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Abstract: The administrators and designers of modern Information Systems face the problem of maintaining their 
systems in the presence of frequently occurring changes in any counterpart of it. In other words, when a 
change occurs in any point of the system –e.g., source, schema, view, software construct– they should 
propagate the change in all the involved parts of the system. Hence, it is imperative that the whole process 
should be done correctly, i.e., the change should be propagated to all the appropriate points of the system, 
with a limited overhead imposed on both the system and the humans, who design and maintain it. In this 
paper, we are dealing with the problem of evolution in the context of databases. First, we present a coherent, 
graph-based framework for capturing the effect of potential changes in the database software of an 
Information System. Next, we describe a generic annotation policy for database evolution and we propose a 
feasible and powerful extension to the SQL language specifically tailored for the management of evolution. 
Finally, we demonstrate the efficiency and feasibility of our approach through a case study based on a real-
world situation occurred in the Greek public sector. 

1 INTRODUCTION 

In typical organizational Information Systems, the 
designer/administrator is frequently faced with the 
necessity to predict the impact of a small change or a 
more sophisticated reorganization in the overall da-
tabase configuration. For instance, consider the sim-
plest configuration of a company’s database which 
holds information about the employees and the pro-
jects they work for, shown in Figure 1. A view se-
lects the employees who work for a project along 
with the project name. A query accesses this view, 
selecting all employees who work for the Olympic 
Games. Suppose the administrator decides that em-
ployees’ name should be split into last and first 
name, by adding two new attributes in the underly-
ing relation and deleting the existing attribute name. 
Should these changes be also reflected to the view 
and the query, then these constructs must be rewrit-
ten. Even a small change like this, usually impacts a 
large variety of applications and data stores related 
to the system: queries and data entry forms can be 

invalidated, application programs might crash (re-
sulting in the overall failure of more complex work-
flows), and several pages in the corporate Web 
server may become invisible; i.e., they cannot be 
generated any more. It is imperative that such 
changes should be resolved and propagated to the 
involved counterparts of the system.  

Syntactic as well as semantic adaptation of 
workload –mainly queries and views– to changes 
occurring in the database schema is a time-consum-
ing task, treated in most situations manually by the 
administrators or the application developers. Current 
DBMS languages do not incorporate evolution se-
mantics, so that administrators / developers could 
prescribe the behavior of the system when database 
schema evolution changes occur.  On the contrary, 
to deal with the problems occurred by the evolution 
in databases, several practical techniques are usually 
used for this reason, like the use of variable names as 
placeholders for the real names of constructs like 
attributes and tables. For example, Oracle’s PL/SQL 
uses the %TYPE and %ROWTYPE constructs to define  
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Figure 1: A simple configuration of a query over a view, 
defined over three relations. 

variables as they are defined within the database. If 
the datatype or precision of a column changes, the 
program automatically picks up the new definition 
from the database without having to make any code 
changes. Hence, the appropriate enrichment of the 
procedural code with such constructs provides data 
independence, reduces maintenance costs, and 
allows programs to adapt as the database changes to 
meet novel business requirements. However, such 
techniques partially confront the problem, as they 
are dealing with the simplest cases of evolution. 

Database evolution is a more complicated issue; 
we mention here an experience described by 
(Sjoberg, 1993). In his report, a quantification of the 
database schema evolution problem in large long-
lived application systems is presented. Over a period 
of 18 months, which included both the development 
and the operational phase of the examined system, 
they recorded 140% increase in the number of 
relations and over 200% increase in the number of 
attributes, as well as several evolution changes in all 
existing relations of the system. 

Due to its great significance and practical im-
portance, the database evolution has already gained 
research attention. Several works have identified this 
problem as a great challenge for database research-
ers (Roddick, 2000) and various efforts have been 
proposed so far (Bellahsene, 2002), (Gupta, 2001), 
(Nica, 1998), (Velegrakis, 2004). In our work, we 
extend previous results (Nica, 1998) by incorporat-
ing the addition of attributes and by appropriately 
treating conditions. Also, we allow the restructuring 
of the database, which is considered as a graph in 
our framework, towards either the retention of the 
original query semantics – a similar but quite re-
strictive approach has been proposed by (Velegrakis, 
2004) – or their appropriate readjustment to the new 
semantics. In addition, we complement our approach 
by proposing an elegant extension to the SQL lan-
guage for the management of database evolution. 
Compared with previous efforts (Roddick, 1992), 
our work does not require either schema versioning 
or integration of time within database schema evo-

lution. In fact, we provide rules for the transforma-
tion and adaptation of queries and views to the last 
valid database schema without the assumption that 
the transformed queries retain the same semantics. 

Contributions. Briefly, the main contributions 
of this work are as follows. 
− We describe a graph-based model that uni-

formly covers database constructs, such as re-
lational tables, views, database constraints and 
SQL queries, as first class citizens (Section 2.)  

− We present a mechanism for the annotation of 
the graph’s constructs with elements that fa-
cilitate what-if analysis and predetermine the 
reaction to evolution events occurring in the 
database schema (Section 3.) 

− We propose feasible and powerful SQL exten-
sions that enable the implementation of our ap-
proach for evolution management (Section 4.) 

− We demonstrate the efficiency and feasibility 
of our approach through a real-world case study 
occurred in the Greek public sector (Section 5.) 

2 GRAPH-BASED MODELING 
OF DATABASE SCHEMA 
EVOLUTION 

This section proposes a graph modeling technique 
that uniformly covers relational tables, views, data-
base constraints, and SQL queries as first class citi-
zens. Our technique provides an overall picture not 
only for the actual source database schema but also 
for views and queries accessing the database, since 
these constructs are incorporated in the model.  

Formally, an evolving database schema along 
with its workload (i.e., queries and views) is repre-
sented as a directed graph G=(V,E). The nodes of 
the graph represent the entities of our model, where 
the edges represent the relationships among these 
entities. Moreover, we distinguish the following 
essential components, which are included in our 
model: relations, conditions (covering database con-
straints and query conditions), queries and views.  

Relations, R. Each relation R(Ω1,Ω2,…,Ωn) in 
the database schema, is represented as a directed 
graph, which comprises: (a) a relation node, R, 
representing the relation schema; (b) n attribute 
nodes, Ωi∈Ω, i=1..n, one for each of the attributes; 
and (c) n schema relationships, ES, directing from 
the relation node towards the attribute nodes, 
indicating that the attribute belongs to the relation.  
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Conditions, C. Conditions refer both to selection 
conditions, of queries and views and constraints, of 
the database schema. We consider three classes of 
atomic conditions that are composed through the 
appropriate usage of an operator op belonging to the 
set Op, containing the usual binary operators, (e.g., 
<, >, =, ≤, ≥, !=, IN, EXISTS, ANY): (a) Ω op 
constant; (b) Ω op Ω’; and (c) Ω op Q. (Ω, Ω’ 
are attributes of the underlying relations and Q is a 
query). A condition node is used for the 
representation of the condition. The node is tagged 
with the respective operator and it is connected to 
the operand nodes of the conjunct clause through the 
respective operand relationships, O. Composite 
conditions are easily constructed by tagging the 
condition node with a Boolean operator (e.g., AND 
or OR) and the respective edges, to the conditions 
composing the composite condition.  

Queries, Q. The graph representation of a Select 
- Project - Join - Group By (SPJG) query involves a 
new node representing the query, namely query 
node, and attribute nodes corresponding to the 
schema of the query. Thus, the query graph is a 
directed graph connecting the query node with all its 
schema attributes, through schema relationships. In 
order to represent the relationship between the query 
graph and the underlying relations, the query is 
resolved into its essential parts: SELECT, FROM, 
WHERE, GROUP BY, HAVING, and ORDER BY, each 
of which is eventually mapped to a subgraph.  

Select part. Each query is assumed to own a 
schema that comprises the attributes, either with 
their original or alias names, appearing in the 
SELECT clause. In this context, the SELECT part of 
the query maps the respective attributes of the in-
volved relations to the attributes of the query schema 
through map-select relationships, EM, directing from 
the query attributes towards the relation attributes. 

From part. The FROM clause of a query is con-
sidered as the relationship between the query and the 
relations involved in this query. Thus, the relations 
included in the FROM part are combined with the 
query node through from relationships, EF, directing 
from the query node towards the relation nodes. 

Where and Having parts. We assume the WHERE 
and/or HAVING clauses of a query in conjunctive 
normal form. Thus, we introduce two directed edges, 
namely where relationships, Ew, and having 
relationships, EH, both starting from a query node 
towards an operator node corresponding to the 
conjunction of the highest level. 

Group and Order By part. For the representation 
of aggregate queries, two special purpose nodes are 
employed: (a) a new node denoted as GB∈GB, to 
capture the set of attributes acting as the aggrega-
tors; and (b) one node per aggregate function labeled 
with the name of the employed aggregate function; 
e.g., COUNT, SUM, MIN. For the aggregators, we use 
edges directing from the query node towards the GB 
node that are labeled <group-by>, indicating 
group-by relationships, EG. The GB node is con-
nected with each of the aggregators through an edge 
tagged also as <group-by>, directing from the GB 
node towards the respective attributes. These edges 
are additionally tagged according to the order of the 
aggregators; we use an identifier i to represent the i-
th aggregator. Moreover, for every aggregated at-
tribute in the query schema, there exists an edge 
directing from this attribute towards the aggregate 
function node as well as an edge from the function 
node towards the respective relation attribute. Both 
edges are labeled <map-select> and belong to 
EM, as these relationships indicate the mapping of the 
query attribute to the corresponding relation attribute 
through the aggregate function node. The represen-
tation of the ORDER BY clause is performed 
similarly, whereas nested queries and functions used 
in queries are also incorporated in our model. 

Views, V. Views are considered either as queries 
or relations (materialized views), thus, V ⊆ R∪Q. 

3 CONSTRUCTS ANNOTATION 
WITH EVOLUTION POLICIES 

Evolution changes may affect the software around 
the database (mainly views and queries) in two 
ways: (a) syntactically, a change may evoke a com-
pilation or execution failure during the execution of 
a piece of code; and (b) semantically, a change may 
have an effect on the semantics of the software used. 
In the context of the proposed graph, changes in the 
database schema are events, which transform spe-
cific parts of the graph (e.g., a relation graph sus-
taining a change) and eventually affect other de-
pendent graph constructs (e.g., a view graph de-
pending on the specific relation). The latter may 
raise, in turn, new evolution changes, which have 
impact on other graph constructs (such as a query 
graph depending on the specific view.)  

To handle schema evolution, the constructs of 
the graph are annotated with elements that facilitate 
what-if analysis and predetermine the reaction to 
evolution events that may occur. Each construct is 
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enriched with policies that allow the designer to 
specify the behavior of the annotated construct 
whenever events occur. The combination of an event 
with a policy determined by the designer triggers the 
execution of the appropriate action that either blocks 
the event or reshapes the graph to adapt to the pro-
posed change. The annotated graph is stored in a 
metadata repository and it is accessed from a what-if 
analysis module. This module notifies the designer 
on the effect of a potential change and the extent to 
which the modification to the existing code can be 
fully automated for adapting to the change. 

 
Figure 2: Annotating relation PROJ. 

The space of potential events comprises the 
Cartesian product of two subspaces. The space of 
hypothetical actions (addition, deletion, and modifi-
cation) over graph constructs sustaining evolution 
changes (e.g., relations, views, attributes, and condi-
tions). For each of the above events, the administra-
tor annotates graph constructs affected by the event 
with policies that dictate the way they will regulate 
the change. Three kinds of policies exist, as follows. 

(a) Propagate the change, meaning that the 
graph must be reshaped to adjust to the new 
semantics incurred by the event.  

(b) Block the change, meaning that we want to 
retain the old semantics of the graph and the 
hypothetical event must be blocked or, at least, 
constrained, through some rewriting that preserves 
the old semantics (Nica, 1998), (Velegrakis, 2004). 
In this case, the specific method that may be used is 
orthogonal to our approach. 

(c) Prompt the administrator to interactively 
decide what will eventually happen. 

Consider the graph of the query SELECT Name, 
StartDate FROM PROJ (Figure 2), which projects the 
name and the start date of all projects stored in the 
database. The annotation of relation PROJ with policy 
for propagating addition indicates that the addition 
of a new attribute, namely DURATION, to the PROJ 
relation will be propagated to the query and will be 
included in the SELECT clause of the query. 
The graph annotation of the database ecosystem with 
policies for events occurs in a principled fashion:  

1. First, we prescribe the default policies for all 
kinds of constructs, in a database-wide context. 

2. Next, we prescribe defaults policies for specific 
relations, queries and views of the system, with 
respect to any combination of the following: the 
deletion of the construct per se, as well as the 
addition, deletion or modification of a con-
struct’s descendants. The descendants can be ap-
propriately specified by their type, as applicable 
(i.e., attributes, constraints or conditions).  

3. Lastly, we annotate specific low-granularity con-
structs, i.e., attributes, constraints or conditions, 
with policies for their deletion or modification. 

The above arrangement is order-dependent and 
exploits the fact that there is a partial order of policy 
overriding. The order is straightforward: defaults are 
overridden by specific annotations and high-level 
construct annotations concerning their descendants 
are overridden by any annotation of such descendant:  
           Default ≤{relation, query, view}  
                        ≤ {attribute, condition, constraint} 

4 LANGUAGE EXTENSIONS 

In this section, we present SQL extensions that en-
able the implementation of the previous techniques 
for the management of evolution. For extending a 
system catalog with extra information regarding 
evolution purposes, we provide extensions to SQL 
regarding both top level construct definitions, like 
tables, views, and queries, as well as fine grain con-
structs such as attributes, conditions of views/ que-
ries, and database constraints. All extensions out-
lined are given in BNF and throughout the section 
we refer to the configuration shown in Figure 1. 

4.1 Database-Wide Default Values 

Regarding the definition of database default policies, 
we consider each assertion as a tuple (event, policy). 
Syntactically, this is expressed as follows: 

ON <event> THEN <policy> 

An event refers to evolution events in the database 
schema comprising an event type, such as Delete, 
Add, Modify, Rename and a construct type, which 
takes any of the following values in the partial order 
presented:  

i. NODE 
ii. RELATION, QUERY, VIEW 
iii. ATTRIBUTE, CONDITION, PK, FK, NNC, UC 

Note that we annotate nodes with default values only 
for changes applied to themselves and not to any of 
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their ancestors or descendants. For example, we can 
have the following annotations: 

ON DELETE NODE THEN PROPAGATE 
ON DELETE ATTRIBUTE THEN PROMPT 

The definitions of the default policies are 
expressed in SQL as follows. 

 SQL Syntax 
db-spec::= CREATE DATABASE <db-name> [policy-list] 
policy-list::= policy-clause [,policy-clause] 
policy-clause::= ON event THEN policy 
event::= event-type construct-type 
event-type::= Add | Delete | Modify | Rename  
construct-type::= NODE | RELATION | QUERY | VIEW | 
ATTRIBUTE | CONDITION | PK | FK | NNC | UC 
policy::= propagate | block | prompt 

 Example 
CREATE DATABASE company 
ON DELETE ATTRIBUTE THEN PROMPT 

4.2 Top Level Constructs 

We extend SQL syntax to include evolution-based 
semantics both in DDL statements as well as in SQL 
queries. The general syntax is: 

ON <event> TO <construct> THEN <policy> 

where event again refers to evolution events in the 
database schema, construct refers to the specific 
database part suffering the event and policy can take 
the values {propagate, block, prompt}.  

4.2.1 Relations 

Definition of policies on relations regarding their 
behaviour on evolution changes is primarily en-
forced upon creation, and thus, we extend CREATE 
TABLE syntax with certain policy clauses. Policies 
imposed in a relation-wide scope can be applied 
both to the relation itself as well as to all schema 
attributes and constraints. In that way, the adminis-
trator has the ability to annotate with a single clause 
the entire relation schema instead of annotating each 
constituent attribute or constraint separately. 

 SQL Syntax 
table-spec::= CREATE TABLE <table-name>  

(table-element-list [, policy-list]) 
policy-list::= policy-clause [,policy-clause] 
policy-clause::= ON event TO construct THEN policy 
event::= Add Attribute | Delete Attribute | Rename 
Attribute | Delete Relation | Rename Relation | Add 
Condition | Delete Condition | Modify Condition 
policy::= propagate | block | prompt 
construct::= <table-name> 

 Example 
CREATE TABLE works  
  (EMP# NUMBER(3), PROJ# NUMBER(3), HOURS NUMBER(5), 
   ON Add Attribute TO works THEN propagate) 

The above syntax corresponds to the annotation of 
the respective relation node (i.e., works) with the 

policy that allows the addition of attributes and 
propagates this addition to all queries and views 
accessing this relation. Similarly, policy clauses can 
extend ALTER TABLE statements, enabling the 
administrator to define policies on existing relations.  

4.2.2 Views 

Views are inherent constructs of the database 
schema that constitute queries over the database 
schema –w.r.t. to views’ definition– and relations to 
other queries –w.r.t. views’ functionality. Therefore, 
views invoke evolution events when (a) their 
definition is altered, affecting all queries defined 
over them and (b) the relations over which they are 
defined are affected by schema changes. We enrich 
existing SQL syntax for views creation to capture 
potential events on their definitions as follows. 

 SQL Syntax 
view-spec::= CREATE VIEW <view-name> AS 

query-expression [policy-list] 
policy-list::= policy-clause [,policy-clause] 
policy-clause::= ON event TO construct THEN policy 
event::= Add Attribute | Delete Attribute | Rename 
Attribute | Delete View | Rename View | Delete 
Relation | Rename Relation | Add Condition | 
Delete Condition | Modify Condition 
policy::= propagate | block | prompt 
construct::= <view-name> | <table-name> 

The policies capture events occurring at the 
source tables of views’ definition (i.e., the construct 
is a table-name) or events occurring at the view 
definition itself (i.e., the construct is a view-name).  

 Example 
CREATE VIEW emps-prjs AS 
  SELECT E.Emp#, E.Name, P.Projname 
  FROM Emp E,Works W,Proj P 
  WHERE E.EMP#=W.EMP# AND W.Proj#=P.Proj# 
  ON Modify Condition TO emps-prjs THEN block 

Such syntax corresponds to the annotation of the 
view node emps-prjs with a policy, which blocks 
changes in the WHERE clause of the view definition. 

4.2.3 Queries 

Queries are considered as top-level constructs in our 
framework and they are the primary consumers of 
evolution changes occurring at the database level. 
Policies’ clauses enrich query syntax with evolution 
semantics regarding the reaction of the query to such 
changes and have a query-wide scope, i.e., prescribe 
the behavior of the query itself and the query con-
stituents (query attributes, query conditions). In such 
way, the developer may define a query-wide reac-
tion to an evolution change instead of assigning ex-
plicit policies to each query attribute and condition.  
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 SQL Syntax 
query-expression::=  
SELECT [ALL|DISTINCT] scalar-expression-list 

FROM table-expression 
[WHERE search-condition] 
[GROUP BY grouping-column-list] 
[HAVING group-condition] 
[ORDER BY sort-specification-list] 
[policy-list] 

policy-list::= policy-clause [,policy-clause] 
policy-clause::= ON event TO construct THEN policy 
event::= Add Attribute | Delete Attribute | Rename 
Attribute | Delete View | Rename View | Delete 
Relation | Rename Relation | Add Condition | 
Delete Condition | Modify Condition 
policy::= propagate | block | prompt 
construct::= <view-name> | <table-name> 

 Example 
Q: SELECT EP.Emp#, EP.Name 

FROM emps-prjs EP 
WHERE EP.PRJNAME = ‘Olympic Games’ 

   ON Add Attribute TO emps-prjs THEN block 

The above syntax corresponds to the annotation 
of the query node Q with a policy, which blocks the 
inclusion of added attributes in the underlying view 
emps-prjs in the select clause of the query syntax. 

4.3 Fine Grain Constructs 

Policy annotation can be further specialized to fine 
grain constructs such as attributes, database con-
straints and conditions of views/queries. Such an-
notations enable the administrator to define specific 
policies on these constructs, which override policies 
defined on their top-level containers. 

4.3.1 Attributes 

Policies are defined for relation attributes in table 
definition and for view or query attributes in view or 
query definitions, respectively. Policies’ clauses 
refer to attribute constructs, which may be affected 
by an evolution change, prescribing in that way the 
specific behavior of that attribute. 

 SQL Syntax 
policy-clause::= ON event TO construct THEN policy 
event::= Delete Attribute | Rename Attribute |    
         Modify Domain 
policy::= propagate | block | prompt 
construct::= [<table-name> | <view-name>.] 

<attribute-name> 

 Example 
CREATE TABLE emp  
  (EMP# NUMBER(3), 
   Name Varchar2(150), 
    ... , 
   ON Delete Attribute TO Name THEN block) 

Such syntax corresponds to the annotation of the 
attribute node Name with the explicit policy that 
blocks the node deletion from the container relation. 
Q: SELECT E.Emp#, E.Name, P.Projname 
   FROM Emp E,Works W,Proj P 
   WHERE E.EMP#=W.EMP# AND W.Proj#=P.Proj# 

  ON Delete Attribute TO Name THEN propagate 

Such syntax corresponds to the annotation of the 
projected attribute node Name of the query Q with the 
explicit policy for allowing the node deletion from 
the select clause of the query (i.e., the respective 
attribute is removed from the underlying database.) 

4.3.2 Constraints 

Similarly, policies are defined on database con-
straints to override potential defined policies on their 
top-level containers (i.e., relation) and thus to pre-
scribe their specific behavior to evolution changes. 

 SQL Syntax 
policy-clause::= ON event TO construct THEN policy 
event::= Delete Constraint|Modify Constraint 
policy::= propagate | block | prompt 
construct::=[<table-name>.]<constraint-name> 

 Example 
CREATE TABLE emp  
(EMP# NUMBER(3), 
 Name Varchar2(150), 
 Constraint EMP.PK PRIMARY KEY (EMP#), 
 ON Modify Constraint TO EMP.PK THEN propagate) 

The above syntax corresponds to the annotation 
of the constraint node Emp.PK with the explicit pol-
icy for allowing the modification of itself and 
propagating this change to all dependent constructs. 

4.3.3 Conditions 

Policies are defined on condition clauses of queries 
and views for prescribing their behavior to evolution 
events too. The modification or deletion of a view or 
a query condition semantically impacts dependents 
parts of the system. Thus, policies imposed on 
conditions override query- or view-wide policies and 
handle semantic changes invoked by such events.  

 SQL Syntax 
policy-clause::= ON event TO construct THEN policy 
event::= Delete Condition|Modify Condition 
policy::= propagate | block | prompt 
construct::=[<view-name>.]<condition-name> 

Moreover, we provide a facility for the man-
agement of conditions as first class citizens. We em-
ploy a specific name for each condition as follows. 
CREATE CONDITION <condition> AS <expression> 

For instance, we might have the following 
statements, expressing (a) a simple condition em-
ployed in a query, (b) a foreign key constraint, and 
(c) a join condition, respectively. 
CREATE CONDITION Emp_Age_Cond AS AGE>50 
CREATE CONDITION Works_Emp_FK AS WORKS.EMP# IN 

EMP.EMP# 
CREATE CONDITION Works_Emp_J AS 
   WORKS.EMP#=EMP.EMP# 

Traditional statements for the definition of foreign 
keys or assertions for attribute domains are easily 
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refined to the above “normal form”, without 
necessarily obliging the database designer or 
administrator to abide by the above syntax.  

Conditions may be employed in the WHERE 
clause. For example, a query SELECT * FROM EMP 
WHERE AGE_COND would simply use the condition as 
a macro. Parametric conditions, to allow referring to 
aliases in SQL queries are straightforward. One can 
also deal with the problem of existing code in a 
straightforward manner, since automatic condition 
names can be assigned to all the queries.  

5 EVALUATION 

We evaluated the proposed framework and capabili-
ties of the approach presented via the reverse engi-
neering of a real-world evolution scenario extracted 
from an application of the Greek public sector. Our 
goal was to minimize the human effort required for 
defining and setting the evolution metadata on the 
system by using the proposed language extensions. 

We extracted queries and views from applica-
tions and stored procedures, and we monitored the 
events occurred on the database schema and the way 
affected constructs had been manually adjusted by 
the designers (e.g., through some rewriting) to each 
evolution event. In doing so, we resolved the appro-
priate policies per event for all affected constructs. 
Next, we used our approach for mapping constructs 
to graphs and annotate them with policies. Our GUI, 
namely HECATAEUS, allows for the representation of 
the database graph and its annotation with policies 
regarding evolution semantics and enables the user 
to explicitly define policies on graph constructs and 
perform what-if analysis for several evolution cases. 

The configuration used comprises a total set of 
52 queries over 18 relations. The evolution events 
occurred in the database schema include renaming of 
relations and attributes, modification of attribute 
domain, deletion of attributes, and modification of 
primary key constraints. Per event, we employed the 
appropriate propagate or block policy on the 
relations, queries or attributes affected by the event.  

In the context of our graph model, our configu-
ration comprised approximately 2500 nodes 
manually annotated with policies for each event that 
were affected by. This was a rather time-consuming 
task, as queries, query attributes, and relations had to 
be explicitly annotated. Appropriate policies were 
defined over different kinds of nodes (Table 1.)  

Per query and relation, we counted the number 
of nodes manually annotated with policies propa-
gate or block per event and the results are summa-

rized in Table 2. Each node may have been, anno-
tated with more than one policy when such annota-
tions address different events; e.g., an attribute node 
may permit its renaming, whereas block its deletion. 

Additionally, we employed the proposed SQL 
extensions to impose the same policies on the graph. 
We measured the number of the policy clauses, 
which must enrich existing SQL and DDL 
commands in order to annotate the same policies on 
the graph as opposed to the number of manual 
annotations on nodes. Hence, we evaluated 3 
different cases: a) use of a default propagate policy 
for a specific query and for the events Delete, 
Rename and Modify Domains of attributes (query 
scope) instead of manually annotating each query 
attribute, b) use of default policies for all relations 
(relation scope) for propagating the aforementioned 
events, instead of annotating each query and c) use 
of default propagate policy for database (database 
scope) to allow the renaming of relations and the 
addition of attributes instead of annotating each 
relation. The results are shown in Table 3. 

With the usage of the proposed SQL extensions, 
the human effort for explicitly annotating these 
nodes is minimized. Specifically, in the case study 
previously described, the whole process of manually 
identifying and adapting the changes lasted for 6 
man-months, whereas by using our approach and 
appropriately annotating the database constructs and 
applying the respective policies, the same process 
lasted for less than half a man-month. 

Table 1: Kind of nodes annotated per event. 
Event Annotated nodes  

Rename relation Relation nodes 
Add attributes Relation/Query nodes 
Delete Attributes Attribute nodes 
Rename Attributes Attribute nodes 
Domain Modification  Attribute nodes 
Condition Modification  Condition nodes 

Table 2: Distribution of annotated nodes per kind of poli-
cies and events. 

# of nodes Event Propagate Block 
Rename relations 18 0 
Add attributes 64 13 
Delete Attributes 1608 92 
Rename Attributes 1615 85 
Domain Modification 1690 10 
Condition Modification 0 21 
Total Annotations 4995 221 

Table 3: Operations with and without SQL extensions. 

# of operations Scope Annotations Policy Clauses 
Query scope 486 9 
Relation Scope  5180 293 
Database Scope 36 2 
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6 RELATED WORK 

SQL Extensions. SQL/SE is a query language exten-
sion for databases supporting schema evolution 
(Roddick, 1992). SQL/SE provides extensions for 
querying evolvable database schemas in the context 
of schema versioning and temporal databases. Our 
proposed set of extensions does not require the ex-
istence of schema versioning or the integration of 
time within database schema evolution. We provide 
rules for the transformation and adaptation of que-
ries and views to the last valid database schema 
without the assumption that the transformed queries 
retain the same semantics. Another extension to 
SQL, namely SchemaSQL supports multi database 
querying (Lakshmanan, 2001). SchemaSQL focuses 
on the problem of interoperability between different 
schemas and their respective instances, enabling the 
user to express queries over different schemas. 

Evolution. A number of research works are re-
lated to the problems of database schema evolution. 
Roddick surveys schema versioning and evolution 
(Roddick, 1995) and presents a categorization of the 
overall issues regarding evolution and change in data 
management (Roddick, 2000). The problem of view 
adaptation after redefinition is mainly investigated in 
(Bellahsene, 2002; Gupta, 2001), where changes in 
views definition are invoked by the user and rewrit-
ing is used to keep the view consistent with the da-
tabase schema. Bellahsene (2002) deals also with 
warehouse adaptation, but only for SPJ views. Nica 
(1998) deals with the view synchronization problem, 
where the views become invalid after schema 
changes in the underlying base relations. We extend 
that work to incorporate attribute additions and the 
treatment of conditions. In (Fan, 2004), AutoMed, a 
framework for managing schema evolution in data 
warehouse environments is presented. They 
introduce a schema transformation-based approach 
to handle evolution of the source and the warehouse 
schema. Also, in (Velegrakis, 2004) they propose a 
framework for the management of evolution, but 
their model is more restrictive as it is retains the 
original semantics of the queries. Our work is a 
larger framework that allows the restructuring of the 
database graph (i.e., model) either towards keeping 
the original semantics or towards its readjustment to 
the new semantics. 

7 CONCLUSIONS 

In this paper, we have dealt with the problem of da-
tabase evolution. We have provided a coherent 

framework for propagating potential changes of the 
database software to all the affected points of the 
system, with a limited overhead imposed on both the 
system and the humans, who design and maintain it. 
We have proposed a feasible and powerful extension 
to the SQL language specifically tailored for the 
management of evolution. The applicability and 
efficiency of our approach has been tested in a real-
world scenario occurred in the Greek public sector. 

Regarding future work, we plan to pursue our re-
search toward the identification of patterns of evolu-
tion sequences. 
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