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Abstract: The main focus of this paper is the analysis of modern methods of algorithmic plant generation. First, a brief 
introduction is given to the necessary formalism: Lindenmayer system. It is followed by a description of 
each stage of plant generation process. These include algorithms for obtaining: leaf venation graph, leaf 
texture, stem texture, and the geometry and topology of the whole plant. In particular, the following 
approaches have been used: textures are obtained from transformed noise, a general plant description is 
generated with a parametric Lindenmayer system and a purpose-built particle-based algorithm is used to 
simulate leaf venation. The last section gives a detailed description of four sample systems used to generate 
different plants, outlining the reasons why a given system gives the desired graphical result.  

1 INTRODUCTION 

It is beyond doubt that plant modeling is one of the 
milestones that computer graphics needs to achieve 
to finally get to the holy grail of movie-quality real-
time image synthesis for games and other virtual 
worlds. Indeed, after programmers mastered the 
ways to reproduce simpler elements of our world on 
the computer screen, it is now primarily in the 
foliage that the struggle goes on to stun the user with 
the realism of artificial imagery. While each new 
generation of games presents a considerable 
improvement over its predecessors, the results are 
still not entirely satisfying and usually apply to only 
a specific class of plants. Therefore plant generation 
truly stands out as an area that is worthwhile to 
research into and learn about. 

With most objects, realistic display boils down to 
hand-crafting a model with a polygon count 
sufficient to display the necessary detail. This 
approach has quite limited use because no model 
designer could possibly reproduce the level of 
complexity represented by a plant, if the model is to 
be looked at from a close enough distance. Also, it is 
impossible to achieve the variety of plants within the 
same species, or trace the development of plants 
over time with manual modeling. Therefore we need 
a descriptive formalism that enables us to compress 
the plant structure into a workable formula that can 
be hand-modified and intuitively understood. In fact, 

it is one of the central concepts of mathematics to 
describe some aspect of the structure of a complex 
object in a simple fashion. One feature of plants that 
seems to be helpful in doing so is the fact that they 
display a certain degree of self-similarity. Of course, 
this fractal-like behavior does not encompass every 
aspect of the plant at every scale, but still, it is quite 
helpful. In this respect, this paper describes the 
concept of Lindenmayer systems: a type of formal 
grammars that is especially wellsuited for the 
modeling of plants and that allows the user to easily 
exploit whatever self-similarity the plant has. 

The following chapters give an account of 
experiments with Lindenmayer systems, as well as 
of efforts to patch them up by adding external 
algorithms to model the aspects of the plant that they 
poorly represent (most notably, leaf venation 
patterns).  

2 LINDENMAYER SYSTEMS 

This section introduces the concept of Lindenmayer 
systems, a variation of formal grammars widely 
applied to plant generation. They were first 
introduced by Aristid Lindenmayer as a means of 
modeling the growth of algae, but were later given a 
more thorough theoretical description and applied to 
many different problems. 
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A deterministic context free Lindenmayer system 
(D0L-system) is a tuple <V, ω, P> where 

• V - is a set of symbols. 
• ω∈V - is the axiom or start symbol. 
• P⊂V×V* : (∀a)(∃!p)((a, p)∈P) is the set of 

productions. 
Note that the right side of the production may be 

empty (erasable productions are permissible) and 
that Lindenmayer systems do not differentiate 
between terminal or non-terminal symbols. Also 
note that each symbol is the left side of exactly one 
production (hence the determinism). 

The arrow relation → ⊂ V+×V* is defined as 
follows: P → Q iff P can be expressed as a sequence 
of symbols P = p1, p2, ..., pn : pi∈V and Q can be 
expressed as a sequence of strings Q = q1, q2, ..., qn 
∈ V* such that n > 0 and for each i there exists a 
production from pi to qi, i.e. (∀i)(pi, qi) ∈P. 

The difference between ordinary grammars and 
Lindenmayer systems lies in the fact that we 
substitute all symbols at once. Also note that, given 
a string from V*, the concatenation of the 
transformations of each constituent letter of the 
string is defined unambiguously and is trivial to 
compute. This is in strict opposition to context-free 
grammars, where special care needs to be taken to 
avoid ambiguity. 

In practical applications, we start off with the 
axiom and iterate the → relation a fixed number of 
steps. The number of steps is considered a 
parameter. Normally, this parameter represents the 
”depth” of simulation, for example the level of 
development of the plant being modeled. Below, a 
simple example of a deterministic context-free 
Lindenmayer system is presented. A more elaborate 
example, which can be used to model plants will be 
given later. 

V = {A,B,C} 
ω = A 

The set P contains the following productions: 
A → BC 
B → AC 

Note that we have omitted the production from 
C. This is common practice, and means that C → C. 
After three iterations, this system yields: 

ω = A → BC → ACC → BCCC 
It has been decided that context-free parametric 

Lindenmayer systems provide enough flexibility to 
model an adequate scope of plants. The plant is 
constructed in that the string resulting from iterating 
a Lindenmayer system a specified number of times 

is scanned for the symbols listed below (all other 
symbols are ignored). 

• F(l, r) Draws a stem segment(cylinder) of length 
l and radius r. The cylinder follows the Z 
axis. Its base matches the XY plane. 

• L(l) Draws a leaf. The length of the main axis 
of the leaf equals l. 

• [ Puts current turtle state onto the stack. 
• ] Discards current turtle state and pops the 

new state 
• +(α) Rotates the turtle by α degrees around the 

X axis. 
• &(β) Rotates the turtle by β degrees around the 

Y axis. 
• /(γ) Rotates the turtle by γ degrees around the 

Z axis. 
The drawing takes place in a turtle-like manner 

in that the drawing turtle has a state at any given 
time. The state comprises location and rotation 
(which is represented as a 4×4 transformation 
matrix). Therefore, turtle state can be viewed as an 
alternative reference frame embedded into the 3d 
scene. 

3 PLANT GENERATION 

This chapter addresses the core issues related to 
plant generation. While the whole process revolves 
around Lindenmayer systems, auxiliary mechanisms 
need to be added to make the plants appear realistic. 
In the following subsections, a discussion is given of 
the methods used for the generation of various 
aspects of plants. 

3.1 Leaf Venation 

Modeling leaf venation is quite imperative to 
achieving the proper looks of a modeled plant. This 
is due to the fact that the surface of plant leaves is 
usually bigger and more prominent to the viewer 
than other features of the plant. Therefore due care 
must be exercised to ensure that an adequate 
algorithm is employed.  

Taulor-Hell and Baranoski (2002) provide a 
thorough list of methods used to date, ranging from 
simple texture mapping of scanned leaves to modern 
procedural approaches.  

Couder et al. (2002) describe an interesting 
experiment aimed at establishing new methods of 
reproducing venation patterns. They put special gel 
in moulds of different shapes. The gel was then left 
to dry and cracks that appeared on the surface due to 
the stress caused by the top layer of the gel drying 
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faster and than the lower layer. They concluded that 
the pattern of cracks on the surface of the gel bears 
considerable similarity to venation patters of various 
leaves.  

Rodkaew et al. (2002) describe a particle-system 
based approach that is very appealing. It has, 
however, one major disadvantage: it is difficult to 
tweak the used approach to achieve true similarity 
with real leafs. 

Runions et al. (2005) provide a solution that is 
quite successful at addressing the ills of the earlier 
attempts of using particle systems to model vein 
growth. The authors, base their algorithm on the idea 
that venation patterns emerge due to a special plant 
hormone, called auxin: “[...] auxin originates in the 
leaf blade and flows toward existing veins, which 
transport it to the leaf base. During this flow, auxin 
is canalized into narrow paths [...]. These paths 
gradually differentiate into new vein segments. 
Experimental evidence suggests that auxin sources 
may be discrete.” 

To account for this hormone, we use two kinds 
of particles: source particles, representing auxin and 
node particles, representing vein segments. The 
algorithm is an iterative process that tries to 
reproduce the way in which the sources and nodes 
relate to one another on the leaf surface.  

Once the iterative process has completed, we 
have a graph representing the generated venation 
pattern. What we would like to have, however, is the 
texture of the actual veins. To get it, we need to 
account for one vastly important aspect of leaf 
venation: the width of the veins. First, we observe 
that the venation pattern of leaf generated using the 
described algorithm has the topology of a tree. This 
means that the edges (vein segments) may be sorted 
with respect to their distance from the tree root (leaf 
origin). Therefore, it is possible to mark the edges 
which are the furthest from the root (the thinnest 
veins) as having width 1. The width of the remaining 
edges can then be assumed to follow from the 
formula ݎ௣௔௥௘௡௧௡ ൌ ௖௛௜௟ௗ௡ݎ∑

௜
. We calculate the widths 

of edges that are farther from the root first and then 
use these values to calculate the nearer ones. The 
process is repeated till we reach the root node.  

3.2 Leaf Texture 

Once the geometry and topology of the leaf venation 
pattern have been generated, there still remains the 
question of how to texture the areas of the plant leaf 
between the veins. Ideally, the color of the leaf 
surface in these areas should be dependent on the 
surrounding vein pattern and on the shape of the 

leaf. However, it turns out that satisfactory results 
may be obtained by using a simple technique of 
making the background entirely independent of the 
venation pattern. 

The following figure compares the actual photo 
of a croton leaf with an artificially generated 
equivalent. As can be seen, considerable 
dissimilarities remain apparent. 
 

 
Figure 1: Generated leaf vs. real leaf image (source: own 
photo). 

3.3 Triangulation of Leaf Surface and 
Deformation into the 3D 

It is of course imperative to achieving the proper 
looks of the plant that they are wrapped in a natural 
fashion. The best, most general solution, is the one 
employed by Mundermann et al. (2003). They have 
used sticky splines, a modification of spline curves 
that maintains the topology of the modeled structure, 
to construct the leaf skeleton and devised a special 
algorithm that is able to generate such skeletons 
automatically. Naturally, the constructed skeleton 
corresponds directly to the leaf’s venation pattern. 
This allows them to represent arbitrary leaf lobes 
and thus produce high-quality renderings of the 
plants. This approach, however, is both complicated 
and computationally expensive, since each primary 
or secondary leaf vein must be given its 
representation in the form of an appropriate spline. 
Therefore, it is better suited to plant rendering than 
to real-time display. 

In search of a simpler solution, it became 
apparent that as long as we do not need to model leaf 
deformation that is due to the venation pattern, it 
suffices to provide just an arbitrary triangulation of a 
flat leaf shape, which can then be bent into the third 
dimension. It is, however, important that the 
triangulation is accurate enough near the brim of the 
leaf blade, so that jagged edges can be avoided.  

Once we have the mesh, it has to be deformed to 
account for the bending of the leaf. The algorithm 
uses a simple, but relatively effective solution that 
assumes that the deformation of the leaf surface into 
the third dimension is a function of only the y 
coordinate of the flat leaf surface (the one that goes 
along the leaf axis).  
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3.4 Stem Texture 

While there seems to have been considerable 
research into the ways of generating aesthetically 
appealing textures of tree bark, we could not find a 
ready algorithm specifically geared at reproducing 
the outer looks of the stems of non-tree plants. 
Because devising a new algorithm would be 
complex, we have opted to use a simple bark-like 
pattern that is fast and easy to compute while 
delivering results of passable quality.  

We adopted the solution due to Oppenheimer 
(1986) which used a noise pattern run through a 
sawtooth function. The algorithm takes three inputs: 
a noise image, an integer N specifying the number of 
bark ridges and a real R specifying the roughness of 
the bark.  

The result of the described procedure is a 
grayscale image. To obtain color, the image is 
saturated using a gradient specified by two user-
definable colors. 

The following figures demonstrate textures 
generated using various parameters 

 

 
Figure 2: Samples of stem textures generated by the 
described algorithm. 

4 SAMPLE PLANTS 

The first system, heavily adapted from 
Prusinkiewicz and Lindenmayer (1996), has been 
used to generate a generic plant. 

axiom   → A(100,5,200) 
A(s,t,l)  → [&(22.5)F(s,t,l)L(l)A(s,t/2 + 2,l)] /(5*22.5) 

 [&(22.5)F(s,t,l)L(l)A(s,t/2 + 2,l)] /(7*22.5) 
 [&(22.5)F(s,t,l)L(l)A(s,t/2 + 2,l)] 

F(s,t,l)  → S(t,s,l) /(5*22.5) F(s,t,l) 
S(s,t,l)  → F(t,s,l) 

 
Figure 3: Plant generated from the system above (3 
iterations). 

The way the system works is centered around the 
A token. This token has three parameters, which 
stand for the following: the length of a single stem 
segment, the width of the stem segment and the 
length of the leaf. In each iteration, the A token 
produces three branches using the [ and ] stack 
operators. They protrude from their base at different 
angles (the / operator). Each branch consists of an 
appropriately rotated (&) stem segment (F), a leaf 
(L) and the token A which allows it to split further 
and form child branches in subsequent iterations. 
Note how the stem width is decreased as the plant 
grows. It is guaranteed to be at least 2 so that the 
stem remains visible.  

Below is presented a second system that 
reproduces a yucca plant 

axiom →  A(175,25,250) 
A(s,t,l)  →  F(s,t) B(7,6,l,60,s,t) 
B(h,v,l,d,s,t) → BN(h,v,v,l,d,s,t) 
BN(h,v,i,l,d,s,t) → LR(h,l,d*v/i) /(13) F(s/10,t) 
  BN(h-0.4,v-1,i,l,d,s/2,t) 
LR(n,l,d)  → LRN(n,n,l,d) 
LRN(i,n,l,d): i = 0 → eps 
LRN(i,n,l,d): i > 0 → [+(d)L(l)] /(360/n) LRN(i-1,n,l,d) 

 

 
Figure 4: A real yucca photo (source: 
www.pyraflora.co.za) together with models generated with 
100 (centre) and 10 (right) iterations of the system above. 

This model was been inspired by a photo of a 
real yucca plant. First, look at the last three 
productions below: they represent a ”procedure” 
”invoked” by using the LR(n,l,d) token. It draws n 
uniformly distributed leaves of length n and 
inclination d. The two productions from B and BN 
generate a number of such concentric leaf groups 
(once group is added for one iteration). The 
parameters of the leafs are varied to achieve a less 
symmetrical look. In particular the inclination 
change reproduces the dome-like shape of the whole 
plant. After each group of leaves has been drawn, 
the coordinate system is rotated so that the leaves of 
the next group do not protrude from the plant at the 
same angles. Also, a short stem segment is added. 
The token A is used to add the first, long stem 
segment and initiate the generation process. 
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The third system reproduces a fern leaf. It is a 
heavily modified version of a system proposed by 
Prusinkiewicz and Lindenmayer (1996). 

axiom  →  S 
S  →  F(2,1) [ +(40) /(90) L(11,1) ] 
  [+(-40) /(90) L(11,1) ] 
  +(9) F(2,1) [ /(90) L(11,4) ] 
F(s,t) → F(s*1.2,t) 
L(l,i): i < 4 → L(l*1.2, i+1) 
L(l,i): i = 4 → [ / (270) S ] 
 

 
Figure 5: A real fern photo (source: Wikipedia) together 
with a generated model (20 iterations). 

The basic idea of this system is based on the 
fractal-like structure of a fern leaf, where smaller 
elements have the same structure as larger elements. 
The basic building block of the fern leaf is 
represented with the production from S: two 
branches (L) protrude from a stem made from to 
segments. The rotation before drawing the leaves is 
necessary so that the surface of the leaves is aligned 
with the surface of the whole leaf. The rotation +(9) 
before the creation of the second stem segment is 
used to make the whole leaf bend. Note how the L 
symbol, whose main purpose is the creation of 
leaves is used to create branches. Its second 
parameter is used in a timer, which converts the leaf 
to the basic building block after a fixed number of 
iterations (this is done using the two last 
productions). This way, the youngest generation of 
created objects is rendered in the form of leaves. The 
disadvantage is that this has absolutely no biological 
motivation, but it looks good enough. The 
production from F is used to elongate the existing 
stem segments so there is enough place for the 
emergence of new ones in the following iteration 
steps. 

The next system reproduces a cabbage head.  

axiom  → B(4,100,75) 
B(h,l,d) → LR(h,l,d) /(13) B(h-0.3,l,d/2) 
LR(n,l,d) → LRN(n,n,l,d) 
LRN(i,n,l,d): i = 0 → eps 
LRN(i,n,l,d): i > 0 → [+(d)L(l)] /(360/n)  
  LRN(i-1,n,l,d) 
 

 
Figure 6: A real cabbage photo (source: 
www.hort.purdue.edu) together with a generated model 
(10 iterations). 

The idea of the system arose when working on 
the yucca plant, and indeed the two systems are 
similar, and the leaf-drawing procedure represented 
by the symbol LR is even identical. This is an 
excellent example of how a seemingly small 
modification to the system yields a completely 
different plant (although other aspects of the plant 
have been modified as well). The key difference is 
in the way the inclination of the leaves in controlled: 
with the yucca plant, the inclination changed linearly 
with respect to the iteration step, here it decreases 
exponentially (the d/2 parameter in the second 
production). This has the effect that the 
concentration of leaves near the plant centre is much 
higher than on the boundary. Also, the leaves near 
the plant centre begin to self-intersect, which of 
course is not realistic as such, but creates a visually 
pleasing filled area near the centre of the plant. 

5 CONCLUDING 

It is quite obvious that the issue central to the whole 
process is the question of how to get the utmost use 
from the formalism of Lindenmayer systems. Sadly, 
it seems adequate to conclude that the promised 
biologically-motivated means of modeling organic 
structures in a fast and easy way has yet to come into 
being. The problem with Lindenmayer systems is 
inherently tied to one of their main virtues: 
simplicity. True, it is possible to express complex 
structures using only a few productions. True, it is 
easy to obtain images of the same plant at different 
developmental stages if the system is appropriately 
constructed. This does not change the fact, however, 
that it is extremely difficult to extend this formalism 
to cover a broad spectrum of objects. Lindenmayer 
systems are good at describing tree structures, which 
is hardly surprising because trees are simple. As 
soon as more complexity is required, they fail. One 
may argue that most plants do have a tree topology 
and thus the added complexity is not required. The 
simplest example of this limitation it the one that has 
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been encountered while researching leaf venation: 
originally, the venation pattern of the leaf was 
intended to be modeled using an auxiliary 
Lindenmayer system. However, it proved impossible 
to construct a system that would model a reasonable 
variety of such systems adequately as it was very 
difficult to make the separate vein lets grow 
together. Consequently, a separate algorithm had to 
be introduced. Plants may be tree like in the macro 
scale, but they are certainly not so in the micro scale, 
nor in the scale of the whole ecosystem. A similar 
argument applies to other plant features. If one 
wants smooth branches, it is necessary to add a 
generalized cylinders to the model, which is external 
to the system. If one wants flowers, another structure 
has to be added. This has the effect that once we add 
everything that is necessary to construct a well-
looking plant, the whole model loses its flexibility 
because these addenda do not have the 
developmental potential that a raw Lindenmayer 
system boasts: we can no longer trace the way a 
plant develops. Indeed, during the development of 
productions, one is fast tempted to fall into the 
pitfall of merely viewing the Lindenmayer system as 
an exotic variation of programming in LOGO and 
thus lose whatever biological founding the model 
might have had. Naturally, this does not mean that 
Lindenmayer systems are out of place. As of now, 
there exists no better solution for generating 
arbitrary plants. 

Another aspect of plant modeling that needs to 
be stressed here is the huge potential of particle 
systems. In the effort described in this paper, they 
have been used to model the leaf venation pattern. 
Their main advantage is the relatively 
straightforward way of implementation, at least 
compared to attempts to tackle the same issues using 
a more prescriptive approach. It is also easy to 
introduce variation in the generated structures, 
because the sources are scattered randomly as well 
as to model two- or even three-dimensional 
structures. Actually, attempts have been made 
(Rodkaew et al.,  2002) to use them for modeling 
whole plants, but initial results were modest at best. 
In this context, it seems appropriate to note the 
analogy between particle and Lindenmayer systems: 
if we allow the particles to have arbitrary parameters 
and the rules that govern the behaviour of a particle 
(which may mean both modifying an attribute of the 
particle or splitting it into smaller particles) to be 
based on an arbitrarily defined neighborhood of the 
particle (which may extend to the whole system), 
then a Lindenmayer system is just a special case of a 
particle system constrained to one dimension and 

one notion of proximity, where tokens correspond to 
particles. It would be interesting to see in what 
practical ways the use of particle systems may be 
beneficial to the modeling of plants. 

In summary, it does not seem very original or 
innovative, but needs to be stated that plants are 
inherently complex. Complex objects require 
complex models, which usually require complex 
implementation. This paper outlined some endeavors 
on the way to a better model. It remains to be seen 
how fast the evolution of computer graphics leads us 
to an algorithm that produces truly satisfying results. 
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