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Abstract. The methods of NLP and Cognitive Science can complement each
other for the design of better models of the human sentence processing mecha-
nism, on the one hand, and the development of better natural language parsers, on
the other. In this paper, we show the performance of an automatic parser consis-
tent with the architecture of the human parser of [2] on various human sentence
processing experimental materials. Moreover, we use a linking hypothesis based
on the concept of surprisal [9] to explain human reaction time patterns. Although
our results are generally not consistent with the human performance, our emu-
lations contribute to understanding the architecture of the human parser and its
disambiguation strategies better. We also suggest that these strategies may possi-
bly be used for improving the performance of automatic parsers.

1 Introduction

Some of the models of the human sentence processing mechanism reported in the recent
years are capable of achieving wide coverage on random corpora (e.g. [7]). Most of
these models are based on natural language parsing algorithms. On the other hand,
automatic parsers can benefit from knowledge about the way humans process sentences
in natural languages (e.g. see [2] for examples and discussion).

The process of selection and extension of a natural language parser to a model of
the human sentence processing mechanism has been reported in [2]. They show that the
porting can be done in three stages, as illustrated below: preparing a list of constraints
for the model based on general knowledge about the human parser, as well as evidence
from experiments with human subjects; design of the architecture and association of a
linking hypothesis which should be capable of emulating and explaining reaction times
of humans in sentence processing experiments.

Constraints → Architecture → LinkingHypothesis

In this paper, we report several emulations of the human sentence processing mech-
anism using sentences from [9]. We have used an automatic dependency parser, [1]
which is compatible with the model of the human parser of [2]. However, we have
used a new linking hypothesis to explain the relationship between the architecture of
the parser and the performance of human subjects in sentence processing experiments.
This linking hypothesis is based on the concept of surprisal, [9].
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We emulated properly human difficulty for only one of five setsof experimental
materials. We have performed error analysis in the remaining cases to discover the
reasons for the performance of our models. We have suggestedthree ways to improve
our models in order to emulate human sentence processing better.

The paper is structured as follows: In Section 2 we review themodel of [2]. Then, in
Section 3, we present our linking hypothesis for explaininghuman difficulty patterns.
We describe our experimental settings in Section 4. Then, inSection 5, we report our
results. We conclude in Section 6 and list our future plans inSection 7.

2 The Model of (Chanev, 2007) Revisited

(Chanev, 2007), [2] argue for the psychological plausibility of the class of deterministic
dependency shift-reduce parsers. They propose an architecture of the human sentence
processing mechanism. Compared to connectionist models, it is more robust and has a
wider coverage, whereas compared to other broad coverage models of the human parser,
it is more detailed than e.g. [9], and its parsing algorithmsare more incremental than
e.g. the top-down algorithm used in [7]1.

We use an automatic parser from the class of dependency shift-reduce parsers in our
experiments. The basic features of [2] are described below.They include the constraints
satisfied by the model, the architecture and a linking hypothesis.

The model of [2] satisfies the following constraints:

General Constraints.Wide coverage, high accuracy, robustness and multilinguality.

Architectural Constraints. Incrementality and non-projectivity2.

Informational Constraints. Lexical frequency, discourse context, semantic plausibil-
ity, prosodic breaks and syntactic preferences.

The model of [2] uses Dependency Grammar, e.g. [11]. Thus, itrecognizes sentence
structure as a set of binary head-dependent relations. In Figure 1, we show the depen-
dency structure of a simple sentence. Dependency grammar can be considered a good
choice for a model of the human parser, e.g. because non-projective relations can be
encoded in the syntactic tree easily.

Yesterday, I saw the dog.
�

subj
�

det
W

obj

�

tmp

Fig. 1. The dependency structure of a simple sentence.

1 The interested reader is referred to [2] for a detailed comparison of the dependency shift-reduce
parsing architecture with other models of the human parser.

2 Non-projectivity is the ability of a parser to process non-projective grammatical relations, e.g.
the one in the sentence“I saw the dog yesterday with the red nose.”between the head of the
noun phraseThe dogand the head of the prepositional phrasewith the red nose.
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The architecture of [2] is serial (i.e. it is not parallel). Ascheme is shown in Figure
2. The following components can be distinguished:

Stack– for storing partially processed word tokens;

Input Memory – for tokens that have not been yet integrated to a temporary sentence
structure or stored in the stack;

Parsing Actions– for pushing tokens into the stack and popping them out, as well as
to build dependency relations between tokens;

Memory for Processed Tokens– used for tokens that have been popped from the stack
or removed from the input memory;

Classifier – used to learn the sequence of parsing actions needed to build the depen-
dency tree of the sentence.

Processing unit:

shift (push)
reduce (pop)
right
left
non-proj. left
other actions

b

b

b

b

b

TOP

...

Stack

ACTIVE
Input

Classifier

Memory for
processed tokens

Fig. 2. The model of the human sentence parsing mechanism of [2].

The classifier component of the model consists of three functional modules: a database
of language experience; a learning algorithm and a feature model. The latter specifies
the configuration of features of certain word tokens in the sentence to be learned for
determining next parsing actions.

One of the linking hypotheses of [2] is influenced by the Surprisal model [7, 9].
The study of [7] was the first to measure the surprisal associated with the integration
of each word into a temporary syntactic structure of the sentence. They calculate the
surprisal using prefix probabilities [14]. Then, the model has been generalized in [9] for
arbitrary grammars and parsing algorithms deriving the formula for surprisal on infor-
mation theoretical grounds. Both of the models assume parallel activation of syntactic
structures.

In [2] difficulty is measured similarly to the way it is measured in the Surprisal
model. However, since the main component of their architecture is a serial dependency
shift-reduce parser, the likelihood, as assigned by the classifier, is measured instead
of prefix probabilities. It is calculated with respect to theparticular learning algorithm
used by the classifier and over parsing actions rather than syntactic sub-trees.
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3 Our Linking Hypothesis

Our linking hypothesis is in the spirit of the Surprisal model. It is naturally implemented
in the automatic parser that we use, DeSR3, [1] and is defined in terms of the Average
Perceptron learning algorithm, [4] as implemented in the parser.

We had to adapt the Surprisal model which assumed a parallel architecture, to DeSR
which is a serial parser. However, multiple activations of different syntactic interpreta-
tions, as in the Surprisal model, can still be emulated in DeSR through feature models
that avoid learning syntactic dependencies explicitly. Inaddition, DeSR can measure
the human difficulty, using spans of the sentence that does not necessarily begin with
its first word, unlike [9]. This makes our model more flexible than the Surprisal theory
while still possessing its basic characteristics.

The Average Perceptron is a multi class perceptron [4]. Eachof the classes is a
parsing action, e.g. shift, right (subject), right (determiner), left (object) etc. At each
step, the most likely action is executed. In order to measurethe difficulty associated
with the integration of a token, we use the likelihood of the integrating parsing action.
Thus, the higher the likelihood is, the lower the human difficulty would be.

It must be noted that a word token can be integrated to the temporary syntactic
structure of the sentence as a syntactic dependent exactly once, and as a syntactic head,
zero or more times. In the cases where the integration of the word is done through more
than one dependency relations, the difficulty is measured asthe sum of the difficulties
of building all the relations between the word, its partially processed dependents, if any,
and its partially processed head word.

4 Experimental Settings

Corpus. We used the training set of the dependency version of the Penntreebank [10]
as used in the CoNLL 2007 shared task on dependency parsing [13]. In this format, the
treebank is annotated with part-of-speech tags and dependency syntax. Moreover, we
used the supersense tagger of [3] to annotate the texts in thetreebank with semantic
WordNet classes. We merged all the information into one resource and used it to train
our models. We annotated our test set with part-of-speech information, using the SVM-
Tagger4 [5] and corrected the errors manually. Then, we used the supersense tagger for
annotating it with semantic classes. Finally we merged all the information.

Feature Models.We started our experiments with the best model for English that was
in the package of the DeSR parser but removed some of the features that we had found
implausible for a model of the human parser. These include the properties of tokens
that are too far ahead in the sentence. We also added semanticfeatures and used a
first order Average Perceptron. We trained two models,BaseandSyntactic, because we
wanted to distinguish between a model that uses informationabout a particular syntactic
structure for making parsing decisions (Syntactic) from a model that does not use such
information (Base). Baseshould score similarly to the surprisal model due to measuring

3 Freely available from http://sourceforge.net/projects/desr/
4 http://www.lsi.upc.es/∼nlp/SVMTool/
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the total likelihood of a string instead of the likelihood ofa specific structure associated
to a string.

We show the model that has syntactic features in Table 1. We use the notation of
DeSR. The tokens in the stack are encoded with negative numbers where−1 is the
token that is on the top of the stack. The tokens in the input are encoded using0 and
positive numbers where0 is the first token in the input.

Table 1.Our syntactic feature model.

Feature tokens Feature tokensFeature tokensFeature tokens
LexFeatures -2 -1 0 1LexPrev 0 LexSucc -1 SemFeatures -2 -1 0 1
SemLeftChild 0 SemRightChild -1 SemPrev 0 SemSucc -1
PosFeatures -2 -1 0 1PosLeftChild -1 0 PosRightChild -1 0 PosPrev 0
PosSucc -1 CPosFeatures -1 0 1 DepLeftChild -1 0 DepRightChild -1

Parsing Accuracy.We show the accuracy of the parser in Table 2. High accuracy is
an important pre-requisite for the proper emulation of human reaction times because
the patterns obtained from integrating inaccurate dependency relations would be very
different from human difficulty patterns, in the general case.

Table 2.The accuracy of our models.

Model Labeled Attachment ScoreUnlabeled Attachment Score
Base 77.6% 79%
Syntactic 77.5% 78.9%

We solve the problem of erroneous disambiguation by ‘forcing’ the parser to execute
certain actions which are less likely than those which it otherwise would have executed,
if guided by the classifier. Still, if the parser has a very lowaccuracy, that would ‘distort’
the likelihood of parsing actions and the predicted difficulty, respectively.

5 Emulation of Experiments with Human Subjects

We have emulated human behavior on sentences from five experiments. They have been
selected among the experiments used by [9] to evaluate the Surprisal theory5. We report
the performance of our models on only one sentence from each condition of each exper-
iment. We do not need to average over many experimental items, because the models
have sufficient linguistic knowledge to make parsing decisions in a plausible way.

The human difficulty patterns for certain regions in the sentences of two experiments
have been consistent with the Surprisal theory. In the otherthree experiments, difficulty
patterns for certain regions of the sentences are not consistent with the Surprisal theory.
We have tried to emulate human behavior for all the sentencesusing our models.

5 Our models have been tested on all the experimental materials used in [9]. We report only
five experiments due to the lack of space. However, they are sufficient to illustrate the most
important aspects of using our models on the data of [9].
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Experiment 1. The first experiment is reported by [8]. It investigates the relevance
of surprisal in three sentences with a different number of words between the subject
modified by a relative clause and the main verb, for the difficulty observed at the main
verb. The sentences are given below:

1. The Player [that the coach met at 8 o’clock] bought the house. . .
2. The Player [that the coach met by the river at 8 oclock] bought the house. . .
3. The Player [that the coach met near the gym by the river at 8 oclock] bought the
house. . .

The main verb of sentence 3 has been read faster than the one ofsentence 2 which
has been read faster than the one of sentence 1. The prediction pattern of the surprisal
theory is the same as the human reaction times (or difficulty)pattern. The explanation
of the Surprisal theory is that with the increase of the number of words in the relative
clause, the expectation for the main verb increases.

However, we report a different pattern. TheBasemodel predicted the same difficulty
at the main verb for all the sentences. The likelihood numbers of the Average Perceptron
for the integration of the main verb are the same: 119 for attaching the subject to the
main verb and 166 for the recognition of the main verb as the root of the sentence. On
the other hand, theSyntacticmodel predicted a difficulty for sentence 2 (likelihood of
166 for the subject relation and 194 for the root relation), if compared to sentences 1
and 3 (146 for the subject relation and 194 for the root relation).

Our models cannot account for surprisal effects, because atthe time of parsing the
features of no previous tokens that are not in the stack except for the adjacent left token
are taken into consideration. Thus, the tokens responsiblefor the parsing decision are
the same for the three sentences, for theBasemodel or almost the same for theSyntactic
model. The way to account properly for the differences in thesentences is to include
more past tokens in the feature models or to include featuresfor distance.

Experiment 2. Experiment 2 uses materials from [16]. In their experimentsit has been
shown that an unresolved ambiguity can facilitate comprehension. The sentences are
given below:

1. The daughter of the colonel who shot herself on the balconyhad been very depressed.
2. The daughter of the colonel who shot himself on the balconyhad been very depressed.
3. The son of the colonel who shot himself on the balcony had been very depressed.

In [16] they have measured the difficulty of integrating the relative pronoun to the
temporary syntactic structure. They have shown that the difficulty of integrating the
relative pronoun in sentences 1 and 2 is greater than the one of integrating it in sentence
3. The Surprisal model predicts this pattern because the integration in the ambiguous
case would have a probability that is the sum of the probabilities of the two different
interpretations. The greater probability would mean a smaller surprisal and a smaller
difficulty, respectively.

TheBasemodel predicted a likelihood of 116 for sentence 1; 107, for sentence 2 and
100 or 107, for sentence 3, depending on the syntactic interpretation. On the other hand,
the Syntacticmodel predicted a likelihood of 132 for sentence 1; 126, for sentence 2
and 120 or 126, for sentence 3 depending on the syntactic interpretation. Taking the sum
of the likelihoods of the two interpretations of sentence 3,both of our models would
emulate the human pattern.
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The only demerit of that assumption is that our model is strictly serial. Summing
likelihoods of different attachments would assume parallel processing at least at some
point in the sentence. However, there might be an alternative interpretation of the re-
sults. The DeSR parser cannot distinguish between the ambiguous situation and the
situation where the relative pronoun is attached low (i.e. in sentence 2). The solution
is to use differently defined parsing actions, e.g. the actions of Maltparser [12]. This
would also make the parsing algorithm more incremental.

Experiment 3. In Experiment 3 we use materials from [6]. In the sentences below, ma-
trix verbs from subject extracted relative clauses have been easier to process by humans
than those from object extracted relative clauses. It must be noted that the surprisal
model cannot explain the observed difficulty pattern.

1. The reporter who sent the photographer to the editor hopedfor a good story.
2. The reporter who the photographer sent to the editor hopedfor a good story.

There are two dependency relations that are to be built for the integration of‘sent’
to the temporary syntactic structure of the sentence with the subject extracted relative
clause. One of them is the subject relation between‘who’ and the matrix verb of the
relative clause. The other is the modifier relation between‘reporter’ and the matrix verb.
The dependency relations to be built for the integration of‘sent’ in the object extracted
relative clause are: the subject relation between‘photographer’and‘sent’; the modifier
relation between‘reporter’ and‘sent’ and the object relation between‘who’ and‘sent’.
The difficulty at the integration of‘sent’ would depend on the total likelihood of all the
syntactic relations to be built between the matrix verb of the relative clause and other
tokens.

The Basemodel integrates‘sent’ in sentence 1 with a likelihood of 268 (133 for
the subject relation and 135 for the modifier relation). It integrates‘sent’ in sentence 2
with a likelihood of 144 (4 for the subject relation, 116 for the modifier relation and 24
for the object relation). The pattern is as predicted because the more likely integration
causes less difficulty. TheSyntacticmodel shows a similar pattern. For sentence 1, the
matrix verb of the relative clause is integrated with a likelihood of 300 (146 for the
subject relation and 154 for the modifier relation). In sentence 2 the likelihood of the
integration of‘sent’ is 220 (38 for the subject relation, 159 for the modifier relation and
23 for the object relation). The pattern is again as predicted.

Experiment 4. In experiment 4 we use materials from [6]. There are three sentences
with an object extracted relative clause modifying the subject of the sentence. The sub-
ject in the relative clause is with varying length. The sentences are given below:

1. The administrator who the nurse supervised scolded the medic . . .
2. The administrator who the nurse from the clinic supervised scolded the medic . . .
3. The administrator who the nurse who was from the clinic supervised scolded the
medic . . .

In [6] it is reported that the difficulty associated with the integration of the verb
of the relative clause increases with the increase of the distance to the subject of the
relative clause. This means that the verb of the relative clause of sentence 1 will be less
difficult to integrate than the one in sentence 2 which will beless difficult to integrate
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than the one in sentence 3. It must be noted that the Surprisalmodel cannot explain the
observed difficulty pattern.

There are three syntactic relations to be built in order to integrate‘supervised’into
the temporary syntactic structure of the sentence. They are: the subject relation be-
tween‘nurse’ and‘supervised’; the modifier relation between‘administrator’ and‘su-
pervised’; and the object relation between‘who’ and‘supervised’.

In this experiment both of our models predict what the surprisal model would. That
is, with the increase of distance, difficulty will not increase but decrease. TheBase
model assigns likelihoods of 258 (117 for the subject relation; 51 for the object relation
and 90 for the modifier relation) for sentence 1; 265 (124 for the subject relation; 51 for
the object relation and 90 for the modifier relation) for sentence 2 and 280 (139 for the
subject relation; 51 for the object relation and 90 for the modifier relation) for sentence
3.

The patterns of theSyntacticmodel are similar to those of theBasemodel. The
likelihood of the integration of the verb of the relative clause is 301 (129 for the subject
relation; 55 for the object relation and 117 for the modifier relation) for sentence 1; 322
(152 for the subject relation; 55 for the object relation and115 for the modifier relation)
for sentence 2 and 338 (168 for the subject relation; 55 for the object relation and 115
for the modifier relation) for sentence 3.

The possible reason for our results is the lack of features ofpast tokens that are not
in the stack of the parser. We should also mention that distance can be included as a
feature in a parsing model and used in the learning phase.

Experiment 5. In experiment 5 we have used materials from [15]. They have shown
that reduced relative clauses with non-subject context where the modifying verb has
different forms for past tense and past participle, are easier to understand than reduced
relative clauses with non-subject context where the modifying verb is ambiguous. It
must be noted that the surprisal model cannot explain the observed difficulty pattern.
The sentences are given below:

1. The coach smiled at the player thrown the frisbee.
2. The coach smiled at the player tossed the frisbee.

In [15] it has been shown that the integration of‘thrown’ into the syntactic structure
of sentence 1 is easier than the integration of‘tossed’ into the syntactic structure of
sentence 2. In both of the sentences, the verb in the relativeclause is attached to the
preceding noun with a modifier relation.

None of our models shows any clear pattern. TheBasemodel attaches‘thrown’ to
‘player’ with a likelihood of 125 and‘tossed’to ‘player’ with a likelihood of 126. These
numbers for theSyntacticmodel are 145 and 144, respectively. The major issue in this
experiment is the use of the past participle part-of-speechtag for the verb‘tossed’. The
use of this tag assumes that the main-verb/reduced relativeclause ambiguity has been
resolved and it should not have been resolved at the time of integration.

There are two ways to overcome this demerit of the parser: to use a single tag for the
verbs in past tense and participle form or to integrate part-of-speech tagging into parsing
vertically. Both of these solutions have their demerits andbottlenecks. For example, the
implementation of the former would prevent the parser from using valuable information
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in disambiguation. The implementation of the latter would put too much weight on the
knowledge-poor part-of-speech component to take important parsing decisions.

6 Conclusions

In this paper we have used two models to parse experimental materials from a num-
ber of studies. Our models have predicted the pattern of human difficulty for only one
of five experiments. The reasons for the performance of the models in the other four
experiments can be classified as follows:

In experiment 1 and experiment 4, the reason is the lack of features of previous
tokens that are not in the stack. It may also be useful to use the number of words between
a head and its dependent as a feature in the feature model. It must be noted that the
Surprisal model can explain human difficulty patterns in experiment 1 but it cannot
explain them in experiment 4. We believe that there is one andthe same reason for the
performance of our models on the materials from both experiment 1 and experiment 4.

The reason for the performance of our model on the materials from experiment 2
is the definition of the parsing actions of the parser that we use. This way, our models
cannot distinguish between an unresolved ambiguity case and one of the unambiguous
cases at the time of integration. One way to address this demerit is to use differently
defined parsing actions such as the actions of another dependency shift-reduce parser,
Maltparser [12]. This would allow processing in a more incremental way, as well.

For experiment 7, part-of-speech tagging and parsing should be integrated in a rea-
sonable way, in order for the experiment to be plausibly conducted. A possible integra-
tion should result in a main verb/reduced relative clause disambiguation performed by
both the part-of-speech tagger and the parser, at the same time.

Taking into consideration our emulation results, we have identified three ways to
make our models of the human parser more plausible. They are:a change in the feature
model for training; using parsing actions that would make processing more incremental
and the integration of part-of-speech tagging and parsing for joint disambiguation of the
main-verb/reduced relative clause ambiguity. We expect that using these techniques, it
could be possible to increase the accuracy of the parser, as well.

7 Future Work

For future work, we intend to change the feature model of the parser incorporating
features of previous tokens and possibly, a feature for the distance between the heads
and their dependents. We intend to use a parser with differently defined actions in order
to emulate properly the human difficulty pattern for experiments in which ambiguity
facilitates processing. We consider to initiate the integration of part-of-speech tagging
into the parsing process. We will also explore the way that these improvements would
affect ambiguity resolution and the accuracy of the parser.
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