
LEGACY SYSTEMS ADAPTATION USING THE SERVICE
ORIENTED APPROACH

Francisco Javier Nieto, Iñigo Cañadas and Leire Bastida
European Software Institute, Parque Tecnológico #204, 48170 Zamudio, Bizkaia, Spain

Keywords: Legacy Systems, Service Oriented Architectures, Web Services, Methodology, Services Composition.

Abstract: Legacy systems are the core IT assets of the great majority of organisations that support their critical
business processes. Integrating those existing legacy systems with the rest of IT infrastructure is a complex
and difficult task. Legacy systems are often undocumented, inflexible and tightly coupled and imply high
cost of maintenance. Many organisations are starting to look at Service Oriented Architectures (SOA) as a
potential way to expose their existing legacy investment as functional units to be re-used and exploited
externally. This paper is focused on providing guidance to those organisations which want to use SOA on
legacy adaptation and transformation. For doing so, this paper defines a vision and a set of best practices
that any organisation should follow in order to expose their useful legacy functionalities as part of a SOA
environment, allowing the development of hybrid systems understood as compositions of new services as
well as of legacy systems and existing components wrapped as services.

1 INTRODUCTION

Many organisations have mission-critical systems
that have been running their business for years.
These systems, where organisations have made a
huge investment over the years, were built in order
to manage complex business processes giving each
company a unique competitive advantage. IDC
(IDC, 2006) estimates that two-hundred billion lines
of legacy code are in use today on more than ten
thousand large mainframe sites, whilst the Hurwitz
Group (Hurwitz, 2001) reckons that only 10% of
companies have fully integrated their most mission-
critical business processes. It is necessary to
evaluate whether it is possible to leverage legacy
assets, thus getting the most value from what already
works while enabling technological and strategic
evolution at the same time.

The challenge is to understand and face the
issues which must be addressed in order to obtain a
successful migration from existing legacy systems to
a Service Oriented Architecture environment,
enabling the interoperability between old systems
and new ones.
Some of the problems that could arise during this
adaptation and migration projects could be the lack
of guidelines and standards for reusing legacy assets,
lack of knowledge in SOA related technologies,

programs with too many lines of code, data and
communication mismatches and poor performance.

This paper provides a vision (section 2) and a
methodological solution (section 3) which could
solve or, at least, mitigate the problems related to the
legacy systems adaptation to SOA environments.

2 VISION

This paper deals with the legacy adaptation problem
from a functional point of view, rather than a data-
centric one. There are many cases where it is
important to enable the data access, but our vision is
closer to the SOA concept, where services will
represent functional units accessible through the
network.

When thinking on how to adapt legacy software
assets (from full systems to stand-alone components)
to SOA environments, there are two options that can
be envisaged for this adaptation.

 When there is a stand-alone component, the
interfaces of the component can be wrapped,
exposing that component as a service, with
Web Services standards (SOAP (Gudgin,
2007) and WSDL (Christensen, 2001));

 When there are large legacy systems, such as an
ERP (Enterprise Resource Planning), it could

330
Javier Nieto F., Cañadas I. and Bastida L. (2008).
LEGACY SYSTEMS ADAPTATION USING THE SERVICE ORIENTED APPROACH.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - ISAS, pages 330-333
DOI: 10.5220/0001712903300333
Copyright c© SciTePress

be interesting to split the legacy functionality
into various services in order to offer reusable
sub-functionalities that can be used in a
separate way. But the company would be able
to provide all the functionalities together, as it
did before, adapting the offer to the client
needs.

So, the main problem is to extract the
functionality provided by the legacy software assets.
This can be solved using two kinds of wrappers:
basic wrappers and advanced wrappers, depending
on the size of the legacy system.

2.1 Basic Wrapper for Stand-Alone
Components

Apart from a syntactical description of the
operations, the new service should deal with the
behaviour, so the component can be integrated in an
easy way and interaction errors can be avoided.

The proposed solution is to wrap components in
several levels, such as in the approach presented in
(Zemlicka, 2004). Several tiers are defined for the
wrapper, each one covering one aspect of the
adaptation of existing components and systems, and
taking into account the behaviour modelling of the
legacy components, but from a SOA point of view.
This way, the interface of the new service will be
very stable, the behaviour wrapper can act as a
mediator (managing access rights of the operations),
the development and testing can be one using clearly
defined processes, and a full SOA-compliant
wrapper may be built, improving interoperability.

2.1.1 The Communication Wrapper (Tier 1)

It is the component which accesses directly to the
component to be wrapped. It could be included as
part of the existing system or as an external
component acting as some kind of mediator,
transforming SOA requests and responses to those
communication mechanisms which are compatible
with the legacy software.

This wrapper could be created manually by
experts in SOA and the legacy software.
Commercial vendors such as TIBCO, provide some
adapters (for Siebel, Lotus Notes, COM, CORBA,
etc.) and development kits to create more adapters.

2.1.2 The Behaviour Wrapper (Tier 2)

This part is in charge of the management of the
behaviour of the legacy code. Its purpose is to
control the operation calls managing asynchronous

reception of data, data adaptation and calls to
external components in a logical order, according to
the legacy software behaviour. This is the real
interface to the legacy system, allowing a standard
communication with the functionality provided.

The idea behind its implementation is to apply
SOA techniques and orchestration languages, such
as WS-BPEL, which can manage the behaviour.
Those operations which do not have behaviour
constraints will be exposed and implemented just as
an invocation to the wrapped component.

2.1.3 Web Service Interface and
Specification (Tier 3)

At the top level, it is necessary some kind of
interface description and specification. The standard
for services description is WSDL, but it is focused in
the syntactical description of the service, leaving
apart semantic descriptions which support the
understanding of the service purpose and
functionality.
Other specifications could be used for providing that
extra information,. Keeping separated this
information and its publication will ease the
maintenance.

2.2 Advanced Wrappers for Large
Systems

This approach is focused on the Software as a
Service (SaaS) paradigm, where large systems are
split into smaller functional parts. But it is clear that
those functional parts were combined as part of a
higher level application, so there is no reason to
loose the advantages of providing all the
functionalities together, as in the original system.
In the case of large legacy systems, two more levels
are added, for representing the original processes.
This way, each functional part can be used not only
in a separate way, but also in conjunction with other
functional parts in a fully SOA-compliant way.

This way, the services may be grouped easily
with standard languages, the interactions between
the components of the legacy are clear, it is possible
to host the overall wrapper and the services in
different servers and the higher level service can be
extended with more functionality, getting a richer
system.

2.2.1 The Composition Wrapper (Tier 4)

This part is a set of combinations using the obtained
services, according to the initial functionalities

LEGACY SYSTEMS ADAPTATION USING THE SERVICE ORIENTED APPROACH

331

which the large system was offering. Before splitting
the system, there were several relationships between
the different functional parts which were working
together to obtain complex functionalities. This part
of the wrapper implements those interactions in a
SOA-based way (using orchestration languages), so
the obtained services compositions will be able to
maintain the original complex functionalities of the
system. Other standards can be used for covering all
the aspects of the interaction (such as security or
transactions).

2.2.2 Composition Interface and
Specification (Tier 5)

As in the basic wrappers, once a service is exposed,
there is the need to describe its interface and other
especial features (if possible). Again, this part of the
wrapper will include a WSDL file for the syntactical
description. Any other specifications may be used if
available, for describing other aspects, such as the
implicit semantics in the service.

3 METHOD FOR DEVELOPING
THE WRAPPERS

For an organisation that has already adopted SOA,
and which is ready to advance to the stage of
leveraging its existing systems, the lack of
guidelines and best practices frequently stalls its
migration efforts.

Consequently, this method supports the
migration of legacy systems by means of exposing
those systems or parts of them as composable
services to be integrated in the SOA environment.

3.1 Phases of the Methodology

This section describes all the phases and tasks which
are part of the proposed methodology, focusing on
the pieces of legacy software to be adapted and the
divisions to be done in large systems, for obtaining
smaller software components which could be
combined.

An iterative lifecycle can be applied when
carrying out the phases and activities, e.g.
identifying some parts and operations to be wrapped
during each iteration.

For developing the composition wrapper and the
composition interface and specification, it is
strongly suggested to apply the methodology
described in (Nieto, 2007), since it deals in deep
with services composition development issues and

offers good guidelines for combining several
services.

3.1.1 Preliminary Analysis

At the beginning of the adaptation process, it is
necessary to get all the available information
(especially, about architecture and behaviour),
identify those legacy software assets to be used and
analyse the feasibility of the adaptation project.

It is important also to identify whether it
becomes interesting to make available some
business logic already implemented (because of
emerging markets) or customers prefer to use some
parts of large systems in a separate way.

The result will be the techniques to be applied
(e.g. focus on data access, systems migration,
systems re-engineering, etc.) and the information
available about the legacy systems, with an
estimated budget for adapting them.

3.1.2 Legacy Re-Engineering

This phase is focused on the in depth analysis of the
legacy systems, identifying the concrete services to
expose and how to do it.

There is a functional analysis, identifying the
interfaces (operations) to be provided and the
components which implement the expected
functionalities. Then, there is the analysis of the
data related to the legacy system, for performing
adaptations. And, finally, the analysis of wrappers
integration in services compositions, for identifying
additional requirements.

Finally, there will be activities for solving other
aspects such any syntactic and semantic issues, and
other non-functional issues (such as security and
transactions needs), whenever necessary.

The outputs expected from these tasks will be the
service requirements descriptions, the architectural
design of the wrappers and mappings between
legacy assets and functionalities.

3.1.3 Implementation of the Wrappers

This phase addresses the development of the
required wrappers, implementing message passing
between the calling and the called objects, and
redirecting method invocations to the actual
component services.

Following the vision of the wrapping levels
mentioned before, the steps to be followed are: to
implement the communication wrapper, to
implement the behaviour wrapper, to implement the

ICEIS 2008 - International Conference on Enterprise Information Systems

332

service interface and specification, and to prepare
the service deployment.

These tasks will result in a set of deployed
services (using wrappers) with their services
descriptions and specifications compliant with SOA
specifications (such as UDDI and WSDL).

3.1.4 Composition and Delivery of Services

This task is related with the compositions to be
designed in order to re-group functionalities or
generate new ones taking the newly exposed
services (result of wrapping the legacy systems) as
the inputs of the task.

During this task, designs and requirements
coming from the service composition will be
analysed, in order to understand how the new
services affect the service composition and whether
some changes are needed in the services or they are
useful without any modification. This may be an
iterative process, updating the composition design
and the legacy wrappers in order to end up with a
successful integration.

3.1.5 Verification and Validation of Services
and Compositions

In this last phase of the methodology, some actions
will be performed in order to check whether the
adapted legacy system works as expected, fulfilling
all the requirements. There is a lot of literature about
testing, verification and validation techniques. In
this case, it is suggested to follow the Verification &
Validation process presented as part of the SeCSE
Methodology (SeCSE, 2007) which fits very well
with the purpose of this phase.

The basic actions are to perform unitary testing
against developed components, as well as integration
testing, putting especial attention on the service
behaviour. Doing test cases and analyzing the results
will be the key for getting a successful validation.

4 CONCLUSIONS

The vision provided for the wrappers in several tiers
is very useful, since it allows dividing the wrappers
in well differenced modules with clearly defined
purposes. This idea enables the usage of
development methods while it improves the
flexibility, extensibility, adaptation, maintenance
and errors identification and fixing in wrappers.

The proposed methodology supports and guides
the adaptation process, but it is not too concrete,

allowing the application of existing and future
techniques and standards, encouraging re-use and
specialization in each tier. Some examples would be
techniques described in (Canfora, 2006) and those
included in the SMART methodology (Lewis,
2005), which could complement the steps defined in
this methodology.

Next steps to face in this topic will be to analyse
in depth the best techniques and practices, in order
to create more concrete guidelines, templates and to
support the implementation. Moreover, we will
focus on validating the methodology, by applying it
in real situations which are expected to arise in
SeCSE project.

REFERENCES

Canfora, G., Fasolino, A. R., Frattolillo, G., Tramontana,
P. (2006). Migrating Interactive Legacy Systems To
Web Services. In csmr, Conference on Software
Maintenance and Reengineering (CSMR'06), pp. 24-
36. Los Alamitos: IEEE Computer Society Press.

Christensen, E., Curbera, F., Meredith, G., Weerawarana,
S. (2001) Web Services Definition Language (WSDL)
1.1, W3C Note. http://www.w3.org/tr/wsdl

Gudgin, M., Hadley, M. Mendelsohn, N., Moreau, J.-J.,
Nielsen, H.F., Karmarkar, A., Lafon, Y. (2007) Simple
Object Access Protocol (SOAP) 1.2, W3C
Recommendation. http://www.w3.org/TR/soap12

Hurwitz Group (2001). e-Business Process Integration (e-
BPI) Study.

International Data Corporation (IDC). (2007). IDC 2007
Software Taxonomy. http://www.idc.com/2007st/
index.html

Lewis, G., Morris, E., O’Brien, L., Smith, D., Wrage, L.
(2005) SMART: The Service-Oriented Migration and
Reuse Technique. Technical Note CMU/SEI-2005-
TN-029. Software Engineering Institute (SEI):
http://www.sei.cmu.edu/pub/documents/05.reports/pdf
/05tn029.pdf

Nieto, F.J.; Bastida, L.; Escalante, M.; & Gortazar, A.
(2007). Development of Dynamic Composed Services
based on the Context. In Doumeingts, G., Müller, J.,
Morel, G. & Vallespir, B. (Ed.), “Enterprise
Interoperability, New Challenges and Approaches”
(pp. 3-12). London: Springer

SeCSE Consortium. (2007). A5.D4 – SeCSE
Methodology. SeCSE Project. http://secse.eng.it

Zemlicka, M., Kral, J. (2004). “Legacy Systems and Web
Services”. Technical report KSI MFF UK No. 2004/1.
Prague: Charles University. http://
citeseer.ist.psu.edu/zemlicka04legacy.html

LEGACY SYSTEMS ADAPTATION USING THE SERVICE ORIENTED APPROACH

333

