
A PROTOCOL TO CONTROL REPLICATION IN DISTRIBUTED
REAL-TIME DATABASE SYSTEMS∗

Anis Haj Said, Bruno Sadeg, Laurent Amanton
LITIS, UFR of Sciences and Techniques, 25 rue Philippe Lebon BP 540, 76 058, Le Havre Cedex, France

Béchir Ayeb
PRINCE, Faculty of Sciences, Boulevard de l’Environnement, 5000, Monastir, Tunisia

Keywords: Real-time database, distributed system, transaction, replication , replication control protocol, data consistency.

Abstract: Data replication is often used in distributed database systems to improve both fault tolerance and performance
purposes. However, such systems must ensure replicas consistency. In this paper, we discuss the contribu-
tions of data replication in distributed real-time database systems (DRTDBS) and we then present RT-RCP,
a replication control protocol we designed for DRTDBS. We introduce a new entity called List of available
copies(LAC) which is a list related to each data item in the database. A LAC of a data item contains all or a
part of references of its updated replicas. This allows the database to have a dynamic level of replication.

1 INTRODUCTION

Data replication has been studied in many research
areas, especially in distributed database systems for
both fault tolerance and performance purposes. The
main interest of data replication in DRTDBS is to
increase data availability in order to enhance the
chances of transactions to meet their deadines. How-
ever, allowing transactions to deal with different
copies of the same data can generate inconsistencies
(Gray et al., 1996) which brings us to be circumspect
about data consistency.

Several replication control protocols have been
proposed in order to manage replicas. We distinguish
two main models (Gray and Reuter, 1993) : eager up-
date model (Bernstein et al., 1987) in which a trans-
action synchronises with all copies before it commits,
and lazy update model (Pu and Leff, 1991) in which
changes introduced by a transaction are propagated to
other sites only after the transaction has committed.

In addition, we make out two architectures
which determine the transactions execution place-
ment (Wiesmann et al., 2000). Theprimary copy ar-
chitecture in which each data has a primary copy at a
specific site (server), and theupdate everywhere ar-

∗This work is supported by the Haute-Normandie region
CPER project “Logistic Transport Network and Informa-
tion Technics“.

chitecture in which transactions can be executed at
any site and then updates are transmitted to all other
sites. Some studies are interested to replication in
DRTDBS. They take into account data and transac-
tions specifications. The replication approaches pro-
posed either use a primary copy to deterministically
apply updates to replicated data (Wei et al., 2004) or
use distributed concurrency control protocols and dis-
tributed commit protocols to order updates so that one
copy serializability (Xiong et al., 2002) or some simi-
lar correctness criterion such as epsilon-serializability
(Son and F.Zhang, 1995) can be fulfilled.

Most reaserches conducted on replication in DRT-
DBS have adressed replication control in update
transactions. Whearas user transactions are as impor-
tant as update transactions because both affects the
system performance measurment since they are both
real-time transactions. Our work focusses on replica-
tion control in user transactions processing.

The remainder of this paper is organized as fol-
lows: Section 2 describes our RTDBS model whereas
in section 3 we discuss about the use of existing repli-
cation protocols in DRTDBS. In section 4 we present
our proposed protocol RT-RCP. Finally, Section 5
concludes the paper.

501
Haj Said A., Sadeg B., Amanton L. and Ayeb B. (2008).
A PROTOCOL TO CONTROL REPLICATION IN DISTRIBUTED REAL-TIME DATABASE SYSTEMS.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - DISI, pages 501-504
DOI: 10.5220/0001712805010504
Copyright c© SciTePress

2 MODELS AND ASSUMPTIONS

The database is modelled as a collection of data items
fully replicated at each node. It deals with variant
data (also called real-time data), with which are asso-
ciated validity intervals and invariant data (also called
non real-time data) which values will not change with
time, i.e. their validity intervals are infinite.

Regarding transactions, we focus only on firm
real-time transactions. (Ramamritham et al., 2004).
We distinguish two types of real-time transactions:
- Update transactions : These transactions refresh
variant data before exceeding their validity interval.
- User transactions : Generally, they are launched by
users or triggered by system events. These trans-
actions can perform reads on variant data and/or
reads/writes on invariant data.
In the following, we present a data model based on
a data classification according to their criticality and
characteristics (Shu et al., 2002). Let D denotes the
data set of the database. We denote by Dcritical the
set of critical data (handled only by real-time trans-
actions). This set can be devided into two subsets.
We denote by Dvar

critical , the subset of Dcritical including
variant data and by Dinvar

critical a subset of Dcritical includ-
ing invariant data. We call non-critical data, the data
items which are not invoked by real-time transactions.
Dnon−critical denotes this set of data.
In addition, we consider a DRTDBS which consists of
main memory real-time databases connected by high-
speed network. We assume that messages sent over
the network have predictable transmission and deliv-
ery time. Besides, messages issued from a single node
are delivered in the order they are sent.

3 REPLICATION IN DRTDBS

For DRTDBS, a replication control protocol should
ensure mainly the availability and the accessibility of
critical data in order to allow the system to resume
its main functionality, and thus improve its perfor-
mance which is the ratio of transactions which meet
their deadlines. In the same time, data consistency
must be guaranteed to avoid the use of stale data by
transactions. A simplest idea consists of adopting an
eager model for critical invariant data, which ensures
data copies consistency. However, using this model
can significantly raise the probability of deadlocks,
and consequently failed transactions with transaction
size and with the number of nodes (Gray et al., 1996).
In fact, updating all critical invariant data copies be-
fore the transaction commit increases the transaction
size especially when the number of nodes in the net-

work is significant. The lazy replication model, where
changes introduced by a transaction are propagated to
other sites only after the transaction has commited, is
often used in many classical database systems.

This results in minimal overhead but inconsisten-
cies among the copies often arise. It is well that incon-
sitencies created by lazy replication can be very dif-
ficult and expensive. In order to solve this problem,
database systems use reconciliation protocols based
on timestamping technique. These reconciliation pro-
tocols generate the discard and then the restart of
transactions which have used stale data. Discarding
and restarting transactions can significantly affect the
system performance. These two models seem to be
not suitable to control replication in DRTDBS.

The common drawback of these two techniques
is that sites do not have any particular information
about the state of the database at the other sites. In
fact, for lazy replication, transactions are executed lo-
cally without carriyng about the state of replicas of
the involved data. Inconsistencies are detected after
the completion of the transaction execution. Whereas
for eager replication, transactions are forced to up-
date copies of the involved data and then preclude in-
consistencies to occur. In the following, we present
RT-RCP (Real Time Replication Control Protocol) to
manage replicas of data in Dinvar

critical . RT-RCP allows
some inconsistencies to happen between copies but
prevents access to stale copies.

4 THE RT-RCP PROTOCOL

Fully replicating a database leads us to be vigilant
about inconsistencies that may arise between critical
data copies. In fact, when a transaction updates a data
item, its copies must be updated or locked until its up-
date. Otherwise, other transactions can use stale data.

Since the time needed to transmit a message is
predictable, a node can estimate the number of up-
dates which are possible to perform without exceed-
ing the transaction deadline. In fact, if the remainder
time before the transansaction deadline is greater than
the maximum time needed to transmit updates, then
data synchronisation is done immediately, otherwise
updates are differed after the commit. The main idea
of our protocol is to use a mixed strategy in order to
update replicas of critical invariant data. Indeed, in
RT-RCP, a node where the transaction executes up-
dates synchronously as many nodes in the network as
possible and differs the remainder updates after com-
mitting the transaction.

Figure 1 shows the use of RT-RCP in order to up-
date the copies of a data item which is involved in a

ICEIS 2008 - International Conference on Enterprise Information Systems

502

W

W

deadlineOK

OK

OK

OK

site 2

site 3

site 4

site 5

site 1
W

W

W

W

W

transaction begin

W

W

W

W

W

synchronous
updates

{2}

{2}

{2}

{2}

{2}

Differed updatesCommit phasesending lock
requests

{1,2,4}

{1,2,4}

{1,2,4}

{1,2,4,5}

{1,2,3,4,5}

release write lock

hold write lock time

message

LAC updating

Figure 1: Processing of RT-RCP.

transaction. We consider a distributed system which
consists of five sites. Letd a data item in the database
involved by the transactionT which is performed on
site 2. When transactionT needs a write access to the
data itemd, it requires write locks on the local data
item and its copies. In fact, we use a distributed lock-
ing approach. If the lock is granted by all sites, we
can proceed. If not, the transaction can be delayed
and the request is repeated some time afterwards.

During the commit phase, site 2 updates two
copies ofd. It can not perform more updates due to
transaction deadline which could be exceeded. After
the transaction commit, site 2 propagates updates to
copies ofd which are not updated yet. RT-RCP tries,
on the one hand, to respect the transaction temporal
constraint and to make available data copies on the
other hand.

However, this protocol has a drawback that can be
summarized by the following situation.

Let T ′ a transaction launched on site 4 after the
synchronous updates performed by the transactionT .
T ′ is split into subtransactionsT ′

1,,T
′

n (1 < n ≤
N,N is the number of sites). Since the database is
fully replicated and sites have no information about
the state of the database on the other sites, subtransac-
tions ofT ′ are sent to the participating sites which are
choosed randomly. LetT ′

i (1≤ i ≤ n) be a subtrans-
action which needs access to the data itemd launched
on sitek, with 1< k ≤ n. Two cases can arise. - The
copy of d on sitek is already updated and then the
subtransactionT ′

i will be executed normally
- The copy ofd on sitek is not updated yet and then
subtransactionT ′

i will be blocked until sitek receives
the new value ofd and releases the write lock.

In the latter case in which the subtransactionT ′ is
blocked, the transaction could miss its deadline and
as consequence it will be aborted. Whereas subtrans-
actionT ′ could have more chances to meet its dead-
line if it was launched on a site in which the data item
d is updated. In order to prevent this situation, sites
must have knowledge about the state of the database
at the other sites of the distributed network. This help
sites to make a suitable decision when they choose
participant sites to the transaction execution. Associ-
ating a list of available copies (LAC) with each data
item, allows sites to make a suitable decision when
choosing participant sites in a transaction. Each site
which holds locks on a data item and its copies must
update LACs of this data item at the other sites of the
distributed network.

4.1 LACS Updating

LACs must be up-to-date, or at least should not con-
tain wrong informations. Updating LACs is a two step
process. The first, consists of joining a new LAC with
each data update message. The second begins when
all replicas receive updates. We go back to our exam-
ple to show how LACs are built and updated (Figure
1).In RT-RCP, a LAC is joined with each update mes-
sage sent by site 2 to other sites. Since site 2 holds
write locks on the data itemd and it is the site which
updatesd replicas, then it is the only one which has
information about the state of each replica of the data
item d.

We assume that intially replicas ofd are up-to-
date in all sites, thus each LAC related to a copy of
the data itemd contains the five sites identifiers. Ob-

A PROTOCOL TO CONTROL REPLICATION IN DISTRIBUTED REAL-TIME DATABASE SYSTEMS

503

viously LACs can contain other information. When
the transactionT executed on site 2 needs a write ac-
cess to the data itemd, it locks the local copy ofd
and sends write lock requests to each replica. Once a
write lock is hold on a copy, its LAC is modified and
it contains only the write lock sender identifier. Each
site sends to site 2 a confirmation message when the
local copy ofd is locked, and LACs are modified to
contain only site 2 Identifier. From this stage, site 2
behaves as a primary copy of the data itemd since
each transaction which needs an access tod is auto-
matically sent to site 2.

At the commit phase, site 2 updates syn-
chronously as many replicas ofd as possible. Since
messages have predictable transmission and delivery
time, site 2 can estimate the number of updates that
it can perform without missing the deadline of trans-
actionT . For the data itemd, site 2 can update only
two copies, then it chooses two sites (site 1 and site 4)
for which it will send updates. A new LAC is joined
to the message in which appear the three identifiers
of the updated sites. The main goal of sending up-
dates before committing the transaction is to avoid
overloading site 2 by making available replicas ofd.

After the committing phase, site which performs
the transaction sends updates and a new LAC to each
site in which copy ofd is not updated yet. Thus, site 2
sends an update message to site 3 and site 5 and joins
to each message a new LAC. Each LAC contains, in
addition to the receiver identifier, identifiers of sites
in which replicas ofd are up-to-date when the mes-
sage is sent. At this stage of the protocol, all copies
of the data itemd are updated. However, LACs con-
tains different informations according to the order of
receiving updates. Once site 2 has finished updating
sites, it brodcasts to all sites a new LAC which con-
tains all sites identifiers.

We note that RT-RCP introduces a new round of
messages exchange in order to update LACs. The aim
of this messages exchange is to inform sites that a data
item is already up-to-date everywhere in the network.
Without this messages, the database seems to be not
fully replicated. This means that the degree of repli-
cation for a data item viewed by each site is not the
same. Keeping the system at this state can be benifical
when the system is overloaded. Eliminating the dif-
fered updates and the final LACs updating step in case
of system overload could not affect efficiency of RT-
RCP since updates may be done by a new transaction.
This can be an interesting issue for DRTDBS since
changing the behavior of RT-RCP according to the
system load and transactions requirements can greatly
improve the performance of DRTDBS.

5 CONCLUSIONS

RT-RCP finds a trade-off between respecting tempo-
ral constraints of real time transactions and updating
replicas. In fact, RT-RCP is not anxious to update all
replicas synchronously. We have a dynamic degree of
replication which changes with the system load and
the real time transactions requirements. RT-RCP en-
sures the use of fresh data by real time transactions.
Indeed, sites refer to the LAC of each data item in or-
der to make an adequate choice about participant sites
in the execution of a transaction. Since a LAC related
to a data item is delivred each time by the site which
holds write locks on this data item, sites which appear
in this LAC contain an updated copy of the data item.

REFERENCES

Bernstein, P. A., Hadzilacos, V., and Goodman, N. (1987).
Concurrency Control and Recovery in Database Sys-
tems. Addison-Wesley.

Gray, J. N., Holland, P., Shasha, D., and O’Neil, P. (1996).
The dangers of Replication and a Solution. In1996
ACM SIGMOD on Management of Data, pages 173–
182, Montreal, Canada.

Gray, J. N. and Reuter, A. (1993).Transaction Process-
ing:Concepts and Techniques. Morgan Kaufmann
Publisher.

Pu, C. and Leff, A. (1991). Replica Control in Distributed
Systems: An Asynchronous Approach. In Clifford, J.
and King, R., editors,Proc. of the ACM SIGMOD on
Management of Data, pages 377–386.

Ramamritham, K., Son, S., and Dipippo, L. (2004). Real-
Time Databases and Data Services.Real-Time Sys-
tems, pages 179–215.

Shu, L., Stankovic, J., and Son, S. (2002). Real-Time Log-
ging and Failure Recovery. InIn IEEE Real-Time
Technology and Applications Symposium.

Son, S. H. and F.Zhang (1995). Real-Time Replication Con-
trol for Distributed Database Systems: Algorithms
and Their Performance. InProc. of the 4th Intl. Conf.
DASFAA’95, Singapore, pages 214–221.

Wei, Y., Aslinger, A. A., Son, S. H., and Stankovic, J. A.
(2004). ORDER : A Dynamic Replication Alogorithm
for Periodic Transactions in Distributed Real-Time
Databases. In10th Int’l Conf. RTCSA 2004.

Wiesmann, M., Pedone, F., Schiper, A., Kemme, B., and
Alonso, G. (2000). Database Replication Techniques:
A Three Parameter Classification. InProceedings of
19th IEEE Symposium on Reliable Distributed Sys-
tems (SRDS2000), Germany.

Xiong, M., Ramamritham, K., Haritsa, J. R., and Stankovic,
J. A. (2002). Mirror: a State-Conscious Concurrency
Control Protocol for Replicated Real-Time Databases.
Inf. Syst., pages 277–297.

ICEIS 2008 - International Conference on Enterprise Information Systems

504

