned for the symbols listed below (all other
symbols are ignored).

• F(l, r) Draws a stem segment(cylinder) of length
l and radius r. The cylinder follows the Z
axis. Its base matches the XY plane.

• L(l) Draws a leaf. The length of the main axis
of the leaf equals l.

• [Puts current turtle state onto the stack.
•] Discards current turtle state and pops the

new state
• +(α) Rotates the turtle by α degrees around the

X axis.
• &(β) Rotates the turtle by β degrees around the

Y axis.
• /(γ) Rotates the turtle by γ degrees around the

Z axis.
The drawing takes place in a turtle-like manner

in that the drawing turtle has a state at any given
time. The state comprises location and rotation
(which is represented as a 4×4 transformation
matrix). Therefore, turtle state can be viewed as an
alternative reference frame embedded into the 3d
scene.

3 PLANT GENERATION

This chapter addresses the core issues related to
plant generation. While the whole process revolves
around Lindenmayer systems, auxiliary mechanisms
need to be added to make the plants appear realistic.
In the following subsections, a discussion is given of
the methods used for the generation of various
aspects of plants.

3.1 Leaf Venation

Modeling leaf venation is quite imperative to
achieving the proper looks of a modeled plant. This
is due to the fact that the surface of plant leaves is
usually bigger and more prominent to the viewer
than other features of the plant. Therefore due care
must be exercised to ensure that an adequate
algorithm is employed.

Taulor-Hell and Baranoski (2002) provide a
thorough list of methods used to date, ranging from
simple texture mapping of scanned leaves to modern
procedural approaches.

Couder et al. (2002) describe an interesting
experiment aimed at establishing new methods of
reproducing venation patterns. They put special gel
in moulds of different shapes. The gel was then left
to dry and cracks that appeared on the surface due to
the stress caused by the top layer of the gel drying

GENERATING 3D PLANTS USING LINDENMAYER SYSTEM

77

faster and than the lower layer. They concluded that
the pattern of cracks on the surface of the gel bears
considerable similarity to venation patters of various
leaves.

Rodkaew et al. (2002) describe a particle-system
based approach that is very appealing. It has,
however, one major disadvantage: it is difficult to
tweak the used approach to achieve true similarity
with real leafs.

Runions et al. (2005) provide a solution that is
quite successful at addressing the ills of the earlier
attempts of using particle systems to model vein
growth. The authors, base their algorithm on the idea
that venation patterns emerge due to a special plant
hormone, called auxin: “[...] auxin originates in the
leaf blade and flows toward existing veins, which
transport it to the leaf base. During this flow, auxin
is canalized into narrow paths [...]. These paths
gradually differentiate into new vein segments.
Experimental evidence suggests that auxin sources
may be discrete.”

To account for this hormone, we use two kinds
of particles: source particles, representing auxin and
node particles, representing vein segments. The
algorithm is an iterative process that tries to
reproduce the way in which the sources and nodes
relate to one another on the leaf surface.

Once the iterative process has completed, we
have a graph representing the generated venation
pattern. What we would like to have, however, is the
texture of the actual veins. To get it, we need to
account for one vastly important aspect of leaf
venation: the width of the veins. First, we observe
that the venation pattern of leaf generated using the
described algorithm has the topology of a tree. This
means that the edges (vein segments) may be sorted
with respect to their distance from the tree root (leaf
origin). Therefore, it is possible to mark the edges
which are the furthest from the root (the thinnest
veins) as having width 1. The width of the remaining
edges can then be assumed to follow from the
formula ݎ௣௔௥௘௡௧௡ ൌ ௖௛௜௟ௗ௡ݎ∑

௜
. We calculate the widths

of edges that are farther from the root first and then
use these values to calculate the nearer ones. The
process is repeated till we reach the root node.

3.2 Leaf Texture

Once the geometry and topology of the leaf venation
pattern have been generated, there still remains the
question of how to texture the areas of the plant leaf
between the veins. Ideally, the color of the leaf
surface in these areas should be dependent on the
surrounding vein pattern and on the shape of the

leaf. However, it turns out that satisfactory results
may be obtained by using a simple technique of
making the background entirely independent of the
venation pattern.

The following figure compares the actual photo
of a croton leaf with an artificially generated
equivalent. As can be seen, considerable
dissimilarities remain apparent.

Figure 1: Generated leaf vs. real leaf image (source: own
photo).

3.3 Triangulation of Leaf Surface and
Deformation into the 3D

It is of course imperative to achieving the proper
looks of the plant that they are wrapped in a natural
fashion. The best, most general solution, is the one
employed by Mundermann et al. (2003). They have
used sticky splines, a modification of spline curves
that maintains the topology of the modeled structure,
to construct the leaf skeleton and devised a special
algorithm that is able to generate such skeletons
automatically. Naturally, the constructed skeleton
corresponds directly to the leaf’s venation pattern.
This allows them to represent arbitrary leaf lobes
and thus produce high-quality renderings of the
plants. This approach, however, is both complicated
and computationally expensive, since each primary
or secondary leaf vein must be given its
representation in the form of an appropriate spline.
Therefore, it is better suited to plant rendering than
to real-time display.

In search of a simpler solution, it became
apparent that as long as we do not need to model leaf
deformation that is due to the venation pattern, it
suffices to provide just an arbitrary triangulation of a
flat leaf shape, which can then be bent into the third
dimension. It is, however, important that the
triangulation is accurate enough near the brim of the
leaf blade, so that jagged edges can be avoided.

Once we have the mesh, it has to be deformed to
account for the bending of the leaf. The algorithm
uses a simple, but relatively effective solution that
assumes that the deformation of the leaf surface into
the third dimension is a function of only the y
coordinate of the flat leaf surface (the one that goes
along the leaf axis).

GRAPP 2009 - International Conference on Computer Graphics Theory and Applications

78

3.4 Stem Texture

While there seems to have been considerable
research into the ways of generating aesthetically
appealing textures of tree bark, we could not find a
ready algorithm specifically geared at reproducing
the outer looks of the stems of non-tree plants.
Because devising a new algorithm would be
complex, we have opted to use a simple bark-like
pattern that is fast and easy to compute while
delivering results of passable quality.

We adopted the solution due to Oppenheimer
(1986) which used a noise pattern run through a
sawtooth function. The algorithm takes three inputs:
a noise image, an integer N specifying the number of
bark ridges and a real R specifying the roughness of
the bark.

The result of the described procedure is a
grayscale image. To obtain color, the image is
saturated using a gradient specified by two user-
definable colors.

The following figures demonstrate textures
generated using various parameters

Figure 2: Samples of stem textures generated by the
described algorithm.

4 SAMPLE PLANTS

The first system, heavily adapted from
Prusinkiewicz and Lindenmayer (1996), has been
used to generate a generic plant.

axiom → A(100,5,200)
A(s,t,l) → [&(22.5)F(s,t,l)L(l)A(s,t/2 + 2,l)] /(5*22.5)

 [&(22.5)F(s,t,l)L(l)A(s,t/2 + 2,l)] /(7*22.5)
 [&(22.5)F(s,t,l)L(l)A(s,t/2 + 2,l)]

F(s,t,l) → S(t,s,l) /(5*22.5) F(s,t,l)
S(s,t,l) → F(t,s,l)

Figure 3: Plant generated from the system above (3
iterations).

The way the system works is centered around the
A token. This token has three parameters, which
stand for the following: the length of a single stem
segment, the width of the stem segment and the
length of the leaf. In each iteration, the A token
produces three branches using the [and] stack
operators. They protrude from their base at different
angles (the / operator). Each branch consists of an
appropriately rotated (&) stem segment (F), a leaf
(L) and the token A which allows it to split further
and form child branches in subsequent iterations.
Note how the stem width is decreased as the plant
grows. It is guaranteed to be at least 2 so that the
stem remains visible.

Below is presented a second system that
reproduces a yucca plant

axiom → A(175,25,250)
A(s,t,l) → F(s,t) B(7,6,l,60,s,t)
B(h,v,l,d,s,t) → BN(h,v,v,l,d,s,t)
BN(h,v,i,l,d,s,t) → LR(h,l,d*v/i) /(13) F(s/10,t)
 BN(h-0.4,v-1,i,l,d,s/2,t)
LR(n,l,d) → LRN(n,n,l,d)
LRN(i,n,l,d): i = 0 → eps
LRN(i,n,l,d): i > 0 → [+(d)L(l)] /(360/n) LRN(i-1,n,l,d)

Figure 4: A real yucca photo (source:
www.pyraflora.co.za) together with models generated with
100 (centre) and 10 (right) iterations of the system above.

This model was been inspired by a photo of a
real yucca plant. First, look at the last three
productions below: they represent a ”procedure”
”invoked” by using the LR(n,l,d) token. It draws n
uniformly distributed leaves of length n and
inclination d. The two productions from B and BN
generate a number of such concentric leaf groups
(once group is added for one iteration). The
parameters of the leafs are varied to achieve a less
symmetrical look. In particular the inclination
change reproduces the dome-like shape of the whole
plant. After each group of leaves has been drawn,
the coordinate system is rotated so that the leaves of
the next group do not protrude from the plant at the
same angles. Also, a short stem segment is added.
The token A is used to add the first, long stem
segment and initiate the generation process.

GENERATING 3D PLANTS USING LINDENMAYER SYSTEM

79

The third system reproduces a fern leaf. It is a
heavily modified version of a system proposed by
Prusinkiewicz and Lindenmayer (1996).

axiom → S
S → F(2,1) [+(40) /(90) L(11,1)]
 [+(-40) /(90) L(11,1)]
 +(9) F(2,1) [/(90) L(11,4)]
F(s,t) → F(s*1.2,t)
L(l,i): i < 4 → L(l*1.2, i+1)
L(l,i): i = 4 → [/ (270) S]

Figure 5: A real fern photo (source: Wikipedia) together
with a generated model (20 iterations).

The basic idea of this system is based on the
fractal-like structure of a fern leaf, where smaller
elements have the same structure as larger elements.
The basic building block of the fern leaf is
represented with the production from S: two
branches (L) protrude from a stem made from to
segments. The rotation before drawing the leaves is
necessary so that the surface of the leaves is aligned
with the surface of the whole leaf. The rotation +(9)
before the creation of the second stem segment is
used to make the whole leaf bend. Note how the L
symbol, whose main purpose is the creation of
leaves is used to create branches. Its second
parameter is used in a timer, which converts the leaf
to the basic building block after a fixed number of
iterations (this is done using the two last
productions). This way, the youngest generation of
created objects is rendered in the form of leaves. The
disadvantage is that this has absolutely no biological
motivation, but it looks good enough. The
production from F is used to elongate the existing
stem segments so there is enough place for the
emergence of new ones in the following iteration
steps.

The next system reproduces a cabbage head.

axiom → B(4,100,75)
B(h,l,d) → LR(h,l,d) /(13) B(h-0.3,l,d/2)
LR(n,l,d) → LRN(n,n,l,d)
LRN(i,n,l,d): i = 0 → eps
LRN(i,n,l,d): i > 0 → [+(d)L(l)] /(360/n)
 LRN(i-1,n,l,d)

Figure 6: A real cabbage photo (source:
www.hort.purdue.edu) together with a generated model
(10 iterations).

The idea of the system arose when working on
the yucca plant, and indeed the two systems are
similar, and the leaf-drawing procedure represented
by the symbol LR is even identical. This is an
excellent example of how a seemingly small
modification to the system yields a completely
different plant (although other aspects of the plant
have been modified as well). The key difference is
in the way the inclination of the leaves in controlled:
with the yucca plant, the inclination changed linearly
with respect to the iteration step, here it decreases
exponentially (the d/2 parameter in the second
production). This has the effect that the
concentration of leaves near the plant centre is much
higher than on the boundary. Also, the leaves near
the plant centre begin to self-intersect, which of
course is not realistic as such, but creates a visually
pleasing filled area near the centre of the plant.

5 CONCLUDING

It is quite obvious that the issue central to the whole
process is the question of how to get the utmost use
from the formalism of Lindenmayer systems. Sadly,
it seems adequate to conclude that the promised
biologically-motivated means of modeling organic
structures in a fast and easy way has yet to come into
being. The problem with Lindenmayer systems is
inherently tied to one of their main virtues:
simplicity. True, it is possible to express complex
structures using only a few productions. True, it is
easy to obtain images of the same plant at different
developmental stages if the system is appropriately
constructed. This does not change the fact, however,
that it is extremely difficult to extend this formalism
to cover a broad spectrum of objects. Lindenmayer
systems are good at describing tree structures, which
is hardly surprising because trees are simple. As
soon as more complexity is required, they fail. One
may argue that most plants do have a tree topology
and thus the added complexity is not required. The
simplest example of this limitation it the one that has

GRAPP 2009 - International Conference on Computer Graphics Theory and Applications

80

been encountered while researching leaf venation:
originally, the venation pattern of the leaf was
intended to be modeled using an auxiliary
Lindenmayer system. However, it proved impossible
to construct a system that would model a reasonable
variety of such systems adequately as it was very
difficult to make the separate vein lets grow
together. Consequently, a separate algorithm had to
be introduced. Plants may be tree like in the macro
scale, but they are certainly not so in the micro scale,
nor in the scale of the whole ecosystem. A similar
argument applies to other plant features. If one
wants smooth branches, it is necessary to add a
generalized cylinders to the model, which is external
to the system. If one wants flowers, another structure
has to be added. This has the effect that once we add
everything that is necessary to construct a well-
looking plant, the whole model loses its flexibility
because these addenda do not have the
developmental potential that a raw Lindenmayer
system boasts: we can no longer trace the way a
plant develops. Indeed, during the development of
productions, one is fast tempted to fall into the
pitfall of merely viewing the Lindenmayer system as
an exotic variation of programming in LOGO and
thus lose whatever biological founding the model
might have had. Naturally, this does not mean that
Lindenmayer systems are out of place. As of now,
there exists no better solution for generating
arbitrary plants.

Another aspect of plant modeling that needs to
be stressed here is the huge potential of particle
systems. In the effort described in this paper, they
have been used to model the leaf venation pattern.
Their main advantage is the relatively
straightforward way of implementation, at least
compared to attempts to tackle the same issues using
a more prescriptive approach. It is also easy to
introduce variation in the generated structures,
because the sources are scattered randomly as well
as to model two- or even three-dimensional
structures. Actually, attempts have been made
(Rodkaew et al., 2002) to use them for modeling
whole plants, but initial results were modest at best.
In this context, it seems appropriate to note the
analogy between particle and Lindenmayer systems:
if we allow the particles to have arbitrary parameters
and the rules that govern the behaviour of a particle
(which may mean both modifying an attribute of the
particle or splitting it into smaller particles) to be
based on an arbitrarily defined neighborhood of the
particle (which may extend to the whole system),
then a Lindenmayer system is just a special case of a
particle system constrained to one dimension and

one notion of proximity, where tokens correspond to
particles. It would be interesting to see in what
practical ways the use of particle systems may be
beneficial to the modeling of plants.

In summary, it does not seem very original or
innovative, but needs to be stated that plants are
inherently complex. Complex objects require
complex models, which usually require complex
implementation. This paper outlined some endeavors
on the way to a better model. It remains to be seen
how fast the evolution of computer graphics leads us
to an algorithm that produces truly satisfying results.

REFERENCES

Couder, Y., Pauchard, L., Allain, C., Adda-Bedia, M.,
Douady, S., 2002. The leaf venation as formed in a
tensorial field. The European Physical Journal B -
Condensed Matter and Complex Systems, 28(2):135–
138. ISSN 1434-6036.

Mundermann, L., MacMurchy, P., Pivovarov, J.,
Prusinkiewicz, P., 2003. Modeling lobed leaves. cgi,
00:60, ISSN 1530-1052.

Oppenheimer, P.E., 1986. Real time design and animation
of fractal plants and trees. SIGGRAPH Comput.
Graph., 20(4):55–64. ISSN 0097-8930.

Prusinkiewicz, P., Lindenmayer, A., 1996. The
algorithmic beauty of plants. Springer-Verlag New
York, Inc., New York, USA. ISBN 0-387-94676-4.

Rodkaew, Y., Chongstitvatana, P., Siripant, S., Lursinsap,
C., 2002. An algorithm for generating vein images for
realistic modeling of a leaf. In International
Conference on Computational Mathematics and
Modeling. May, Thailand.

Runions, A., Fuhrer, M., Lane, B., Federl, P., Rolland-
Lagan, A-G., Prusinkiewicz, P., 2005. Modeling and
visualization of leaf venation patterns. In SIGGRAPH
’05: ACM SIGGRAPH 2005 Papers, pages 702–711,
New York, NY, USA.

Taulor-Hell, J., Baranoski, G., 2002. State of the art in the
realistic simulation of plant leaf venation systems.
Technical Report CS-2002-17, University of Waterloo,
Department of Computer Science, Waterloo, Ontario.

GENERATING 3D PLANTS USING LINDENMAYER SYSTEM

81

