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Abstract: Phase-measuring profilometry is a well known technique for 3D surface reconstruction based on a 
sinusoidal pattern that is projected on a scene. If the surface is partly occluded by, for instance, other 
objects, then the depth shows abrupt transitions at the edges of these occlusions. This causes ambiguities in 
the phase and, consequently, also in the reconstruction. This paper introduces a reconstruction method that 
is based on the instantaneous frequency instead of phase. Using these instantaneous frequencies we present 
a method to recover from ambiguities caused by occlusion. The recovery works under the condition that 
some surface patches can be found that are planar. This ability is demonstrated in a simple example.  

1 INTRODUCTION 

We consider the problem of 3D object surface 
reconstruction based on a sinusoidally modulated 
illumination pattern. Figure 1 shows an example. 
Depth information of the surface can be obtained 
from the phase of the pattern observed by a camera. 
This is the principle of phase-measuring 
profilometry. In this paper we study the use of the 
instantaneous frequency (IF) instead of phase. The 
IF is defined as the rate at which the phase changes.  

The depth of a surface patch of the scene is 
encoded in the IF of the observed image. For 
example, the IF at the centre of the cylinder in 
Figure 1 is smaller than the IF observed at the 
background. The explanation is simple: in our case, 
the illumination pattern is almost orthographically 
projected onto the scene. Due to the perspective 
projection of the camera the IF is proportional to the 
depth. 

In order to find the depth from the IF, we cannot 
simply reverse this relation because the inclination 
of the surface patch also influences the IF. For 
instance, on the side of the cylinder the IF increases 
with the depth, but also with the inclination angle of 
the patch. The dependency of the IF on both depth 
and inclination angle seems to introduce an 
ambiguity in the inverse solution. However, under 

the assumption that the surface is smooth (no abrupt 
transitions) we are able to bypass this ambiguity as 
will be shown in the sequel. With that, the solution 
based on IF is equivalent to the solution provided by 
phase-measuring profilometry. 

 
Figure 1: Sinusoidal illumination of a scene. 

Possible occlusions in the scene (self-occlusion 
or occlusion from other objects) do cause 
discontinuities in the depth. At these discontinuities, 
the unwrapping of the phase fails, and as a result, the 
reconstructions will be ambiguous. This holds true 
especially for phase-measuring profilometry. At first 
sight, one would expect that IF based methods suffer 
from the same defect. However, this paper 
introduces a workaround for these types of 
ambiguities. The validity of the workaround is 
limited to piecewise planar surfaces such as the 
surfaces of the block and the background.  
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The outline of the paper is as follows. Section 2 
provides a short overview of related work. Section 3 
analytical describes the image formation process 
leading to a forward model. Section 4 introduces an 
inverse model. Here, the ambiguity problems are 
discussed, and the workarounds are introduced. 
Experiments that are conducted are reported in 
Section 5. The paper finalizes with a conclusion in 
Section 6. 

2 RELATED WORK 

The 3D reconstruction technique addressed in this 
paper belongs to the category of structured lighting. 
The literature on this topic is numerous. Salvi, Pagès 
and Battle (2004) give an overview. Most systems 
rely on the principle of a triangulation set up 
between a ray of light projected on a surface patch in 
the scene and the corresponding line of sight of that 
patch as observed by a camera. To prevent time-
consuming scanning of the scene a 2D pattern of 
light is projected on the scene so that all surface 
patches are concurrently illuminated. The various 
approaches of structured lighting differ in the way 
they uniquely identify a ray of light amongst other 
rays of the same projected pattern. 

One-shot methods encode the position of a given 
ray in just one single illumination pattern. Usually, 
the identification of a projected point amongst other 
points of the pattern is done by using the context of 
grey levels (or colours) in the spatial neighbourhood 
of the projected point. A popular method to do so is 
PMP (phase-measuring profilometry) introduced by 
Srinivasan, Liu and Halioua (1985). Here, a sinusoid 
pattern is projected on the scene. PMP exploits the 
phase of the image of this pattern. For each pixel, 
the triangulation is set up by means of a difference 
between the phase derived from a reference plane 
and the phase derived from the surface under study.  

Our method belongs to the one-shot category 
using neighbourhoods, but differs from all other 
techniques in the sense that it does not set up an 
explicit triangulation. Furthermore, we do not use 
phase, but instead, use the rate at which the phase in 
the image changes. As such our method is a 
variation on PMP.  

The literature on PMP is wealthy. Most papers 
deal with the way in which the phase is measured. 
Srinivasan et al. (1985) used a method called phase 
shifting. Before that, Takeda & Mutoh (1983) used a 
non-sinusoidal pattern and exploited Fourier analysis 
to find the phase. See the review of Su & Chen 
(2001). Cuevas et al. (1999) estimated the phase 

using a PLL method. Tang & Hung (1990) used 
synchronous detection. Tay et al. (2004) used a 
simple interpolation technique. In fact, phase 
shifting is not a one-shot technique since it requires 
multiple patterns. The phase shifting technique is 
elaborated by Guan et al (2003) and Sansoni & 
Redaelli (2005) to a true one-shot technique. They 
describe modulation/demodulation techniques that 
combine the multiple patterns to one. The method of 
Hu et al. (2007) has the same goal but they use 
colour.  

We did not find much literature about the usage 
of IF. Neither did we find literature about the 
recovery from ambiguities due to occlusions. 
Sansoni & Redaelli (2005) use the IF to find an 
expression for the maximum slope that can be 
recovered. 

3 IMAGE FORMATION 

Figure 2 shows the geometric set-up of the camera. 
A profile of the object surface, taken along the x -
direction and at a fixed value of y , is parametrically 
represented by ( )( ), ( )x zξ ξ  where  ξ  is the running 
variable. We choose ξ  to be the pinhole mapping of 

( )( ), ( )x zξ ξ  on the image plane. So, if D  is the 
focal distance, then: 

 ( )
( )

x D
z
ξ

ξ
ξ

=  (1) 

Eq. (1) establishes a constraint on ξ , ( )z ξ  and 
( )x ξ . 

Occlusions are parts of the surface that are not 
observable from the position of the focal point. They 
bring intervals of the x -axis for which no 
corresponding values of ξ  exist. An example is the 
interval S  in Figure 2. Due to this occlusion, the 
mapping ( )x ξ  shows a discontinuity, i.e. an abrupt 
transition, at aξ = . The occurrence of a number of 
such occlusions splits the ξ -axis into a number of 
disjoint intervals in which the mappings ( )x ξ  are 
continuous and piecewise differentiable. In the 
sequel, we will refer to these intervals as the 
'continuity intervals'.  

For the moment, we assume that the pattern is 
parallel projected on the object surface along the z -
direction. Such an orthographic projection makes 
additional  requirements  on the optical  arrangement  
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Figure 2: Camera and Scene geometry. 

but it greatly simplifies the mathematical analysis. 
With this arrangement, the illumination pattern is 
described by cos(2 )A uxπ φ+  where u  is the spatial 
frequency measured along the x -axis, and φ  is a 
phase constant. The result of the orthographic 
projection is that the image of the pattern can be 
described by ( )x ξ  without a reference to ( )z ξ : the 
observed pattern is simply: ( ) ( )cos 2 ( )B uxξ π ξ φ+ . 
With that, the observed phase in the image becomes 

( ) 2 ( )uxϕ ξ π ξ φ= + . The instantaneous frequency of 
the observed signal is defined as follows: 

 1( ( ) ( )
2

def d dIF u x
d d

ξ ϕ ξ ξ
π ξ ξ

) = =  (2) 

 
Figure 3: Image formation model. 

The IF can be estimated indirectly by numerical 
differentiation of the phase. For the estimation of the 
phase, many techniques are available (Section 2). 

Another possibility is to directly estimate the IF 
from the image. Modulation theory has produced 
several algorithms for that (Boashash, 1992a & 
1992b).  

4 INVERSE MODELLING 

Eq. (2) is the forward model of the image formation. 
It predicts ( )IF ξ  of the observed image if the 
geometry ( )( ), ( )x zξ ξ  of the object is given. The 
sequel of this report focuses at the inverse problem. 
How to reconstruct the geometry ( )( ), ( )x zξ ξ  of the 
surface if the instantaneous frequency ( )IF ξ  of the 
observed image is given? 

Figure 4 illustrates the fact that this question is 
not easy to answer. The figure shows the image 
observed from the profile of a planar surface as 
presented in Figure 3. The interval a  spans exactly 
one period of the associated IF observed in a . The 
line segments b , c  and d  are three different 
solutions. Each of them complies with the observed 
IF. That is, each solution is mapped to a , and the 
projection of each solution on the x -axis has a 
length that matches the period 1 u  of the projected 
pattern. In other words, the solution at aξ ∈  is 
ambiguous. The observation of the IF at a  merely 
establishes a relation between the depth of a surface 
patch and its slope.  

 
Figure 4: Ambiguous solutions. 

Surprisingly, the ambiguity does not occur at 
0ξ = . In Figure 4, the interval e  spans one period 

of the IF observed near 0ξ = . The line segments 
f , g  and h  are different solutions that maps to e . 

However, the solutions all intersect at a unique, 
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common point ( )0, (0)z . This point can be retrieved 
unambiguously from the IF.  

4.1 The Phase based Solution 

If the surface slice is not occluded, then an 
unambiguous, full reconstruction is possible. The 
reconstruction starts at 0ξ =  where the depth can 
be recovered unambiguously. Next, using the 
continuity of the surface the full solution is obtained 
by integration eq. (2) along ξ :  

 
0

0
1( ) ( ) ( )x IF d x
u

ξ

α ξ

ξ α α ξ
=

= +∫  (3) 

The integral is valid for any interval 0[ , ]ξ ξ  in which 
no occlusion occurs.  

If ( )x ξ  is known to be continuous everywhere 
(no occlusion), then eq. (3) provides the full solution 
since according to eq. (1), we have (0) 0x = . Thus, 
for continuous surfaces the integration starts at 

0 0ξ = . In fact, we are then just reconstructing the 
phase ( )ϕ ξ φ− , and due to our orthographic 
projection of the pattern this gives us directly ( )x ξ . 
The actual value of the phase constant φ  is 
irrelevant, and there is no need to calibrate this 
parameter. 

Suppose that ( )x ξ  has been resolved by 
numerical integration yielding an estimate: 

 
0

1ˆ( ) ( )x IF d
u

ξ

α

ξ α α
=

= ∫  (4) 

Then the depth can be recovered by eq. (1):  

 
ˆ( )ˆ( ) x Dz ξ

ξ
ξ

=  (5) 

which provides the full solution ( )ˆ ˆ( ), ( )x zξ ξ . The 
only point that remains unsolved is ˆ(0)z  because 
ˆ( )x Dξ ξ  is undetermined for 0ξ = . However, it 

can be found by ˆ(0) (0)z D IF u= ⋅ .  

4.2 An IF based Solution 

If the surface is occluded, then ( )x ξ  is piecewise 
continuous. The solution of eq. (4) and (5) is then 
only valid within the continuity interval that contains 
( )0, (0)z . Each of the other intervals holds an 

integration constant that is unknown yet. In order to 
find the full solution one needs to identify the 
intervals, and, for each interval, estimate the 
corresponding integration constant. These 
integration constants corresponds to the jumps that 
are made at the discontinuities in ( )x ξ . A clue for 
finding the positions of the discontinuities in ( )x ξ  is 
that at these positions ( )IF ξ , and also ( )B ξ , are 
likely to be discontinuous. Edge detection applied to 

( )IF ξ  and ( )B ξ  may therefore recover these 
discontinuity points.  

Suppose that a single point ( )0 0ˆ ˆ( ), ( )x zξ ξ  has 
been found within a continuity interval. Then, eq. (3)
provides the solution for the full continuity interval. 
The question is: how to find such a solution? A 
general answer is hard to find. However, in the 
special case of having a surface patch that is locally 
flat, this section provides an answer. For such a 
surface the profile is locally of the form 0z ax z= + .  

Our solution is based on the derivative of ( )IF ξ . 
We analyse the local behaviour of the geometry 
around a fixed ξ . Thus, we examine the properties 
of ( )( ), ( )x h z hξ ξ+ +  and the associated 
instantaneous frequencies ( )IF hξ +  and its 
derivatives for 0h → . If the surface slice around ξ  
is of the form 0z ax z= + , then the parametric 
representation is: 

 
( ) ( ) ( , )
( ) ( ) ( , )

z h z ag h h
x h x g h h
ξ ξ ξ
ξ ξ ξ
+ = +
+ = +

 (6) 

( , )g hξ  is a scale factor that is needed to fulfil the 
constraint on hξ + , ( )x hξ +  and ( )z hξ +  
expressed by eq. (1): 

 ( )
( )

x hh D
z h
ξξ
ξ
+

+ =
+

 (7) 

Substitution of eq. (6) in eq. (7), and solving for 
( , )g hξ  yields: 

 ( )( , ) zg h
D a ah

ξ
ξ

ξ
=

− −
 (8) 

Next, substitution of ( , )g hξ  in the expression for 
( )x hξ +  in eq. (6) gives: 

 ( )( ) ( ) zx h x h
D a ah

ξξ ξ
ξ

+ = +
− −

 (9) 
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From this expression we can derive the derivatives 
with respect to h , and evaluate these at 0h = . This 
finally enables us to find ( )IF ξ  and its first 
derivative ( )IFξ ξ : 

 

( )

0

2

( ) ( )( )

2 ( )
( )

h

dx h z uIF u
dh D a

auz
IF

D a
ξ

ξ ξ
ξ

ξ
ξ

ξ
ξ

=

+
= =

−

=
−

 (10) 

In a practical situation, ( )IFξ ξ  can be estimated 
from the measured ( )IF ξ . For each fixed ξ , we 
have two equations and two unknown, i.e. ( )z ξ  and 
a . Solving eq. (10) yields: 

 

( )
2

( )
ˆ ( )

( ) 2 ( )

2 ( )ˆ ( )
( ) 2 ( )

D IF
a

IF IF

D IF
z

u IF IF

ξ

ξ

ξ

ξ
ξ

ξ ξ ξ

ξ
ξ

ξ ξ ξ

=
+

=
+

l

l

 (11) 

Finally, eq. (1) gives the estimate of ( )x ξ : 

 
ˆ ( )ˆ ( )
z

x
D

ξ ξ
ξ = l

l  (12) 

The subscript l  has been introduced to emphasis the 
fact that these estimators are based on a linearity 
assumption of the surface. 

Together, eq. (11) and (12) present a local 
solution based on the instantaneous frequency 

( )IF ξ  and its first derivative ( )IFξ ξ . Since the 
solution is local, and there is no need for integration, 
the solution bypasses the problem of having 
continuity intervals and unknown integration 
constants.  

The assumption of having a locally linear profile 
is essential. Suppose, that the neighbourhood of 
( )( ), ( )x zξ ξ  is locally approximated by a quadratic 
curve, i.e.: 

( ) ( )2( ) ( ) ( ) ( ) ( ) ( )z h z a x h x b x h xξ ξ ξ ξ ξ ξ+ = + + − + + −  (13) 

The constraint of eq. (7) causes the second order 
constant b  to enter the expression for ( )IFξ ξ  given 
in eq. (10). Consequently, the estimator ˆ ( )z ξl  is 
only valid if 0b = . It is not applicable to curved 
parts of the surface.  

If within a finite neighbourhood of ξ  the 
linearity assumption holds, then the estimated 
coefficient ˆ ( )a ξl  should be constant within this 

neighbourhood. Thus, if within a given interval 
ˆ ( )a ξl  fails to be constant, then the linearity 

assumption falls down there. In that case, ( , )g hξ  
does not fulfil the constraint (7), and the solution 
given by eq. (11) is invalid. 

5 EXPERIMENTS 

A preliminary experiment is conducted to 
demonstrate the ability of instantaneous frequencies 
to recover from occlusion ambiguities. For that 
purpose, the scene shown in Figure 1 was selected. 
The scene consists of a cylinder, a block, and a 
planar background. The cylinder partly occludes the 
block. Both objects occlude the background. Figure 
5 shows a top view map of the geometry. 

 
Figure 5: Geometrical set-up and reconstruction results. 

The pattern was created by a DLP projector at a 
distance of 90 cm from the background. The depth 
range of the scene is about 20 cm. The distance from 
the camera to the background is 51 cm. The optical 
axis of the camera (and of the projector) is 
orthogonal to the background plane, and intersects 
the cylinder left from its centre.  

In this preliminary experiment we used on off-
the-shelf FM demodulation technique for the 
estimation of the IF. It uses the analytic signal 
together with Gabor quadrature filtering. The 
estimated IF of a row extracted from the centre of 
the image is shown in Figure 6.  

Based on the analysis in Section 4, the 
expectations are as follows: 
• The phase-based method can resolve the 

cylinder since the optical axis intersects this 
object. Due to the discontinuities, other surfaces 
cannot be resolved. 
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• The IF-based solution of eq. (11) and (12) can 
resolve the background and the two sides of the 
block.  

The phase-based estimate is shown as the blue 
dashed line in Figure 5. The green thin line is the 
ground truth. It can be seen that the phase-based 
estimate corresponds well to the expectation. The 
estimator finds the surface of the cylinder but it 
looses track near the edges of this object. At the 
centre of the cylinder, the error of the estimated 
depth is about 6 cm. This can be contributed to the 
illumination which is only approximately parallel.  

 
Figure 6: Estimated IF, and its derivative together with the 
estimated slope of the profile. 

The IF-based estimates are shown as the red 
thick lines in Figure 5. The estimated slopes (eq. 
(11)) are shown in Figure 6. For the background, and 
the two sides of the block, these slopes corresponds 
well with the ground truth, i.e. 0, 1,  and 1a = − +l , 
respectively. We used the derivative of al  to decide 
whether the corresponding surface patch is planar or 
not. Here too, the estimates correspond well to our 
expectation, albeit that the accuracy could be 
improved. Clearly the IF-method, being dependant 
on derivatives, is sensitive to errors in the IF.  

6 CONCLUSIONS 

We have introduced and demonstrated a new method 
for retrieving depth from images of sinusoidally 
illuminated scenes. The method is based on the IF 
rather than phase. It has the ability to resolve the 
ambiguity caused by occlusions in the scene. Phase-
based methods cannot resolve these ambiguities. The 

IF method can, but only works for planar surface 
patches. We are currently working on extensions to 
relieve this condition by, for instance, allowing 
quadratic surfaces.  

We have assumed an orthographic projection of 
the illumination pattern. Currently, we are also 
working on a method that uses a perspective 
projection model for both the projector and the 
camera. 
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