
WORK LISTS FOR THE TRANSPORT OF PATIENTS
A Case for Mobile Applications in Health Care

Andreas Holzinger, Jürgen Trauner
Institute of Medical Informatics, Statistics and Documentation (IMI), Research Unit HCI4MED

Graz University Hospital, Auenbruggerplatz 2/V, A-8036 Graz, Austria

Stefan Biffl
Complex Systems Engineering Lab, Institute of Software Technology and Interactive Systems (IFS)

Vienna Univeristy of Technology, Favoritenstrasse 11, A-1040 Wien, Austria

Keywords: Mobile User Interfaces, Medical Workflow optimization, Mobile Computing in Hospitals.

Abstract: In many hospitals, the workflow involved in transporting patients is supported by interactive work lists on
desktop computers that provide the status of a work order and detailed information on request. However, the
nurses, who organize and conduct the transportation, need to go to the desktop in order to update the work
list status; which has been found very time consuming. In this paper we report on the development of a
mobile solution prototype that provides interactive transport work lists on a PDA and we discuss some
design and implementation issues. Despite the limited screen size, end-users were able to use the PDA with
no more problems than their usual desktop user interface as the PDA user interface can be customized with
property files to fit exactly the requirements of the end-users in the hospital.

1 INTRODUCTION

The transport of patients within hospitals is often
supported by work lists on desktop computers (Gale
& Gale, 2000). The central information is the status
of a work order. Whilst such a non-mobile system is
useful for work orders that do not change, the highly
dynamic nature of hospital work often results to
changing situations (Holzinger & Errath, 2007).
Consequently, the nurses, who organize such
transportations, are required to go to the desktop
computer in order to update the work list status –
only to find out that their next patient is waiting
where they just came from. In this context, a desktop
solution is time consuming, and consequently wastes
personal resources. In our project example, at the
Danube Hospital Vienna, nurses have the core
responsibility of transporting patients between the
Radiology department and other medical
departments: 14 different rooms, each with a
separate list of appointments.
At the beginning of their shift, the nurse prints out
the list of patients to be transported on that day.
Approximately 12 nurses are responsible for
transportation per shift, which means that some must

work with two lists. The list contains the name and
the date of birth of the patient, for identification; the
station where the patient lies; which type and when
the checkup is planned; and whether the patient has
to lie in bed or can walk. Usually, the nurse does not
transport the patients in the order given on the list.
Each transport is arranged with the assistant at the
medical unit. Some changes in order are made by the
nurse, for example, when more than one patient is at
the same station or waiting at the station where
another patient was returned. Then they may be
fetched in order to save time. However, nurses are
not automatically notified when patients are added
during their shift, so either the nurses are informed
about the new additions by the assistant or, less
often, by telephone.

2 MATERIAL AND METHODS

In order to ensure platform independency of our
mobile prototype, our first choice was Java.
Fortunately, there is a free Virtual Machine for every
Windows Mobile 2003 device (and later versions),
called Mysaifu JVM (Freebeans, 2008).

454
Holzinger A., Trauner J. and Biffl S. (2008).
WORK LISTS FOR THE TRANSPORT OF PATIENTS - A Case for Mobile Applications in Health Care.
In Proceedings of the International Conference on e-Business, pages 454-459
DOI: 10.5220/0001909004540459
Copyright c© SciTePress

Although this is not a Java 2 Micro Edition, it is
a Java 2 Standard Edition (J2SE) conformant Virtual
Machine, which is built as a Source Forge project
under the GNU Public License Version 2 (GPLv2).
For this project we used version 0.2. This version
supports both the Abstract Windowing Toolkit
(AWT) and Swing. We applied small sample
programs in order to ensure full functionality; the
use of a standard edition JVM has, in our opinion,
some benefits: first, it is very simple to test the
application before copying the files to the PDA.
Second, J2ME is not just J2ME; which means that
there are many different versions highly dependant
on the performance of the device (Sun, 2008),
(Knyziak & Winiecki, 2005). Because of these
issues and of other restrictions of J2ME, the J2SE
was the best way to implement this application, in
order to provide compatibility with most of the
current systems – which are usually developed in
Java (Bruno, 2005). The general idea was to use an
already available connection to the existing server.
The main connection type is the Bright Side
Framework (BSF) (Brightsidefactory, 2008), which
transports XML content over the HTTP protocol
with dynamic instantiation and invocation of
available interfaces. However, in such specialized
circumstances the JVM for the PDA is not fully
compatible with the version for the PCs. The other
connection was based on Remote Method Invocation
(RMI), facing the problem that dynamic interfaces
were not supported on the PDA. This required us to
develop another connection for the PDA. Due to the
communication protocol should not be changed in
the first version we built a relay application.

3 BACKEND LESSONS
LEARNED

A new concept was necessary, employing a relay, in
order to establish the connection to the server. On
the server side the connection was built using RMI
or BSF (Sims, 2004), while, on the PDA side the
communication is based on an object stream. The
BSF and the RMI connections were given the means
to access the data on the server. Both
communication connections had to be adapted to fit
the requirements of this application. The
communication is no longer made over a static
connection; this is due to the fact that the relay has
to be able to open many connections. On top of this,
some additional functions were necessary. The most
interesting change is the function which returns the
sessionID. The communication process between the
relay and server, and relay and PDA client, is

provided by SASTransferObjects. These made it
necessary to add a function to transport them
without alteration. Example: the logon data is stored
within an object but the function takes the username
and the password as its arguments, therefore it is
necessary to prevent direct access to this data.

On the other hand, there is the client. The newly
built communication method is also sub-classed
from the SASServerProxy. This makes it possible to
change the method of communication just by
changing the properties file. The first idea was to use
an object stream for both directions; however there
was some difficulty with this method. Generally, the
communication with objects from the client to the
relay does not work – because it is far more
complicated as it normally is on PCs, due to the
different JVMs. As already mentioned, the Mysaifu
JVM is not yet fully compatible with the Java
defaults, since it calculates the version numbers and
does not allow for these to be fixed, as implemented
in the source code. Every class which has a fixed
version number causes an error at the relay when it
is de-serialized. The InvalidClassException, states
that the serial versions are different but in reality
they are the same and only one number has been
wrongly calculated. The solution for this is to
change the version number before de-serialization.
Any data which is sent through a stream is sent as a
series of bytes. In an object stream, this is done with
a special protocol which is publicly available (Sun,
2004). There is an exact description of how the class
and the serialVersionUID are printed out. Some
general information is followed by the class and
super class information, which is succeeded by the
class name printed in UTF. Directly after the name,
the version number is written to the next eight bytes,
followed by some flags and the variables, which of
course can also be classes.

Once the object serialization stream protocol is
known, this ceases to be a problem, since the right
version numbers are known by the relay.

After the serialVersionUID of any class defined
in the properties file is changed, the objects from the
received byte stream can be regenerated and it is
then possible to send a SASTranferObject, including
classes, from the PDA client to the relay. However,
in the other direction, the communication from the
relay back to the PDA client is less simple.

The reason for this is mainly that the JVM on the
PDA throws an InvalidClassException for each
class. Theoretically, it would also be possible to
change the version numbers on all the classes
transferred on the PDA, practically, there are too
many and the cost would be too high; therefore it
was decided to send strings as a series of bytes. A

WORK LISTS FOR THE TRANSPORT OF PATIENTS - A Case for Mobile Applications in Health Care

455

very simple protocol was invented where the string
is divided into fields with field terminators. The
PDA splits up the field and rebuilds the resulting set.
This method has proved successful. The
disadvantage for the relay, was the necessity of
rethinking the data encryption technique, however,
this actually turned out to be an advantage. Since the
communication is built up with such easy methods,
the necessary number of libraries decreased and now
requires less than 100 KB.

The WPA encryption, which is supported by the
WLAN hardware, is generally sufficient to secure
the transmitted data. However, since the client on
the PDA is used within a hospital and includes the
transmission of sensible patient data (Weippl,
Holzinger & Tjoa, 2006), (Miller, 2004),
(Mupparapu & Arora, 2004) we decided to include
additional encryption. The first technique we
considered was an asymmetric method: its security
has remained unbroken up until now. However, as
we practically expected, a performance test of the
RSA algorithm showed that this was not possible in
our case. For the test, a very short stream of about 50
bytes was used. The decryption of these few bytes
took almost a second. Within the real application,
the amount of data sent is often more than one kilo
byte. The time delay caused by this encryption and
decryption would be unacceptable. Other
asymmetric algorithms are as slow as the RSA
algorithm, which also made them unsuitable for our
client application on the PDA (Salomaa, Rozenberg
& Brauer, 1996). An additional, very fast, symmetric
encryption, which has not been patented, was
implemented in order to ensure against a possible
deactivation of the WPA encryption. There are many
symmetric encryption algorithms. The One-Time
Pad would have been best, but it is not practicable.
DES and 3DES are old and also quite slow. IDEA,
RC5, RC5a and RC6 are protected through patents.
A5 is already broken. The result of this is that only
RC4, Blowfish, Twofish and AES were suitable. Of
course, there are some other (proprietary)
algorithms; however, AES is a common and very
fast algorithm.

This new standard algorithm has already been
analyzed for security vulnerabilities, which
practically ensures that there is no chance of
cracking the algorithm within the next few years.
Therefore, the AES algorithm was chosen. The
implementation of the algorithm was not done
within this project. A free implementation of the
ACME Laboratories was chosen to encrypt the data.
In this project, it is used with a 16 byte (128 bit) key
which is calculated from a pass phrase which has to
be specified in the property file. The used block size

is 32 bytes, the maximum supported by this
algorithm. This is acceptable because, although the
calculation time needed for the encryption,
decryption and the data lookup on the server is up to
5 seconds, the old list is left on display until the new
one is loaded. It is possible that the customer might
decide that no encryption on top of WPA encryption
would be needed and change this in the property file
to save time. It is also possible to change the whole
algorithm, because this part was built to support
other algorithms. The test with non-Standard English
characters, such as the German “äöüß”, was also
interesting. These characters are encoded differently
on the PDA. For example, on the PC the “ü” is
represented by a byte with the value of -4. On the
PDA, the value for the same character is -127. Other
languages with additional character tables will have
similar problems. To add support for these
languages, an adjustment of the characters can be
made after the transfer. Which changes have to be
performed can again be specified in the property file
which contains all the general settings. This makes it
simple to adopt the system for many different
character sets.

4 FRONTEND LESSONS
LEARNED

At first the nurse logs on; the server then checks the
logon information. The BSF communication
framework provides the necessary security. After
logon, the transport list is shown with the default
filter. In order to provide the ability to change this,
two option panels are available. Our main design
criteria was to build the mobile interface as similar
as possible to the existing non-mobile interface on
the PC, which the nurses are used. We followed
previous experiences on mobile interface design
(Holzinger, Sammer & Hofmann-Wellenhof, 2006),
(Holzinger, Searle & Nischelwitzer, 2007),
(Nischelwitzer et al., 2007) and general experiences
on usability engineering (Holzinger, 2005) in order
to ensure an end-user centered user interface. On
mobile interfaces, generally the keyboard size
problem refers to the fact that using the on-screen
keyboard significantly reduces the remaining screen
size. The log on and the Options panel use Scalable
Vector Graphics (SVG). The layout manager expects
the whole screen to be available for the widgets.
Constraints specify the place and the position as a
percentage of the screen. This generally worked, due
to the independence from the physical screen size.
However, when the keyboard is selected, the
program is notified to refresh its screen – to fit the

ICE-B 2008 - International Conference on e-Business

456

new, smaller screen; this new rendering causes each
component to become smaller, which makes the
options panel very difficult to read. After the
removal of the keyboard, the PDA must again adjust
the size of all components. This takes approximately
3 seconds, slowing down the overall application
time considerably, which was perceived as
extremely unpleasant by our test users. This problem
can be solved by using another layout manager,
however, the start up problem still has to be solved,
where we followed a three step approach:

The first step is to review the needed libraries.
Maybe not all classes of the library are needed. A
new library should be built, which only contains the
necessary classes. The reason for this is simple, to
shrink the size of the libraries which have to be
loaded, thereby decreasing load time. This is not
very difficult, since the class files contain the
information of their super class and interface, the
dependency within a package can be discovered and
the methods’ argument types can also be seen.

The second step is the loading process itself.
This prototype loads all elements which are shown
on the display at start-up. This mean that all three
panels, the logon, the transport list and the options,
are all loaded before anything is painted to the
screen. A better solution would be to load only the
first panel, where the user enters their username and
password. To do this, the user needs a few seconds
to enter their account details: meanwhile the
transport list can be loaded in the background. The
benefit of this is simply that the user can start to
work after a shorter loading time. From the user’s
point view of while using the application, this does
not make a big difference as the next panel is
already loaded when it is needed. The same strategy
can be used for the options panel. While the user
looks at the screen and uses the functions of the
transport list panel, the options panel can be loaded.
The only disadvantage of this technique is from the
programmer’s perspective: it is more work to load
something in the background than it is to load
everything at once. In this case, it is necessary to use
separate threads to control which panels will be
needed next and to check whether it is already
loaded, or to load it before it is needed, in order to
avoid delay. We had to ensure that the system waits
until the required panel is loaded; in real-life this
will happen very rarely.

The third step is to use separate frames for each
panel. This helps to reduce the required memory,
because after the user is logged in, the logon frame
can simply be removed from memory.

The not default mistake means that it is default
on the PDA that the close button in the title bar is

used for the okay and cancel buttons. An X in the
title bar means cancel and the symbol for okay is
simply represented by the two characters ‘OK’.
Because of this, the cancel button generally will not
be used very often; and therefore could be removed
to the title bar. Experienced users will be acquainted
with this. Also, inexperienced users will not have
many problems because they normally only need the
OK button which is same as on the PC. When the
cancel button is needed, a short glance over the rest
of the screen will solve any difficulty that may arise.

The options scroll is really one of the bigger
problems. This view shows the different options
which the nurse can set up. As already described in
the options paragraph above, every time the user
activates a scrolling action the whole window must
be redrawn. If there are only a few components on
screen, then the PDA’s processor is sufficient to
perform the necessary actions of the layout manager.
Therefore, it is better to split the panel up into two
windows, or panels, so that the scrollbar is no longer
needed. A button is necessary to switch between the
two panels. This makes sense because in this way it
is possible to put the more important widgets on one
panel and the remaining components on the other
panel, which may not need loading as often. Another
possibility is to reduce the number of possible
options to a minimum by removing the less
important ones and therefore the necessity for a
second panel. Other known errors refer to usability
difficulties rather than real problems, avoiding these
makes it easier for the user to work with the
program. A typical example includes the information
displayed about the last update or a logout button.

The last update is necessary because if the nurse
is somewhere in the hospital without a wireless
connection to the server it is not possible to update
the transport list. And because the nurse usually gets
an update of the list every five minutes it is possible
that they may think that the program does not work
anymore because the list had not changed for more
than ten minutes. In this case, the time of the last
update indicates a connectivity problem, which
requests that the nurse move towards an area with a
wireless connection. This will mainly be an issue at
the beginning, later support will be expanded to the
entire hospital. The logout button is a time saving
service for the nurses to enable them to share PDAs
without the necessity of restarting the PDA
application each time it changes hands.

When the nurse goes off duty they just log off
and the next nurse can login immediately. Another
thing which is not directly an error is the cancel
button. Because this button has been moved to the
title bar it is no longer a real widget which needs

WORK LISTS FOR THE TRANSPORT OF PATIENTS - A Case for Mobile Applications in Health Care

457

space within a panel or window. So the okay button
should be moved to the middle or to the right of the
available space to fit the user’s expectations. Our
last idea was to use different panels for the different
screens and to perform any cancel actions using the
“X” in the title bar. However, this was not possible.
The reason for this is simple, that the default action
on the PDA is to hide the window and to show the
next one which is below the current window. On the
PC it is possible to execute own code when the
closing button is pressed. On the PDA this is not
possible because no event is generated to perform an
action which would prevent the window from being
hidden. So some changes were necessary. The first
was that every panel gets its own window, except
the two option panels, which share one. The options
window is the only panel which has a default cancel
operation, performed by pressing the “X” on the title
bar. This is possible because then the transport list
window, which is the window below, is shown. The
problem that switching the windows takes longer
than switching the panels could also be eliminated
by preloading the windows. If a window is needed, it
is just shown on the screen because it is already in
the memory, which prevents the shimmer. The other
two windows no longer have the close button in the
title bar to prevent user mistakes. Standard buttons
are used to perform the needed actions. This means
that the exit button, which was just removed, is
again added to the logon panel. Also the logout
button within the transport list panel can not be
removed. In the transport list panel, one very
important button is absent. There is no way to
change the direction of the transportation. The
patients have to be transported to the radiology and
they must also be transported back to their stations.
This means that two lists must be displayed. To save
space on the screen the button is added instead of
using one options button. The loss is that there is
now no way to get directly to each of the options
panels. To minimize the effects of this disadvantage
the options dialog always shows the panel which
was used the last time. A next/back button is used to
switch between the two options panels. Other
modifications which are needed are the logout and
direction buttons and the change of the last update
time string. The change of the two buttons has two
reasons. The first is that the application should be
consistent. In the options dialog, the position of the
OK button to go back to the transport list is at the
bottom left. The logout button is the same within the
transport list window. The second reason is that the
direction is like a headline. And so its logical
position is at the top of the window. An extra
window is used for the list, which is the main part of

the application. In the top left of the window, there
is a button to select the direction. The title of the
button shows the currently selected direction.
Possible values are “To Radiology” and “To
Station”. By pressing it, the direction is changed. On
the right of this button, there is a label which tells
the user when the last update of the list was made.
This is necessary because of the automatic update of
the list. The time interval of the update is specified
in a property file of the client. On starting, the list
consists of the patients name, the time to transport,
from where and if the patient can walk, which are
displayed in two rows. After the selection of one of
the items, the item pops out and shows additional
information, such as the patient’s date of the birth.
When one patient is transported, the nurse double-
clicks on the patient in the list to mark this as
transported. This is shown by the light gray
background. After selecting another item the marked
item pops in and the color of the font of the selected
item turns dark gray. By the next update of the list,
the update will have been completed on the server
and the item is removed from the list. It is possible
to declare a minimal time in the property file, during
which an item is not updated to prevent mistakes, it
is only necessary to make a second double-click on
the marked item in order to change the item state
back to normal.

Figure 1: Transport List: Before and after performing a
transport.

When the button “Filter” in the transport list
panel is pressed, the first options panel is shown.
The nurse can specify different options for the filter;
e.g. the transport type or the examination date. The
transport list button behaves as a back button to the
transport list panel; when pressed the expected panel
is shown and the contained list is updated to fit the
current filter settings. The “Next” button is used to
get to the second options panel. The “X” is abort.
The second panel is built as the first one. The whole
available space is used for components which are
used to specify different filter criteria. Examples for

ICE-B 2008 - International Conference on e-Business

458

filter options on this panel are the patient name or
the handling of already completed transports. At the
bottom of the panel there is again a button to return
to the transport list and update it with the specified
options to match the selected filters. The “Back”
button switches to the first options panel.

5 CONCLUSIONS

It is not trivial to develop both a useful and usable
mobile application. The general idea to use a J2SE
Virtual Machine was abandoned, due to lack of
compatibility. The server communication could not
be done trough the available methods. This made it
necessary to build a relay to forward the inquiries to
the server. That made it possible to convert the result
to a string which is sent as a byte stream. Due to this
sensible data, encryption was necessary. Primarily
the WPA encryption is used, which is secure and is
supported by the PDA’s hardware. Additionally, the
data is encrypted by the application. After a
comparison the AES implementation of the ACME
Laboratories was deemed the optimal choice. Due to
the fact that it is the new standard algorithm for
symmetric data encryption, the algorithm can be
graded as secure. The user interface of the PDA
client also caused some troubles. It is not possible to
build a slightly more complicated interface when
using the default layout managers. It was necessary
to program a custom interface to fit all our needs
within an adequate time. Another problem was that
the PDA had a different window handling. It is not
possible to receive any window events within a Java
application and that must also be considered.
Another big problem on the PDA, which is not an
issue on the PC, is the scrolling of complicated
interfaces. The scrolling time is much too long
because a simple scroll request required a few
seconds of time to perform. Everything had to be
optimized to save as much computing time as
possible. However, some of the challenges of
migrating desktop applications to mobile technology
are the limited screen size and the originality of the
technologies that need to work together correctly for
a useful and usable solution. In conclusion, the PDA
prototype can reduce the time needed for transports
and the end-users were able to use the PDA similarly
to their non-mobile interfaces.

REFERENCES

Brightsidefactory (2008), Bright Side Framework
Overview. Online available: http://www.bs-

factory.org/components/remotingDoc/architecture.htm
l, last access: 2008-06-10

Bruno, E. J. (2005) NetBeans 4.1 & Eclipse 3.1 -
Development platforms for J2SE, J2EE, J2ME. Dr
Dobbs Journal, 30, 8, 14-23.

Freebeans (2008), Mysaifu JVM. Online available:
http://www2s.biglobe.ne.jp/~dat/java/project/jvm/inde
x_en.html, last access: 2008-06-10

Gale, M. E. & Gale, D. R. (2000) DICOM modality
worklist: An essential component in a PACS
environment. J of Digital Imaging, 13, 3, 101-108.

Holzinger, A. (2005) Usability Engineering for Software
Developers. Comm of the ACM, 48, 1, 71-74.

Holzinger, A. & Errath, M. (2007) Mobile computer Web-
application design in medicine: research based
guidelines. Universal Access in the Information
Society International Journal, 6, 1, 31-41.

Holzinger, A., Sammer, P. & Hofmann-Wellenhof, R.
(2006) Mobile Computing in Medicine: Designing
Mobile Questionnaires for Elderly and Partially
Sighted People. Springer LNCS 4061. Berlin, New
York, 732-739.

Holzinger, A., Searle, G. & Nischelwitzer, A. (2007) On
some Aspects of Improving Mobile Applications for
the Elderly. Springer LNCS 4554. Berlin, Heidelberg,
New York, 923-932.

Knyziak, T. & Winiecki, W. (2005) The new prospects of
distributed measurement systems using Java (TM) 2
Micro Edition mobile phone. Computer Standards &
Interfaces, 28, 2, 183-193.

Miller, A. (2004) PDA security concerns. Network
Security, 2004, 7, 8-10.

Mupparapu, M. & Arora, S. (2004) Wireless networking
for the dental office: current wireless standards and
security protocols. J Contemp Dent Pract, 5, 4, 155-
162.

Nischelwitzer, A., Pintoffl, K., Loss, C. & Holzinger, A.
(2007) Design and Development of a Mobile Medical
Application for the Management of Chronic Diseases.
In: Springer LNCS 4799. Heidelberg, Berlin, New
York, 119–132.

Salomaa, A., Rozenberg, G. & Brauer, W. (1996) Public-
Key Cryptography.

Sims, B. (2004) Moving from liability to viability.
Hospitals, health plans and physician practices can
outsmart hackers with policy, a comprehensive
security infrastructure and wireless monitoring. Health
Management Technology, 25, 2, 32-35.

Sun (2004), Object Serialization Stream Protocol.
http://java.sun.com/j2se/1.5.0/docs/guide/serialization/
spec/protocol.html, last access: 2008-06-10

Sun (2008), CLDC HotSpot™ Virtual Machine.
http://java.sun.com/j2me/docs/pdf/CLDC-
HI_whitepaper-February_2005.pdf, 2008-06-10

Weippl, E., Holzinger, A. & Tjoa, A. M. (2006) Security
aspects of ubiquitous computing in health care.
Springer Elektrotechnik & Informationstechnik, e&i,
123, 4, 156-162.

WORK LISTS FOR THE TRANSPORT OF PATIENTS - A Case for Mobile Applications in Health Care

459

