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Abstract: In this paper, a new feature set for audio classification is presented and evaluated based on sinusoidal 
modeling of audio signals. Variance of the birth-death frequencies in sinusoidal model of signal, as a 
measure of harmony, is used and compared to typical features as the input into an audio classifier. The 
performance of this sinusoidal model feature is evaluated through classification of audio to speech and 
music using both the GMM and the SVM classifiers. Classification results show that the proposed feature is 
quite successful in speech/music classification. Experimental comparisons with popular features for audio 
classification, such as HZCRR and LSTER, are presented and discussed. By using a set of three features, we 
achieved 96.83% accuracy, in one-sec segment based audio classification. 

1    INTRODUCTION 

Rapid increase in the amount of audio data demands 
for an automated method that allows for efficient 
segmentation and classification of audio stream 
based on its contents. In multimedia applications, 
such systems can be useful to achieve automatic 
classification, indexing, archiving, and retrieving of 
information from large multimedia corpora. Audio 
segmentation and classification also have significant 
applications in data retrieval, archive management, 
modern human-computer interfaces, and 
entertainment. 

One of basic problems in audio segmentation and 
classification is speech/music discrimination. By 
rejecting non-speech segments, speech/music 
discrimination can play a signification role in speaker 
and speech recognition systems. The new generation 
of low rate coders and compression technologies 
need an estimation of the signal nature to achieve a 
higher compression rate. Among them is the work by 
EI-Maleh et al. (Ei-Maleh, 2000) that used LSF (Line 
Spectral Frequency) parameters and zero crossing for 
frame based speech/music discrimination.  

Ajmera et al. (Ajmera, 2002) employed a 
posteriori probability based entropy and dynamism 
features and reported 82.5% and 79.2% accuracies 

for speech and music segments, respectively. 
Saunders (Saunders, 1996) used typical features, 
such as zero crossing rate and short-time energy, for 
a radio broadcast speech/music classifier. For a 2.4 
sec segment of audio signals, this work achieved an 
accuracy of 98%. Scheirer and Slaney introduced an 
audio classification method in (Scheirer, 1997) using 
more features and performed experiments based on 
different classification models. For the same segment 
length of an audio signal (2.4 sec), the overall error 
reported was of as low as 1.4%. 

Lu et al. (Lu, 2002) applied an algorithm based 
on KNN (K-Nearest Neighbor) classifier and LSP 
(Line Spectral Pair) -VQ (Vector Quantization) to 
determine speech/non-speech segments. Some other 
classification approaches have recently been 
introduced in the literature that use different 
methods, such as nearest feature line (Li, 2000) and 
SVM (Support Vector Machine) (Guo, 2003).  

In this paper, we propose a sinusoidal model 
based feature for audio classification to speech and 
music by using the GMM (Gaussian Mixture Model) 
and the SVM classifiers. The sinusoidal models of 
different orders are tested and evaluated. The model 
feature, variance of birth-death frequencies, is 
presented and compared to conventional features, e.g. 
HZCRR (high zero crossing rate ratio) and LSTER 
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(low short time energy ratio), in terms of the 
classification performance.  

 
Figure 1: Birth and death of sinusoidal tracks. 

This paper is structured as follows. Sinusoidal 
modeling of speech signals is briefly described in 
section 2. The features used in this study and the 
classification methods we have employed are 
presented in section 3. The system implementation 
and experimental results are presented in section 4 
and the features and the classification techniques are 
compared in section 5. The paper is concluded in 
section 6.  

2 SINUSOIDAL MODEL 

In this section, a brief overview of sinusoidal 
modeling is given and the frequency tracking in the 
sinusoidal model is presented. 

2.1 McAulay-Quatieri Sinusoidal Model 

The McAulay-Quatieri (MQ) algorithm is often used 
to produce a sinusoidal representation of sounds 
(McAulay, 1986). The algorithm assumes that a large 
class of acoustical waveforms can be represented by 
a collection of sinusoidal components described by 
amplitudes, phases, and frequencies. These 
parameters are estimated from the short-time Fourier 
transform using a simple peak-picking algorithm. 
The sampled sound is first transformed into a two-
dimensional time-frequency representation. Next, the 
regions of high time-frequency energy are located, 
where the slope of the waveform changes from 
positive to negative. The voiced regions can be 
modeled by a set of harmonically related sinusoids, 
while the unvoiced regions are modeled using non-
harmonic sinusoids. 

As the fundamental frequency changes, the 
number of peaks from frame to frame changes. The 
concept of sinusoidal births and death is used to 
explain the movement of spectral peaks between 

frames. In order to match spectral peaks, tracks are 
formed by connecting peaks between adjacent 
frames. A track is dead when there is no peak in the 
current frame within Δ± of the frequency of a peak 
in the next frame. Correspondingly, a new track is 
born if the frequency of a peak in the current frame is 
not within Δ± of the frequency of a peak in previous 
frame.  

Fig. 1 shows the birth and death of frequency 
tracks formed by connecting peaks of similar 
frequencies between frames. 

3 PROPOSED FEATURES AND 
ALGORITHMS 

In this section, the features extracted in this study are 
presented. Then, a brief overview of the GMM and 
the SVM classifiers, which we have employed to 
evaluate the performance of the proposed features, is 
given. 

3.1 Feature Analysis 

In order to achieve a high accuracy in audio 
classification and segmentation, it is critical to 
extract features that can capture the major temporal-
spectral characteristics of the signals. To classify 
one-second audio segments, we selected: the 
HZCRR, the LSTER and a new feature as a measure 
of the harmony called BDFV (birth-death 
frequencies variance). These features will be 
described in detail in this section.  

3.1.1 The HZCRR 

This feature describes the variations of zero crossing 
rates (ZCR). The HZCRR is defined as the ratio of 
the number of frames whose zero crossing rates are 
grater than 1.5 time of average zero crossing rate in a 
one-second window, as: 
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where n is the frame index, ZCR(n) is the zero 
crossing rate at frame n, avZCR is the average ZCR, 
sgn is sign function, and N is the total number of 
frames in a one-second window (Lu, 2002). 
Normally, speech signals are composed of alternating 
high energy voiced sounds and low energy unvoiced 
sounds; while music signals usually do not follow 
this structure. Therefore, for music signals, the 
HZCRR is usually lower than that of speech. 
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3.1.2 The LSTER 

This feature describes the variations of short time 
energy (STE). The LSTER is defined as the ratio of 
the number of frames having energy greater than a 
half of the average short time energy in a one-second 
window, as:  
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LSTER       (2) 

where n is the frame index, STE(n) is the short time 
energy at frame n, avSTE is the average STE, and N 
is the total number of frames in a one-second window 
(Lu, 2002). 

Normally, there are more silence frames in 
speech than those in music. Therefore, music signals 
have a lower LSTER, as compared to speech, in 
general. 

3.1.3 The Birth-death Frequencies Variance 

This feature describes a measure of the harmony. A 
detailed spectral analysis shows that pure music is 
more harmonious than speech, since pure speech 
contains a sequence of tonal (vowels) and noise-like 
(consonants) sounds. Speech is characterized by a 
formantic structure, whereas music is characterized 
by harmonic structure. The music spectra change 
more slowly than speech spectra. Music can be 
regarded as a succession of periods of relatively 
stable notes and phones, where speech is rather a 
rapid succession of noisy periods, such as unvoiced 
consonants, and of periods of relatively stable parts, 
e.g. vowels. 

Speech signals may hardly have a long time 
periodic structure. Hence, for speech signal, the 
harmony measure in general could be lower than that 
of music. This diversity forms our main motivation 
for applying sinusoidal modeling, as the technique 
for measuring the harmony to the audio classification 
problem. Expectedly, a feature of birth and death of 
frequencies can discriminate between music and 
speech signal quite well, due to diversity in the 
harmonic structure. 

In this work, the audio signal is divided into 
overlapping frames, and then sinusoidal model 
analysis is applied to the audio signal in each frame. 
Thus, for each frame, a set of frequencies is 
generated. These frequency vectors are used for 
tracking frequencies. We tested two measures of 
tracking frequencies in a one-second window as the 
feature. These two measures are: 1) sum of the birth-
death frequencies and 2) variance of the birth-death 
frequencies (BDFV) in the one-second window. 

We found the latter feature, BDFV, 
outperforming the sum of the birth-death frequencies 
in all cases in our classification tests. Henceforth, we 
just focus on the BDFV in this paper, for the task of 
audio classification, which is defined as: 
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where n is the frame index, BD(n) is the short time 
birth-death frequencies number at frame n, avBD is 
the average BD, and N is the total number of frames 
in a one-second window. 

3.2 Classification Algorithms 

3.2.1 Support Vector Machines 

In this method, the data is mapped into a high 
dimensional space via a nonlinear map, and an 
optimal separating hyper-plane, or linear regression 
function, is constructed in this space. Given a class 
labeled training feature vectors, class boundaries 
between two classes are learned through the SVM. 
The SVM minimizes the structural risk and can 
realize nonlinear discrimination by kernel mapping.  

Let
1{ , }N

i i ix y =
be a set of N training data points, 

where n
ix ∈R  denotes the i-th input data and 

{ 1, 1}iy ∈ − +  is the class label of the data. The SVM 
aims at finding a classifier of the form: 
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where iα  are positive real constants, b is a real 

constant, ( , ) ( ), ( )i iK x x x xφ φ= , ,• •  is the inner 

product, and ( )xφ is the nonlinear map from original 
space to the high dimensional space. 

The SVM decision function is obtained under 
constraints: 
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where C is a parameter that allows for specifying 
how strictly we want the classifier to fit into the 
training data (Guo, 2003). 

3.2.2 Gaussian Mixture Model 

The GMM classifier models each class of data as the 
union of a few multidimensional Gaussian clusters in 
the feature space. A GMM is fully represented by: 
the mean vectors, covariance matrices, and the 
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mixture weights. Given a sequence of feature vectors, 
a GMM is trained using the well-known expectation-
maximization (EM) algorithm. The probability 
density function of the mixture model of dimension 
d, for class i, is given as: 
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where Wi denotes the class of the signal, X indicates 
the feature vector, kμ is for the d-component mean 

vector, kΓ  is the d×d covariance matrix, and kα  
denotes the mixing probabilities. The GMM 
classification uses a likelihood estimate for each 
model, which measures how well the new data point 
is modeled by the entrained Gaussian clusters. An 
unknown vector X in the feature space is assigned to 
the class that is found to be the best model for this 
vector. 

4 EXPERIMENTS 

The "music-speech" corpus used in this study is a 
collection of 240 15-sec sound files, randomly 
selected from the radio programs (Scheirer, 1997). 
This corpus is taken as a standard benchmark for 
audio system evaluations and has been used in many 
audio classification studies (see (Scheirer, 1997) and 
(Berenzweig, 2001)). 

For the feature extraction, the audio signal is 
partitioned into Hamming windowed frames of 23.2 
ms long, with 11.2 ms overlap. The classifier is 
evaluated using labeled data sets, each 20 minutes of 
speech and music data. Each model is trained with 60 
15-sec long training speech files (900 seconds) and 
60 15-sec training vocal and non-vocal music files 
(900 seconds). Each system tested over 20 15-sec 
speech files (300 seconds), 20 15-sec vocal music 
files (300 seconds), and 21 15-sec non-vocal music 
files (315 seconds). Thus, each system is trained over 
120 15-sec files, (1800 seconds) and is tested with 61 
15-sec files (915 seconds). For each frame, the 
sinusoidal models of different orders are used and 
zero padding is employed to increase the peak 
detection accuracy (Smith, 1987). Thus, for each 
frame, a set of frequencies in addition to two values 
of ZCR and STE are generated. 

Fig. 2 shows the probability distribution curves of 
the HZCRR for music and speech signals. The curves 
obtained from the database training files using one-
second window. As shown, there are overlaps 
between these two curves and the cross point of two 

curves, as a threshold, is 0.11. Fig. 3 shows the 
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Figure 2: Probability distribution curves of HZCRR. 
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Figure 3: Probability distribution curves of LSTER. 

probability distribution curves of LSTER for music 
and speech signals obtained from the database, where 
the cross point of two curves, as a threshold, is 0.32. 

Figures 4 and 5 show the BDFV curves for music 
and speech signals for different orders of the 
sinusoidal model. The curves are obtained from the 
training database using one-second window (86 
frames), where the horizontal axis shows the number 
of frames. Fig. 6 shows the probability distribution 
curves of the BDFV for music and speech signals for 
sinusoidal model of order 15. The cross point of two 
curves, as a threshold, is 15.5. For music, almost no 
BDFV value is above 24. 

It is observed in these figures that the BDFV 
values for speech are in general higher than those for 
music. This is because music is more harmonious and 
stable than speech. Therefore, the BDFV is an 
effective feature for discriminating speech and music. 
The resulting error indicated that no additional 
improvement to the signal discrimination was 
achieved, when we increased the sinusoidal model 
order from 15. Hence, we used sinusoidal model of 
order 15 in our experiments. 
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In our experiments, we conducted a comparative 
evaluation over these three described features. At 
first, only one feature was used to discriminate 
speech from music, where the cross point of two pdfs 
was used as the threshold. The classification errors 
are presented in table 1. As shown, the BDFV is an 
effective feature for discriminating between speech 
and music signals and yields a higher performance, 
as compared to the other features. 
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Figure 4: BDFV curves, with sinusoidal model of order 15. 
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Figure 5: BDFV curves, with sinusoidal model of order 25. 

5 10 15 20 25 30 35 40 45 50
0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

-3 Birth-death frequencies variance-15 PDF

Birth-death frequencies variance-15 Value

P
ro

ba
bl

ity

Music

Speech

 
Figure 6: Probability distribution curves of BDFV, with 
sinusoidal model of order 15. 

Table 1: Classification errors (percentage) with HZCRR, 
LSTER and BDFV using the pdfs’ cross-point as threshold. 

Total 
Length 
(sec) 
→

300 315 300 915 

Features 
↓ 

Speech 
 

Non-
Vocal 
Music 

Vocal 
Music 

Total 
 

HZCRR 5 27.61 12.78 23.93
LSTER 16.66 13.96 2.18 12.45
BDFV 18.33 8.57 0.32 9.28

 
The classification method mentioned so far could 
result in high classification accuracy with optimal 
thresholds. However, this optimality is almost 
unreachable due to actual dependence of thresholds 
on the signal characteristics. Therefore, we employed 
the GMM and the SVM classifiers which are not 
based on a thresholding procedure. We used different 
combinations of two conventional features, the 
HZCRR and the LSTER, with the BDFV, as the 
feature vector of one-second signal and used both the 
GMM and the SVM based classification methods for 
evaluating the performance of the BDFV. 

In the experiments, we used the radial basis 
function (RBF) kernel and the parameters C=10 and 
σ =1 for the SVM classifier. The second 
classification approach was to use the GMM 
classifier to model each class of data, speech or 
music. At the training step, the feature vectors from 
each class are used to train the GMMs. The GMM 
parameters are estimated by the EM algorithm and 
the classification of an unknown vector was done by 
finding the class whose Gaussian distribution came 
with the highest probability to produce the vector. 

5 RESULTS AND DISCUSSION 

We examined the GMM with different numbers of 
Gaussians, and found that the optimal order was 4 for 
the speech models and 4 for the music models, when 
the three described features were used. We made the 
same examination with different combinations of the 
features using the SVM classifier. Table 2 shows the 
resulting performance using the three features and the 
two classifiers. As indicated, the SVM and the GMM 
classifiers significantly improve the accuracy when 
all the three features are used. It is indicated that the 
total error introduced using the HZCRR and the 
LSTER is 12.13%, as compared to the error of 5.46% 
introduced using the HZCRR and the BDFV, and 
4.91% using the LSTER and the BDFV. These 
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results show a significant improvement to the 
classification accuracy obtained from combining the 
new feature with the HZCRR, the LSTER, or both. 

Table 2: Classification errors (percentage) with different 
combinations of the three features using SVM and GMM. 

 
As observed, the total errors introduced using the 

three features are 4.69% and 3.17% with the SVM 
and the GMM classifiers, respectively. To ensure the 
effectiveness of the proposed features, evaluation of 
the classification performance is extended to file-
level, in addition to the segment-level evaluation 
(one-second window) described earlier. We made this 
evaluation based on a majority voting strategy at file-
level. We used the same speech-music database in 
this test and reached just 1.63% error, i.e. one speech 
file out of 61 speech-music test files. 

As shown in table 2, better classification results 
are achieved over music files, as compared to speech, 
when the BDFV is used. Most sounds generated by 
musical instruments have a harmonic structure, 
which is not the case with speech signals that may 
have a mixed harmonic/non-harmonic structure due 
to their diverse voicing characteristics. This diversity 
is well identified by the sinusoidal model that 
measures the harmony of the audio signals. 
Nevertheless, the BDFV feature of the sinusoidal 
model plus the HZCRR and the LSTER form a 
powerful feature set for speech/music discrimination. 
Still, further performance improvement could be 
expected to achieve by combining other features of 
the sinusoidal model as an extension to this work. 
 
 
 
 

6 CONCLUSIONS 
In this study, we have proposed a new feature based 
on the sinusoidal model, called BDFV, for audio 
classification to speech and music. This feature is the 
variance of the birth-death frequencies in the 
sinusoidal model of an audio signal, as a measure of 
the harmony. Our classification results show a high 
discriminating performance of this feature, as 
compared to typical features such as the HZCRR and 
the LSTER features that are widely used for audio 
classification. It is also revealed that a higher 
classification performance is achieved, by combining 
this new feature with the HZCRR and the LSTER, 
which has been evaluated using the model-based, 
insensitive to threshold GMM and the SVM 
classifiers. Through this work, it has been shown that 
the sinusoidal model features are very effective in 
audio classification, due to capability of the model to 
identify the harmonic structure. 
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915 300 315 300 
Total Length 

(sec) 
→ 

 
Total 

 

Vocal 
Music 

Non-
Vocal 
Music 

 
Speech 

Features/ 
Classifier 

↓ 
12.13 10.66 15.87 9.66 HZCRR+ 

LSTER/SVM 
5.46 0.66 2.53 13.33 HZCRR+  

 BDFV/SVM 
4.91 0.33 2.22 12.33 LSTER+  

BDFV/SVM 
4.69 0 2.22 12 HZCRR+ 

LSTER+  
BDFV/SVM 

3.17 0.66 1.58 9.66 HZCRR+ 
LSTER+  

BDFV/GMM 

SIGMAP 2008 - International Conference on Signal Processing and Multimedia Applications

144


