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Abstract: Robust and reliable determination of hypovigilance is required in many areas, particularly transportation. 
Here, new products of Fatigue Monitoring Technologies (FMT) emerge. Their development and assessment 
requires an independent reference standard of driver’s hypovigilance. Until recently most approaches utili-
zed electrooculography (EOG) and electroencephalography (EEG) combined to descriptive statistics of a 
few time or spectral domain features, like e.g. power spectral densities (PSD) averaged in four to six spec-
tral bands. Here we present a more general approach of data fusion of many features utilizing computational 
intelligence methods, like e.g. Support-Vector Machines (SVM). For simplicity, two classes were discrimi-
nated: slight and strong hypovigilance. Validation was performed by independent class labels which were 
assessed from Karolinska Sleepiness Scale (KSS) and from variation of lane deviation (VLD). The first is a 
measure of subjectively self-experienced hypovigilance, whereas the second is an objective measure of 
performance decrements. 16 young volunteers participated in overnight experiments in our real car driving 
simulation lab. Results were compared with PERCLOS (percentage of eye closure), an oculomotoric 
variable utilized in several FMT systems. We conclude that EEG and EOG biosignals are substantially more 
suited to assess driver’s hypovigilance than the PERCLOS biosignal. In addition, computational intelligence 
performed better when objective class labels were used instead of subjective class labels. 

1 INTRODUCTION 

Both distracted and fatigued driving crashes are 
thought to be underreported, since there is mostly no 
evidence of driver distraction or fatigue at the scene 
of a crash. Moreover, drivers may be reluctant to 
admit distraction or fatigue because they may fear 
being assigned blame for the incident. Therefore, the 
determination of driver’s hypovigilance and distrac-
tion by FMT systems still poses a great challenge 
and will provide support to overcome these 
problems. Hypovigilance is a deficit of vigilance. 
The latter describes the ability to sustained attention 
and is given if a subject is able to perceive and 
interpret random, relevant changes in the 

environment and is able to make effective decisions 
and to perform precise, motor actions. Two major 
causes of hypovigilance are central fatigue and task 
monotony. But, it is well known that several other 
factors influence driver’s hypovigilance. It is a 
complex issue with several facets (Leproult et al 
2002, Trutschel et al 2006).  
Driver’s hypovigilance depends for example on 
time-of-day due to the circadian rhythm, on time-
since-sleep (long duration of wakefulness), on time-
on-task (prolonged work), inadequate sleep, and 
accumulated lack of sleep. The last two factors may 
be caused by pathological sleepiness due to diseases, 
like sleep apnea or narcolepsy, or may be caused by 
intentionally sleep loss due to prolonged time awa-
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ke. Moreover, there are also psychological factors 
influencing the actual level of vigilance, e.g. motiva-
tion, stress, and monotony. The last is believed to 
play a major role in driving, because it is mostly a 
simple lane-tracking task with a low event rate. 
Therefore, vigilance is considered as a psychophy-
siological variable not always increasing monotoni-
cally during driving. It shows slow waxing and 
waning patterns, which can be observed in driving 
performance and repeatedly self-reported sleepiness.  

There are many biosignals which contain more 
or less information on hypovigilance. Among them, 
EEG is a relatively direct, functional reflection of 
mainly cortical and to some low degree also sub-
cortical activities. EOG is a measure of eye and 
eyelid movements and reflects activation / deactiva-
tion as well as regulation of the autonomous nervous 
system. 

Until recently, for the assessment of driver’s hy-
povigilance the analysis of EEG and EOG was based 
on a variety of definitions involving PSD summation 
in a few spectral bands which proved in clinical pra-
ctice. The same applies to the location of EEG elec-
trodes. Separate analysis of EEG of different electro-
des and of alternative definitions of spectral bands 
led to inconsistent and sometimes contradicting re-
sults. Large inter-individual differences turned out to 
be another problematic issue.  

Therefore, adaptive methods with less predefi-
ned assumptions are needed for comprehensive hy-
povigilance assessment. Here we propose a combi-
nation of different brain (EEG) and oculomotoric 
(EOG) signals whereby parameters of pre-proces-
sing and summation in spectral bands were optimi-
zed empirically. Moreover, modern concepts of dis-
criminant analysis such as computational intelligen-
ce and concepts of data fusion were utilized. Using 
this general approach ensures optimal information 
gain even if unimodal data distributions are existent 
(Golz et al. 2007).  

As a first step solution, we utilized SVM in order 
to map feature vectors extracted from EEG / EOG of 
variable segment lengths to two, independent types 
of class labels. For their generation a subjective as 
well as an objective measure was applied.  Both ref-
lect different facets of hypovigilance: sleepiness and 
performance decrements, respectively.  
For the first type of labels, an orally spoken self-
report of sleepiness on a continuous scale, the so-
called Karolinska Sleepiness Scale (KSS), was 
recorded every two minutes during driving. The 
second type of labels was determined through 
analyzing driving performance. In previous studies it 
was found that especially the variation of lane 

deviation (VLD) correlates well with hypovigilance 
and attention state of drivers (Pilutti et al. 1999). 

2 METHODS 

2.1 Experiments 

16 participants drove two nights (11:30 p.m. – 8:30 
a.m.) in our real car driving simulation lab. One 
overnight experiment comprised of 8 x 40 min of 
driving. EEG (FP1, FP2, C3, Cz, C4, O1, O2, A1, 
A2) and EOG (vertical, horizontal) were recorded at 
a sampling rate of 256 Hz. PERCLOS as another 
oculomotoric measure was recorded utilizing an 
established eye tracking system at a sampling rate of 
60 Hz. Also several variables of driving simulation, 
like e. g. steering angle and lane deviation, were re-
corded at a sampling rate of 50 Hz. Lane deviation is 
a good measure of driving performance and is used 
here as an objective and independent measure of 
hypovigilance as described below. Variation of lane 
deviation (VLD) is the difference between two sub-
sequent samples of lane deviation normalized to the 
width of lane. For example, moving the car from the 
left most to the right most position of the lane results 
in VLD = 100 %. The KSS was mentioned above 
and is a standardized, subjective, and independent 
measure of hypovigilance on a numeric scale bet-
ween 1 and 10. KSS was asked at the beginning and 
after finishing driving. During driving only relative 
changes in percent of the full range were asked 
because subjects are more aware of relative than on 
absolute changes. 

2.2 Procedure Steps 

To allow a comparison of the selected biosignals 
regarding hypovigilance, pre-possessing and feature 
extraction were performed due to the same concept 
for all biosignals (Golz et al. 2007). First, non-over-
lapping segmentation with variable segment length 
was carried out, followed by linear trend removal 
and estimation of power spectral densities (PSD) 
utilizing the modified periodogram method. Other 
estimation techniques, such as Welch’s method, the 
Multi-Taper method, and a parametric estimation 
(Burg method), were also applied, but resulted in 
slightly higher discrimination errors. It seems that 
these three methods failed due to reduced variance 
of PSD estimation at the expense of bias. In contra-
diction to explorative analysis, machine learning 
algorithms are not such sensitive to higher variances. 
Second, PSD values of all three types of signals 
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were averaged in spectral bands. In case of EEG and 
EOG signals 1.0 Hz wide bands and a range of 1 to 
23 Hz turned out to be optimal, whereas in case of 
PERCLOS signals 0.2 Hz wide bands and a range of 
0 to 4 Hz were optimal. All parameters were found 
empirically at lowest discrimination errors in the test 
set. Further improvements were achieved, but only 
in case of electrophysiological features, by applying 
a monotonic, continuous transform log(x).  

2.3 Classification 

KSS and VLD values were divided into categories 
‘slight hypovigilance’ (class 1) and ‘strong hypo-
vigilance’ (class 2). This was necessary to get labels 
for discriminant analysis (classification). For the 
subjective measure the threshold parameter was se-
lected at KSS = 7 (Fig. 1). For a better visualization 
of separation between class 1 and class 2 samples in 
the range of KSS = 6.9 … 7.1 were eliminated from 
data set. This step turned out to be not crucial. 
Results of classification (test set errors) showed not 
much of a difference. 

 
Figure 1: Histogram of subjective ratings of sleepiness 
(KSS). Binarization leads to two classes: slight (class 1) 
and strong hypovigilance (class 2). Values in the imme-
diate threshold region (around KSS=7) were eliminated. 

The same binarization was applied also to the 
objective measure. Threshold was determined at 
VLD = 13.5 % and all samples in the range of VLD 
= 13.0 % … 14.0 % were eliminated (Fig. 2). This 
data elimination also turned out to be not crucial. 

Segment length was always optimized (see be-
low) in order to get minimal test errors. Test errors 
were estimated by multiple, random cross validation 
(80 % training / 20 % test set). Due to the relatively 
high dimensionality of the feature space a powerful 
machine learning method, the Support-Vector Ma- 

 
Figure 2: Histogram of objectively measured performance 
(VLD). Binarization leads to two classes: slight (class 1) 
and strong hypovigilance (class 2). Values in the imme-
diate threshold region were eliminated. 

chine (SVM), was applied. SVM adapts an optimal 
separating hyperplane without any presumptions on 
data distribution. To achieve nonlinear discriminant 
functions nonlinear kernel functions have to be app-
lied. Among several others, kernel functions such as 
radial basis function k(x1,x2) = exp(-γ║x1-x2║2) and 
the Coulomb function k(x1,x2) = (1+γ║x1-x2║2)-d 
performed best in our application. Three SVM para-
meters (slack variable, two kernel parameters) were 
optimized carefully which requested high computa-
tional load (Golz et al. 2007). For each of the selec-
ted biosignals the segment length was varied in the 
range of 10 to 300 seconds to find an empirical opti-
mum of the discrimination test error utilizing multip-
le hold-out cross validation. In general, small seg-
ment lengths lead to a high number of input vectors 
following to higher complexity presented to the dis-
crimination algorithms and therefore to higher error 
rates for all signals. 

3 RESULTS 

Discriminant analysis of different biosignals resulted 
in different errors for KSS labels (Figure 3) and for 
VLD labels (Figure 4). For the first, the PERCLOS 
signal and the vertical component of EOG (EOGv) 
showed relatively high errors and depend in similar 
manner on segment length. EEG at location ‘Fp1’ 
showed lower errors for all segments length compa-
red to EEG at location ‘Cz’. The feature fusion of 
EEG at all 7 locations and of both EOG components 
resulted in lowest errors (Fig. 3, red). This confirms 
our previous finding (Golz et al. 2007) that feature 
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fusion of EEG and EOG lead to significant improve-
ments in the discrimination between two classes uti-
lizing SVM. Mean test errors of about 13 % yielded 
in a relatively broad range of optimal segment 
lengths between 50 and 150 seconds. PERCLOS 
features resulted considerably worse (Fig. 3, blue). 
Mean test errors varied between 32 and 34 % in the 
whole range of segment lengths. Similar results for 
EEG / EOG signals were found in a previous study 
(Golz et al. 2005). In this study, which was based on 
different data sets, the optimal segment length was 
as well between 50 to 150 seconds. Learning Vector 
Quantization was used instead of SVM as classifier.  

 
Figure 3: Mean and standard deviation of test set errors for 
selected biosignals. Features of PERCLOS performed 
worse, whereas PSD feature fusion of EEG and EOG 
performed best. Class labels were subjective KSS. 

Slightly better, but basically comparable results 
yielded if the objective measure (VLD) was utilized. 
Lowest errors resulted if features of EEG and EOG 
were fused together (Figure 4). Mean test errors of 
about 10 % yielded at optimal segment lengths of 
about 150 seconds. PERCLOS results were conside-
rably worse (Figure 4). Mean test errors varied bet-
ween 26 and 30 % if segment lengths were larger 
than 50 seconds. The characteristics of the other sig-
nals EOG (vertical), EEG (Cz) and EEG (Fp1) as 
function of segment length is clearly more complex 
for the VLD labels than for KSS labels. The achie-
ved improvement in the test errors through feature 
fusion in the case of the VLD labels was considerab-
le. 
The question arises if machine learning algorithms 
in combination with feature fusion concepts have 
found some generally valid properties of driver hy-
povigilance in the selected EEG/EOG combination. 
This was checked out by cross validation on the 
subject level. Learning algorithms were tested on all 

 

 
Figure 4: Mean and standard deviation of test set errors for 
selected biosignals.  PSD of PERCLOS performed worse, 
whereas PSD feature fusion of EEG and EOG performed 
best. Class labels were objective VLD. 

data of only one subject after they were trained on 
all data of all other subjects. This was repeated for 
every subject. 

 
Figure 5: Inter-individual differences of test set errors for 
the feature fusion of EEG and EOG. Class labels were 
subjective KSS. 

Results show high inter-individual variability (Figu-
re 5 and Figure 6) indicating that common characte-
ristics were rarely found. Overall the inter-individual 
variability is larger for subjective KSS labels than 
for objective VLD labels. This can be explained in 
that the subjects in our lab study are not professional 
drivers and could have difficulties to assess their 
own subjective alertness levels using KSS. The clas-
sification errors between slight and strong hypovigi-
lance are clearly subject specific. Overall, the discri-
mination  ability  of  the   SVM   between   the   two  
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Figure 6: Inter-individual differences of test set errors for 
the feature fusion of EEG and EOG. Class labels were 
objective VLD. 

classes is close to the optimal results only for subject 
‘3’ using KSS labels (Figure 5) and close for the 
subjects ‘1, 3, 10, 11’ using VLD labels (Figure 6). 

4 CONCLUSIONS 

Model free approaches are used in many different 
fields. Hence, it would be appropriate for the fatigue 
and performance research community to reach out 
and explore alternative algorithms beyond rule based 
statistical analysis of biosignals. This could help to 
advance the complex issue of driver hypovigilance 
which has eluded researchers for a long time.  
Results of experimental investigations and subse-
quent adaptive data analysis yielded substantial dif-
ferences in the usefulness of electrophysiological 
signals (EEG, EOG) compared to an oculomotoric 
signal (PERCLOS) which is at the moment the most 
often utilized measure of driver’s hypovigilance in 
fatigue monitoring technologies, such as infrared 
video camera systems. This main result is regardless 
of the definition of hypovigilance, considering that 
subjective (KSS) as well as objective (VLD) labels 
has been utilized. Results were robust to different 
variations in parameters such as segment length 
which controls temporal resolution and amount of 
information to be involved. Mean test errors of 13 % 
and 10 % for subjective and objective labels, 
respectively, show that feature fused EEG and EOG 
has the potential to account for a reference standard 
(gold standard) to evaluate fatigue monitoring 
technologies (FMT). Mean test errors between 26 % 
and 32 % for subjective and objective labels, 
respectively, show that the PERCLOS signals seems 

to carry less information on driver’s hypovigilance 
than fused EEG and EOG.  

Our results contradict results of other authors 
(depicted in table 1 in Dinges et al 1998), where 
PERCLOS was found to be most reliable and valid 
for determination of driver’s hypovigilance level. 
There, based on complete other data analyses, diffe-
rent measures of hypovigilance were compared. 
EEG resulted worse than PERCLOS, whereas mea-
sures of head position and of eye blink behaviour led 
to contradictory results between subjects. As a refe-
rence standard of hypovigilance they utilized measu-
res of the well-known psychomotor vigilance task 
(PVT). Results are based on the fact that PERCLOS 
varies simultaneously with attention lapses in PVT 
which was repeated during 42 hours of sustained 
wakefulness. However, some doubts were raised 
(Johns 2003). It was pointed out that contradictions 
are possible, e. g. under demands of sustained atten-
tion some sleep-deprived subjects fall asleep while 
their eyes remain open. Unfortunately, PERCLOS 
does not include any assessment of eye and eye lid 
movements. Important dynamic characteristics 
which are widely accepted, such as slow roving eye 
movements, reductions in maximal saccadic speed, 
or in velocity of eye lid re-opening, are ignored. 
Their spectral characteristics were picked up in our 
study through EOG and may account for the far 
better results of EEG / EOG data fusion presented 
here. Note, that highly dynamical alterations are 
better reflected by EOG than by PERCLOS. Our 
results support doubts stated in (Johns 2003) and 
clearly show limitations of PERCLOS. Some serious 
cautions should be considered when driver’s hypo-
vigilance is estimated relying solely on PERCLOS. 
In general, the aim of many researchers on driver’s 
hypovigilance in the 90’s to reduce such complex 
issue to a simple threshold parameter (Dinges et al 
1998) was presumably misguiding. Fortunately, this 
has been corrected in recent projects. Different 
approaches were investigated Schleicher et al. 2007, 
among them also data fusion concepts (AWAKE 
2004).  

In addition, our previous findings (Trutschel et 
al. 2006, Golz et al. 2005, Golz et al. 2007) have 
shown that results on the assessment of driver states 
differ from subject to subject, as well as to some 
limited extent also from driving session to driving 
session. This was confirmed in the current investi-
gations as well. This is a problematic issue for FMT 
systems. Individualization will be needed for reliable 
detection of driver’s hypovigilance. To find practical 
solutions in order to address intra-individual diffe-
rences in discrimination of slight and strong hypo-
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vigilance future investigations are required. For 
example, it could be futile to master group-average 
model predictions before exploring means of predic-
ting individual hypovigilance. Due to large inter-
subject variability in subjective alertness (KSS) and 
driving performance (VLD), it may turn out to be 
easier to develop reliable and accurate models of 
individualized measures of hypovigilance on the 
basis of an individual’s data fusion concept than 
group-average vigilance models based on a single 
data stream. 
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