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Abstract. Large Margin Perceptron learning with positive coefficients is 
proposed in the context of so-called scoring systems used for assessing 
creditworthiness as stipulated in the Basel II central banks capital accord of the 
G10-states. Thus a potential consistency problem can be avoided. The 
approximate solution of a related ranking problem using a modified large 
margin algorithm producing positive weights is described. Some experimental 
results obtained from a Java prototype are exhibited. An important 
parallelization using Java concurrent programming is sketched. Thus it becomes 
apparent that combining the large margin algorithm presented here with the 
pocket algorithm can provide an attractive alternative to the use of support 
vector machines. Related algorithms are briefly discussed. 

1 Introduction 

At least since the Basel II central banks capital accord of the G10-states, cf. e.g. [1], 
the individual objective rating of the credit worthiness of customers has become an 
important problem. To this end so-called scoring systems, cf. e.g. [12], [23], [17], [6] 
have been used for quite some time. Generally these systems are simple classifiers 
that are implemented as (linear) discriminants where customer characteristics such as 
income, property assets, liabilities and the likes are assigned points or grades and then 
a weighted average is computed, where a customer is judged “good” or “bad” 
according to whether the average exceeds a cut-off point or not. In an extreme case 
the attributes are just binary ones where 0 respectively 1 signifies that the property 
does not hold respectively holds. This situation frequently arises in practice. The 
weights can then either be computed using classical statistical methods or more 
recently employing artificial neural networks, cf. e.g. [19], provided that suitable bank 
records are available for training.  
However, the use of only two classes for the classification of customers presents 
certain problems, see e.g. [1], [10]. Hence in this paper it is assumed that training data 
are available, where banking customers are divided into mutually disjoint risk classes 
C1, C2, …, Ck. Here class Ci is preferred to Cj if i<j. It was shown in [8] how this 
preference relation may be learned employing a generalized version of the 
Krauth/Mezard large margin perceptron algorithm to solve the associated ranking 
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problem. Unfortunately a consistency problem arises in this context if  the attributes 
are assigned points or grades that are not exclusively taken from the set {0, 1}. The 
solution to this problem can, however, be achieved if positive weights only are used. 
This restriction leads to an interesting modification of the large margin ranking 
algorithm given in [10], that will be presented here. Moreover a sketch solution for a 
parallel implementation using concurrent Java programming leading to better 
performance on multiprocessor PCs will be described.  
Note that the use of several classes has been investigated beforehand, see e.g. [2], p. 
237. Moreover, the use of ranking functions has been recognized in an information 
retrieval context, cf, e.g. [25], for solving certain financial problems, cf. [15], and for 
collaborative filtering, cf. [20], [21]. However, at least in the banking business, 
ranking functions, as described in section 2 below, see also [7], [22], apparently have 
not  been used before for the rating of customers, cf. [12]. Note also that in none of 
these works the consistency problem alluded to above has been recognized. 

2 Reduction of the Ranking Problem 

Suitable anonymous training data from a large German bank were available. In 
abstract terms then t vectors x1, x2, …, xt from ℜn (think of these as having grades 
assigned to individual customer characteristics as their entries) together with their risk 
classification (i.e. their risk class Cs for 1 ≤ s ≤ k, where the risk classes were assumed 
to constitute a partition of pattern space) were given. Hence implicitly a preference 
relation (partial order)  “〉”  in pattern space was determined for these vectors by  

xi 〉 xj if  xi ∈ Ci   and   xj ∈ Cj  where i < j.  
It was then required to find a map mw: ℜn →ℜ that preserves this preference relation, 
where the index w of course denotes a weight vector. More precisely one must have 
 xi 〉 xj ⇒ mw (xi) > mw (xj) 
If one now specializes by setting mw (x):= <ϕ(x), w>, denoting the scalar product by 
<.,.> and an embedding of x in a generally higher (m-) dimensional feature space by 
ϕ, then the problem reduces to finding a weight vector w and constants (“cut-offs”) c1 
> c2 > …> ck-1 such that 

 x ∈ C1  if  <ϕ(x), w> > c1 
x ∈ Cs   if  cs-1 ≥ <ϕ(x), w> > cs for s = 2, 3, …, k-1 

 x ∈ Ck  if  ck-1 ≥ <ϕ(x), w>.  

The problem may then be reduced further to a standard problem: 
Let ei denote the i-th unit vector in ℜk-1 considered as row vector and construct a 
matrix B of dimension (m1+2m2+k-2)×(m+k-1), where m1:= |C1∪Ck| (here |S| denotes 
the cardinality of set S) and m2:= | C2∪C3 …∪Ck-1 |, as follows: 

B:= ⎥
⎦

⎤
⎢
⎣

⎡
D
R

 , dimension R = (k-2) ×(m+k-1), and the i-th row of R is given by the row 

vector (0, …,0, ei -ei+1) with m leading zeros. Moreover D is described by: 
For every vector x in C1 respectively Ck D contains a row vector (ϕ(x), -e1) 
respectively (-ϕ(x), ek-1), whilst for every vector x in Cs with 1 < s < k it contains the 
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vectors (ϕ(x), -es) and (-ϕ(x), es-1). The reduction of the problem to a system of 
inequalities is then proved by the following lemma. 

Lemma 1: A weight vector w and constants c1 > c2 > …> ck-1 solving the ranking 
problem may (if they exist)  be obtained by solving the standard system of 
inequalities Bv > 0 where v:= (w, c1, c2, …,ck-1)T. 
Proof (see also [7]): Computation.            
Of course, it must be admitted that the existence of a suitable weight vector v is by no 
means guaranteed. However, at least in theory, the map ϕ may be chosen such that the 
capacity of a suitable separating hyperplane is large enough for a solution to exist 
with high probability, cf. [4].  
The price one has to pay for this increased separating capacity consists on the one 
hand of larger computation times. On the other hand, and perhaps more importantly, a 
loss of generalization capabilities due to a higher VC-dimension of the separating 
hyperplanes, cf. e.g. [24], must be taken into account. In order to improve the 
generalization properties here a large margin perceptron ranking algorithm producing 
positive weights based on the work of Krauth and Mezard will be presented. This may 
be used to construct a separating hyperplane that has the large margin property for the 
vectors correctly separated by the pocket algorithm. The reader should compare this 
to the large margin ranking described in [20]: There the problem is solved using a 
(soft margin) support vector machine. Unfortunately computation of the complete set 
of cut-offs requires the solution of an additional linear optimization problem. 
Moreover no positivity condition is mentioned. 

3 Large Margin Ranking and the Positivity Condition 

The work of Krauth and Mezard concerning large margin perceptron learning is 
described in [14]. Certain modifications were introduced in order to obtain a large 
margin ranking (LMR) algorithm, cf. [9]. Further modifications lead to large margin 
ranking observing the positivity condition derived from consistency considerations. 

3.1 The Consistency Problem and the Positivity Restriction 

In the experiments described below (using “real life data” obtained from a German 
bank) in the solution to the ranking problem invariably some of the weights computed 
were negative. However, it seems natural to rate a customer cust1 characterized by a 
vector x1 better than a customer cust2 characterized by a vector x2, provided that x1 ≥ 
x2, where the inequality between vectors is supposed to hold if it holds for all 
corresponding entries. After all cust1 is then in all criteria rated at least as well as 
cust2.  
If negative weights are admitted though the situation could arise where one customer  
cust1 is rated equal to another customer cust2 in all but one criteria, where he is rated 
better. In this case surely cust1’s overall rating should be better than cust2’s. If the 
corresponding weight happens to be negative, however, the contrary would be the 
case. Thus it definitely seems to be desirable to demand that weights should be 
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positive (zero might possibly still be allowed). Hence a suitably modified large 
margin ranking algorithm is presented below. 

3.2 Pseudo Code for LMR with Positive Weights 

The pseudo code for this algorithm reads as follows. 

Input. Binary vectors x1, x2, ..., xt  (or vectors with integer entries)  from Ζn with 
corresponding classifications b1, b2, ..., bt  from {1, 2, …, k} (where the classes C1, 
C2, …, Ck for simplicity have been denoted by their indices) as training vectors, and a 
function ϕ: Ζn  → Ζm, where in general m>n. In addition a real number α > 0 must be 
chosen.  

Output. A weight vector w having positive entries only  and k-1 cut-offs ci satisfying 
c1 > c2 > … > ck-1 as vector c that approximate the maximal margin solution of the 
ranking problem. The approximation improves with increasing α (under certain 
conditions, see below). 

Initialize w, c with 0, 0. 
Loop 

For given ϕ(x1), ϕ(x2), ..., ϕ(xt) compute the minimumm  of the following 
expressions: 

(i) <ϕ(xi), w> - cs  if  1 ≤ s ≤ k-1  for  xi ∈ Cs , 1 ≤ i ≤ t  
(ii)  -<ϕ(xi),  w> + cs-1  if  2 ≤ s ≤ k 
(iii) <w, ei>    if this expression is ≤ 0.  

Then  m  either has the form  
(a)  m = <ϕ(xj), w> - cs   for some j und xj ∈ Cs  or 

(b)  m = -<ϕ(xk),w> + cs-1   for some k und xk∈Cs or 
(c)  m = <w, ei>    for some i. 

If  m > α  then {display w, c; stop;} 
Else   

If  (a) then {w:= w + ϕ(xj); cs:= cs - 1;} End If 
If (b) then {w:= w - ϕ(xk); cs-1:= cs-1 + 1;} End If 
If (c) then {wi := wi + 1;} End If 

End If 

The proof that the algorithm converges to the maximal margin of separation under a 
certain additional condition (which, as is frequent in perceptron learning, cf. [3], [16], 
[18], is hard to verify but does not seem very restrictive in practice) is provided in the 
appendix. 

3.3 Experimental Results 

In order to test the large margin algorithm with positive weights and with a view to 
further extensions a Java prototype was constructed. This was connected to an Access 
database via an JDBC:ODBC bridge.  
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The experiments were carried out with 58 data vectors, which allowed perfect 
separation, provided by a German financial institution. The customers had been 
divided into 5 preference classes (for a detailed description of the data see [10]). The 
experiments were conducted on a standard laptop (3.2 GHz clock, 2 GB RAM).  For 
simplicity the function ϕ appearing in the algorithm was taken to be the identity.  
As a measure of the quality of approximation the distance of the “worst-classified” 
element to the nearest cut-off was computed. In order to obtain a reference value it 
should be mentioned that the optimal margin for arbitrary weights was obtained as  
0.0739745 by quadratic programming in [10]. It should also be pointed out  that as for 
arbitrary weights, cf. [10], the time requirements increased roughly linearly with α, 
the maximum time taken (for α = 160) being 29656 msecs. The results obtained are 
displayed in diagram 1. 

 
Diagram1                                       Diagram 2 

As may be seen from diagram 1 the quality of approximation to the optimal solution 
improves quite fast with increasing  α up to about 40. Thereafter, however, only slow 
progress is made. Nevertheless, for practical purposes this approximation may be 
quite acceptable. In view of the additional condition needed to guarantee convergence 
it should also be pointed out that in all other experiments, see also 3.4 below, the 
algorithm gave very good results by increasing the distance of the worst classified 
element from the nearest cutoff by a factor of about 4 to 10.   

3.4 Implementation with Concurrent Java Programming 

In view of the fact that multi-processor machines are beginning to dominate the PC 
market it seems important that the algorithm presented can be parallelized by 
exploiting concurrent Java programming. This is essentially achieved by splitting the 
main loop of the algorithm into n (= number of processors) loops of roughly equal 
size and assigning them to separate Java worker threads. In each thread then the 
required minima are computed separately. The results are passed to the main thread 
which computes the overall minimum and updates the weights and cutoffs 
accordingly. Thereafter the updated values are passed to the worker threads and the 
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process is repeated. The required synchronization can be obtained by using the Java 
classes “BlockingQueue” and “CountDownLatch”, cf.  
http://java.sun.com/javase/6/docs/api/java/util/concurrent/BlockingQueue.html  
and for the latter class  
http://java.sun.com/javase/6/docs/api/java/util/concurrent/CountDownLatch.html.  
The authors of the present paper conducted a preliminary test with a dual core 
machine that showed that the Java virtual machine splits the work between the two 
processors rather nicely if the loop is sufficiently large, see diagram 2 above. 
In fact with roughly 12 000 data sets (divided into two preference classes with binary 
attribute values only; sufficiently many data encompassing more preference classes 
could unfortunately not be obtained) the speed up compared with the ordinary 
program version apeared to be close to 100% so that very little administrative 
overhead was incurred (incidentally: The total CPU time turned out to be in the order 
of three minutes which is surprisingly small). However, a test with a small number of 
data even lead to an increase in CPU time, since evidently the administrative 
overhead became too large. Nevertheless in practical situations often large data sets 
prevail. In view of this fact and because a realization of the dual (kernel) version 
would definitely lead to large CPU times (preliminary tests indicate CPU times of 
several hours even for quadratic polynomial kernels), the parallelization should be 
extremely helpful. The precise variation of the required overhead with the number of 
processors is still the subject of ongoing research. Further details will be reported 
elsewhere.  

4 Conclusion and Outlook 

A new large margin ranking algorithm producing positive weights only and thus 
removing a potential consistency problem has been presented. Encouraging 
experimental evidence has been obtained using “real life” data from a financial 
institution. In contrast to the wide margin ranking algorithm described in [20] it can 
be implemented with a surprisingly compact Java encoding. This is due to the fact 
that it can be seen as an extension of classical perceptron learning. Moreover the 
algorithm allows easy parallelization. 
On the other hand, of course, it gives only an approximate solution and also needs an 
additional condition to guarantee convergence, which may, however, as indicated by 
the experimental results, be quite satisfactory for practical applications. In addition 
the algorithm works for separable sets only. However, it is intended to combine it 
with a modified version of the pocket algorithm, cf.[11], by applying it to those data 
sets only that are correctly separated. This seems attractive since that way certain 
approximations inherent to the soft margin support vector machine as utilized in [20] 
are avoided.  
Finally a few comments on related algorithms seem in order. The large margin 
algorithm in [20] has been briefly mentioned already. The ranking algorithms in [5] 
and [13]  appear inferior from the results given in [20]. In [26] large margin 
perceptron learning was introduced for the pocket algorithm. However, in spite of 
reasonable experimental evidence, the theoretical basis appears slightly shaky, for 
details see e.g. the conclusion in [9]. The ranking algorithm in [22] (soft margin 
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version) appears to contain a gap since the monotonicity condition for the cut-offs 
seems to be neglected. Moreover an additional vector is ignored without explaining 
the consequences. In short then the algorithm closest to the one presented here seems 
to appear in [20]. Of course, it has been tested in a completely different context and 
an objective comparison concerning the banking application envisaged here is still 
outstanding.  Moreover none of these algorithms appear to deal with the potetntial 
consistency problem discussed in 3.2. 
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Appendix 

Convergence Theorem 

For simplicity here the following problem is considered (the convergence theorem for 
the algorithm given in 3.4 may then be deduced by applying the results of section 2): 
Given sample vectors (patterns) x1, x2, …, xp ∈ Ζn find a vector w* having positive 
entries only such that. <w*, xj> ≥ α  for  j= 1,2, …, p and a fixed constant α > 0. 
Assume throughout that such a vector exists with ||w*|| = α /Δopt, where Δopt denotes 
the maximal separation of the samples from zero. 
Then consider the following algorithm  
Set w0 := 0  and 

wt+1 := wt + xj(t)  if  < wt, xj(t) > < α,  
where xj(t)  is defined by 
         min{min1≤k≤p< wt, xk>, min1≤l≤n< wt, el>}   if min1≤l≤n< wt, el> ≤ 0 
        xj(t)  := 

     min1≤k≤p< wt, xk>, otherwise. 

General Convergence Properties 

After M updates according to this rule suppose that pattern xj has been visited mj 
times and that the j-th unit vector ej has been visited λj times where 

p

1
M j

j=
∑ = M1 and  = Λ; M1 + Λ = M. 
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Further assume that there exists a w* with positive entries such that 

(i) <w*, xj> ≥ α for j= 1,2, …, p 
(ii) <w*, ej> > 0 for j= 1,2, …, n 
(iii) ||w*|| = α /Δopt 

Then the following bounds for <w*, wM> are obtained: 

Lower bound: <w*, wM> ≥ M1* α + Λ*min1≤k≤n w*[k] ≥ M* α1                                (1) 

where α1 := min{ α, min1≤k≤n w*[k]}  
Upper bound: ||wM||2 - ||wM-1||2 = 2<wm-1, xj(m-1)> + || xj(m-1)||2 ≤ 2α + B say, where 
B:=max{max1≤k≤p || xk||2,1} 
Hence  ||wM|| ≤ {M(2 α +B)}1/2. 
And thus by the Cauchy-Schwartz inequality 

 <w*, wM> ≤ ||w*||{M(2α +B)}1/2                                  (2) 

(1) and (2) together imply convergence since   M1/2 ≤ ||w*||(2α +B)1/2/α 1. 

Optimal Margin of Separation 

In order to show that the algorithm gives the optimal margin of separation as α → ∞ 
one needs an additional assumption (note that in view of the experimental results 
given above this does not seem too restrictive), namely additional assumption: α = α1. 
As in [14] decompose wt as wt = a(t)w* + kt where <kt,w*> = 0. 
Argue as above but reason separately for w* and kt by decomposing xj(t) accordingly. 
First note that a(t) = <wt, w*>/||w*||2 and hence that a(t) > 0 for t  ≥ 1 because of 
assumptions (i) and (ii) for ||w*||. 
Further note that xj(t) always has a negative projection on kt, i.e. < kt, xj(t) >  < 0, since 
this has been shown for xj(t) = xk for some k satisfying 1 ≤ k ≤ p in [9],[14], and for 
xj(t) = el for some l satisfying 1 ≤ l  ≤ n it follows since then <wt, el> = a(t)<w*, el> + 
<kt, el> ≤ 0, where a(t)<w*, el>  > 0 because of the positivity of a(t) and property (ii) 
of  ||w*||. 
Moreover  wt+1 = wt + xj(t) = 

[a(t) + < xj(t), w*>/||w*||2] w* + [1 + < xj(t), kt>/|| kt ||2] kt 
whence ||kt||2 - ||kt-1||2 = 2< xj(t-1), kt-1> + || xj(t-1) ||2 ≤  B. 

Thus  ||kt||2 ≤ t*B                  (3) 

If learning stops after M steps then a(M-1) can be bounded as follows 
 <wM-1, xj(M-1)> = a(M-1) <w*, xj(M-1)> + <kM-1, xj(M-1)>  < α. 
Hence, using the additional assumption and property (i) of w* one obtains 
 a(M-1) < [α + |<kM-1, xj(M-1)> |]/ α. 
From this it follows that 

a(M-1) ≤ [α + ||kM-1||*|| xj(M-1)||]/ α ≤ [ α + (M-1)1/2B]/ α    (4) 

A bound on a(M) is then obtained via 
 a(M) – a(M-1) = <wM – wM-1, w*>/||w*||2 = |< xj(M-1), w*>|/||w*||2 ≤ B1/2/||w*|| 
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 =  B1/2Δopt/α                                                                                                    (5) 

Hence, using (4) and (5), a(M) ≤ [α + (M-1)1/2B]/α + B1/2Δopt/α            (6) 

Using (6) gives 
 ||wM|| = a(M)||w*|| + ||kM|| ≤ {[α + (M-1)1/2B]/α + B1/2Δopt/α}||w*|| + MB1/2 

 = ||w*||{[ α + (M-1)1/2B]/c + B1/2Δopt/α + (Δopt/α) MB1/2}             7) 

Finally from (7) one obtains α /Δopt ≤ α /Δα ≤ ||wM|| → ||w*|| = α /Δopt as α → ∞ since 
M grows at most linearly with α. 
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