CASE STUDY: RUNNING TEST CASES FOR SEQUENTIAL
PROGRAMS IN PARALLEL IN A CLUSTER ENVIRONMENT

P. Kroha and V. Vychegzhanin

Department of Information Systems and Software Engineering
TU Chemnitz, Strasse der Nationen 62, 09111 Chemnitz, Germany

Keywords:

Abstract:

Testing, running test cases, cluster, parallel processing.

Testing a software system consists of a test case construction and of running and evaluating them, i.e. compar-

ing expected results with obtained results. Because the set of test cases is usually very large, some methods of
automation may be used to run them. Usually, test cases run on the same machine where the tested software
system should run later. In our case, we run the test cases of a software system for a sequential computer on
a cluster in parallel. The goal is to accelerate the process of running and evaluating tests. In this paper we
describe the architecture of our test execution tool, experiments, and obtained results concerning performance
and efficiency of test automation of sequential programs in a cluster environment.

1 INTRODUCTION

Systematic testing is necessary to improve the soft-
ware system quality. However, testing is often per-
ceived as a bottleneck operation in the software de-
velopment process, since the other phases are much
more automated (CASE tools, automated GUI design
tools). For each configuration of the software product
and for each version of each component there must
be a specific set of test cases available and after any
change in any component we have to adapt and exe-
cute the corresponding test cases again. The test cases
are implemented by test scripts that contain test pre-
conditions, test code, test data, and expected results.
Test scripts are grouped to test plans that are part of
the product documentation and are used by test execu-
tion automation tools. These tools support a system-
atic approach to testing but they need a configurable
test infrastructure. Test plans for sophisticated soft-
ware products may contain thousands of test scripts
containing test cases. Sequential play-back of all test
scripts on one sequential computer takes a significant
amount of time.

Our idea is to use a cluster where as many of its
nodes as possible can be used to load the test scripts
and execute them in parallel. We examined the pos-
sibility to execute test cases (unit tests) generated as

Kroha P. and Vychegzhanin V. (2008).

scripts by TestGen4J on our cluster of computers run-
ning with Linux. The goal was to write a test execu-
tion tool that loads all tests from the front-end com-
puter (sequential PC) to a back-end computer (a clus-
ter with 528 nodes) where a test manager controls test
case running on cluster nodes and sends the evalua-
tion back to the front-end computer.

Our system CLUSTEST is an experimental pro-
totype that supports an accelerated testing process
by delivering new levels of infrastructure which are
given by parallel processing of test cases in a cluster.

The rest of the paper is organized as follows. In
Section 2 we discuss the related work. In Section
3 we describe how we constructed our experimental
test scripts. The architecture of our system, the com-
munication of its components, and the processing of
test cases are introduced in Section 4. In Section 5
we introduce our practical experiments and parame-
ters measured. Finally, in the last section we conclude
our experience.

2 RELATED WORK

A number of work has already been carried out on
issues concerning parallel testing in the sense that
either a parallel (or a distributed) program will be

177

CASE STUDY: RUNNING TEST CASES FOR SEQUENTIAL PROGRAMS IN PARALLEL IN A CLUSTER ENVIRONMENT.
In Proceedings of the Third International Conference on Evaluation of Novel Approaches to Software Engineering, pages 177-180

DOI: 10.5220/0001760301770180
Copyright © SciTePress



ENASE 2008 - International Conference on Evaluation of Novel Approaches to Software Engineering

tested or some test scripts run as threads on a sequen-
tial machine. These projects include project TAOS,
project AGEDIS, and product TestSmith. Project
TAOS (Testing with Analysis and Oracle Support) de-
veloped a toolkit and environment supporting analysis
and testing processes (Richardson, 1994). A unique
aspect of TAOS is its support for test oracles and their
use to verify behavioral correctness of test executions.
The project AGEDIS developed a methodology and
tools for the automation of software testing in gen-
eral, with emphasis on distributed component-based
software systems (Hartman and Nagin, 2004). The
commercial product TestSmith from Quality Forge
enables parallel test script playback on one sequential
workstation. Each playback runs in its own thread.
This allows multiple scripts to be played at the same
time, greatly speeding up the testing process.

The basic feature that distinguishes our approach
from the above listed is the use of clusters for parallel
testing.

3 CONSTRUCTION AND
PREPARATION OF TEST
CASES IN PARALLEL

To automate test running, test cases are to be prepared
and organized in structures that are suitable for sep-
aration of code and data of the test case, test cases
via test scripts, changing test cases, and changing test
scripts.

From the view of our paper it is not important
whether test cases are generated by a tool or con-
structed manually. Our focus is on running test cases
in parallel not on their construction. Our goal was not
to develop new methods for test case generation but
we needed a set of test cases as experimental data.

To illustrate advantages of running test cases in
parallel in a cluster we needed a large number of
test cases that cannot be written manually. To obtain
enough test cases for our experiments we used the
public domain tools TestGen4J. The process of test
case preparation starts the open-source tool Emma
that instruments code before testing. Instrumented
code serves to save coverage information. After test-
ing, Emma collects coverage information and gener-
ates reports in HTML, text, or XML.

Emma does not construct test cases. For this pur-
pose we needed the tool TestGen4J. Differently from
JUnit Test Generator that generates only empty bod-
ies of methods, TestGen4J uses generation based on
boundary values of method parameters. The user
has to define them by the help of rules. TestGen4]J

178

works together with two others tools - JTestCase and
JavaDoc. To get the information about instrumented
classes for TestGen4J, e.g. description of classes, de-
scription of methods, constructors, variables, etc., we
used JavaDoc which is part of the J2SDk from Sun.
JUnit that was chosen for test case processing holds
test cases (code) and their test case data together.
This brings disadvantages when test data should be
changed. Because of that we used JTestCase that sep-
arates test case code from test case data. For one test
case code TestGen4lJ generates test cases data for all
combinations of parameter boundary values. Using
JTestCase the load, run, and evaluate procedures can
run in a loop for one test case code using more test
case data.

Summarized we prepared test cases as follows
instrumentation of application classes by the tool
Emma, separating information about instrumented
classes by tool Java Doc, test cases generation by tool
TestGen4J, and separation of test case code from test
case data by tool JTest Case. After preparation of test
cases they can be executed and evaluated using JUnit
as described below.

4 THE CLUSTEST SYSTEM FOR
RUNNING TEST CASES

The system CLUSTEST consists of a front-end (run-
ning partially as a local host and partially as a remote
AFS host on a sequential PC) and a back-end (running
on the cluster). Both modules communicate via mes-
sages and share files stored in AFS (Andrew File Sys-
tem). The architecture and communication schema is
shown in Fig. 1.

The front-end module represents the interface to
the user (to select test scripts and to start them) and
controls the processing. It runs on a sequential PC
with a Java Virtual Machine.

First, the tool Emma will be started which pro-
duces instrumented classes from classes of the appli-
cation under test. Instrumented classes contain some
additionally inserted code necessary for test cover-
age. After all classes of the application have an instru-
mented counterpart, the front-end starts the tool Test-
Gen4] that generates test cases. After all test cases
have been generated, the test manager from the back-
end obtains the instrumented classes and generated
test cases and uses the available number of cluster
modes to run and evaluate them by the help of the
Java test framework JUnit. Results will be stored in
a log file and later used to produce a report by the
front-end.

When test cases are prepared as described above,



CASE STUDY: RUNNING TEST CASES FOR SEQUENTIAL PROGRAMS IN PARALLEL IN A CLUSTER

Front-End
sequential PC

i) Instrumented classes
! Y

Application TestGendJ

under
Test Cases
as Test Scripts

/

(local mode)

Test

Back-End
Testmanager

T
1
]
I
I
|
|
l
|
d
I
|
I
I
Main ! {remote mode in AFS)
1
1
1
1
1
1
1
]
]
|

L

Cluster CLIC

-
N\

Juniton Workers/
Warker 1 Worker 2

Figure 1: Architecture of CLUSTEST.

the front-end starts the back-end and passes to it the
list of test scripts for parallel processing. Then the
front-end waits until the back-end finishes test scripts
playback, collects the logs and transfers them back
to the front-end. At the end of test script playback
execution, the user receives information of log files
from the front-end in form of reports.

The back-end runs on the cluster CLiC (Chemnitz
Linux Cluster). It is a cluster that consists of standard
PC components. Each of its 528 nodes is a Pentium
III processor working with clock frequency 800 MHz,
512 MB of memory and 20 GB disk space. All files
of our CLUSTEST system are stored in distributed
AFS file system so that they are accessible from the
test manager and workers without any transfer. We
used some concepts described already in (Kroha and
Lindner, 1999).

S EXPERIMENTS AND RESULTS

The tool CLUSTEST was implemented and described
in (Vychegzhanin, 2006). As our experimental data
we used a source program of a Java application
Azureus. It is a file sharing client for BitTorrent-
Protocol under the GNU General Public Licence. For
our experiments we used 1024 classes of Azureus.
Not all of its classes are suitable for automatic genera-
tion, some of classes have methods that cause infinite
loops. As already said our goal was not to investigate
test generation so we did not investigate the reasons
deeply because it was not our focus. As we stated
we generated the test cases (about 200,000) as a sepa-

ENVIRONMENT

rate job on a sequential PC because of some technical
problems (caching mechanism of AFS) and organiza-
tion problems (too long queues) in using cluster.

It took 50 minutes to generate test cases for 1024
classes. We measured the elapsed time in two modes,
with using a coverage test and without using a cov-
erage test. The alternative without using a coverage
test runs about 11 % more quickly. The elapsed time
is the time between the start of the first test case and
the finish of the last test case. It does not include data
transfer of source data or scripts, time between the
source request (Start of Emma) and the start of test
manager, waiting because of other cluster users, read-
ing test cases, and transfer of results from the log file
to the front-end.

Efficiency
03
08
-
PP L L F \
- =\
08 S \
=
in] '~
0,3 %
02 ‘-""\_
01 \
——
0 T T T T T T ,
4 & 16 32 54 128 220 320
nodes
Figure 2: Efficiency.
Speedup
325
20 P ———
27,5 ~ e ~
25 — AN
7 e AN
20 J —===== “\
Ed ~
17,5 -
15 "‘
12,5 ‘{'
10 —Z= =
75 Lot
5 e
25
o

Figure 3: Speedup.

The obtained results can be seen in the follow-
ing figures. The efficiency in Fig. 2 starts to fall for
more then 32 nodes. In Fig. 3 we can see how the
speedup depends on the number of nodes. It reaches
its maximum for 128 nodes. As we can see in Fig. 4
it took 825 seconds to run and evaluate the used set of
test cases on a sequential PC (1005 seconds including
coverage test) but only 320 seconds using 4 nodes and
only about 30 seconds using 128 nodes.

In Fig. 5 we can see the same in more details.
With increasing number of nodes over 128 the over-
head grows. The bottleneck is the single test manager.

179



ENASE 2008 - International Conference on Evaluation of Novel Approaches to Software Engineering

In a future version we will partition the test cases and
use more test managers for large numbers of nodes.

Run time 1..320 Nodes

1100
1000

400
800 \
700 %
GO0 *
500 L)
400 ‘\
300 \
200 \
100 \..“—

T T T T T T |
1 4 8 16 32 B4 128 220 320
nodes

Time (s}

Figure 4: Run Time 1.

Run time 8..320 Nodes

Time(s)

T T )
8 16 3z 64 128 220 320
nodes

Figure 5: Run Time 2.

6 CONCLUSIONS

The application of clusters in the problem of sequen-
tial program test automation distinguishes the pre-
sented approach from other related works and may
cause a significant progress in using clusters for pur-
poses of software engineering. We have shown that
the software testing phase can be shortened by the
deployment of test automation into a cluster environ-
ment.

We presented practical results of our project
CLUSTEST obtained by successful design and im-
plementation of a tool for automated software test
running on a cluster. The obtained experimental re-
sults were expected in their quality, i.e. we expected
that test evaluation will accelerate, but it is interesting
(and in practice it is necessary) to know also quan-
titative parameters (e.g. speedup and efficiency for
a given number of nodes) of the test evaluation per-
formed with a real software tools.

Our experiments revealed that parallel playback of
test scripts gives a significant gain in time (see Fig. 2,
Fig. 3) comparing to the sequential test scripts play-
back. A speedup of 25 for 32 used nodes and speedup

180

32 for 128 used nodes has been achieved which is an
excellent result. In the future work we will investi-
gate how general are our observations, i.e. we will
test more systems and compare the results.

There is an interesting problem how faithfully the
test system represents the environment of the system
where it is expected to run. Even though we used a
cluster of PC for running tests of PC programs we ex-
pect differences in run-time support libraries etc. In
principle this is a problem of portability. Theoreti-
cally we have to accept the possibility that there could
be some side-effects introduced by the cluster. In our
case we did not found any problems of this kind but
theoretically we cannot rule them out.

Cluster computing is generally applied to simu-
lations in physics and chemistry, machine learning,
aerospace technology, seismology, meteorology, etc.
As for software engineering, clusters are almost never
used until now for two reasons. First, the most tasks
of the software development process do not require
vast computing resources. Second, a cluster is not a
cheap equipment. However, the complexity of soft-
ware systems is steadily growing and the hardware
prices are steadily falling. We argue that clusters as
resources are preferable in the implementation of a
test execution tool for execution of large number of
test scripts as studied in our project.

Often, it happens that a project is behind sched-
ule when testing should be started. We believe that a
32-machine-cluster will be low-priced soon and can
bring much benefit (speedup 25) in such a way that it
considerably contribute to the acceleration of testing.

REFERENCES

Hartman, A. and Nagin, K. (2004). The agedis tools for
model based testing. In Proceedings of ISSTA 2004,
Boston.

Kroha, P. and Lindner, J. (1999). Parallel object server as a
data repository for case tools. In Croll, P. / El-Rewini,
H. (Eds.): Proceedings International Symposium on
Software Engineering for Parallel and Distributed
Systems PDSE99,IEEE Computer Society, ICSE99,
Los Angeles, pages 148—156.

Richardson, D. (1994). Taos: Testing with analysis and ora-
cle support. In Proceedings of the International Sym-
posium on Software Testing and Analysis.

Vychegzhanin, V. (2006). Clustest Erweiterungen. Mas-
ter’s thesis, TU Chemnitz, Germany. M.Sc. Thesis (In
German).



