
RULES AS SIMPLE WAY TO MODEL KNOWLEDGE
Closing the Gap between Promise and Reality

Valentin Zacharias
FZI, Haid-Und-Neu Strasse 10-14, Karlsruhe, Germany

Keywords: Rule based systems, F-logic, knowledge acquisition, rule based modeling, knowledge modeling, verification,
anomaly detection.

Abstract: There is a considerable gap between the potential of rules bases to be a simpler way to formulate high level
knowledge and the reality of tiresome and error prone rule bases creation processes.
Based on the experience from three rule base creation projects this paper identifies reasons for this gap between
promise and reality and proposes steps that can be taken to close it. An architecture for a complete support of
rule base development is presented.

1 INTRODUCTION

Since their conception rule languages have been her-
alded as a simpler and more natural way to build com-
puter systems, compared to both imperative program-
ming and other logic formalisms. This idea rests on
three observations:

• Rule languages are (mostly) declarative languages
that free the developer from worrying about how
something is computed. This should decrease the
complexity for the developer.

• The If-Then structure of rules resembles the way
humans naturally communicate a large part of
knowledge.

• The basic structure of a rule is very simple and
easy to understand.

However, the authors have observed the creation
of rule bases in three different projects and found this
promise of simplicity to be elusive. If anything the
creation of rule bases was more error prone, more tire-
some and more frustrating than the development with
modern imperative languages.

This paper is an attempt to reconcile the promise
of simplicity with reality. It identifies why rule bases
are not currently simple to build and proposes steps to
address this. This paper’s structure is as follows: sec-
tion two gives a short overview of the three projects
that form the input for this analysis. Section three
discusses what kinds of problems were encountered.
The next three sections then discuss overall princi-
ples to better support the creation of rule bases, an

architecture of tool support for the development pro-
cess and finally debugging as a particularly important
problem. The paper discusses two commonly voiced
counter arguments against ideas presented here and
then concludes.

2 EXPERIENCES

The analysis presented in this paper is based on the
experience from three projects.

• Project Halo1 is a multistage project to develop
systems and methods that enable domain experts
to model scientific knowledge. As part of the
second phase of Project Halo six domain experts
were employed for 6 weeks each to create rule
bases representing domain knowledge in physics,
chemistry and biology.

• Online Forecast was a project to explore the po-
tential of knowledge based systems with respect
to maintainability and understandability. Towards
this end an existing reporting application in a hu-
man resource department was re-created as rule
based system. This project was performed by a
junior developer who had little prior experience
with rule based system. Approximately 5 person
months went into this application.

• The goal of the project F-verify was to create
a rule base as support for verification activi-

1http://www.projecthalo.com

87
Zacharias V. (2008).
RULES AS SIMPLE WAY TO MODEL KNOWLEDGE - Closing the Gap between Promise and Reality.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - AIDSS, pages 87-94
DOI: 10.5220/0001712500870094
Copyright c© SciTePress



ties. It models (mostly heuristic) knowledge about
anomalies in rule bases. It consists of anomaly de-
tection rules that work on the reified version of a
rule base. This project was done by a developer
with experience in creating rule bases and took 3
month to complete.

All of these projects used F-logic (Kifer et al., 1995)
as representation language and the Ontobroker infer-
ence engine (Decker et al., 1999). The editing tools
differed between the projects: Project Halo used the
high level, graphical tools developed in the project.
Online Forecast used a simple version of Ontoprise’s2

OntoStudio. F-verify used Ontostudio together with
prototypical debugging and editing tools.

The use of only one rule formalism obviously re-
stricts the generality of any statements that can be
made. However, F-logic is very similar to some of the
rule languages under discussion for the Semantic Web
(Kifer et al., 2005) and it is based on normal logic pro-
grams - probably the prototypical rule language. The
authors examined literature and tools to ensure that
tool support identified as missing is indeed missing
from rule based systems and not only from systems
supporting F-logic.

Methods used for the creation of the rule bases
differed between the three projects:
• Project Halo used the document driven knowledge

formulation process: scientific textbooks were
used as informal models of domain knowledge.
Using the textbooks as guideline and to structure
the process, domain experts created the knowl-
edge base. Graphic, high level tools were em-
ployed to allow the domain experts to concentrate
on modeling knowledge without having to worry
about the technicalities of implementation.

• Online Forecast began with the creation of infor-
mal models of the domain knowledge as diagrams
and textual descriptions. These models were cre-
ated in close cooperation with domain experts.
In a second step these informal models were im-
plemented. Results from test cases were again
cleared with the experts and the knowledge base
was refined until it matched their expectations.

• F-Verify used an informal iterative process. New
heuristics would be defined in natural language
and then be directly implemented. The domain
model (the reified rules) existed already and was
reused.
All of these projects have been created using rela-

tively lightweight methods that focus more on the ac-
tual implementation of rules than on high level mod-
els - as is to be expected for such relatively small

2http://www.ontoprise.de

projects, in particular when performed by domain ex-
perts or junior programmers. The analysis, methods
and tools presented in this paper are geared towards
this kind of small, domain expert/end user program-
mer driven projects.

3 ANALYSIS

In the three projects sketched above the authors found
that the creation of working rule bases was an error
prone and tiresome process. In all cases the develop-
ers complained that creating correct rule bases takes
too long and in particular that debugging takes up too
much time. Developers with prior experience in im-
perative programming languages said that developing
rule bases was more difficult then developing imper-
ative applications. While part of these observations
can be explained by longer training with imperative
programming, it still stands in a marked contrast to
the often repeated assertion that creating rule bases is
simpler. We identified six reasons for this observed
discrepancy.
• The One Rule Fallacy. Because one rule is rela-

tively simple and because the interaction between
rules is handled automatically by the inference en-
gine, it is often assumed that a rule base as a whole
is automatically simple to create. However, the in-
ference engine obviously combines the rules only
based on how the user has specified the rules; and
it is here - in the creation of rules in a way that they
can work together - that most errors get made. Ex-
amples for errors affecting the interaction of rules
are the use of different attributes to represent the
same thing or two rules being based on incompat-
ible notions of a concept.
Hence a part of the gap between the expected sim-
plicity of rule base creation and the reality can be
explained by naive assumptions about rule base
creation. Rule based systems hold the promise
to allow the automatic recombination of rules to
tackle problems not directly envisioned during the
creation of the rule base. However, it is an il-
lusion to assume that rules created in isolation
will work together automatically in all situations.
Rules have to be tested in their interaction with
other rules on as many diverse problems as pos-
sible to have a chance for them to work in novel
situations.

• The Problem of Opacity. The authors experi-
ence shows that failed interactions between rules
are the most important source of errors during rule
base creation. At the same time it is this interac-
tion between rules that is commonly not shown;

ICEIS 2008 - International Conference on Enterprise Information Systems

88



that is opaque to the user. The only common
way to explicitly show the connections between
rules is in a prooftree of a successful query to
the rule base. This is unlike imperative program-
ming, were the relations between the entities and
the overall structure of the program are explicitly
created by the developer, shown in the source code
and the subject of visualizations.

• The Problem of Interconnection. Because rule
interactions are managed by the inference engine,
everything is potentially relevant to everything
else3. This complicates error localization for the
user, because bugs appear in seemingly unrelated
parts of the rule base. Another consequence is that
even a single error can cause a large portion of (or
even all) test cases to fail4. This too was a com-
mon occurrence, in particular in Project Halo.

• The No-result Case and the Problem of Error
Reporting. By far the most common symptom of
an error in the rule base was a query that (unex-
pectedly) did not return any result - the no-result
case. In such a case most inference engines give
no further information that could aid the user in
error localization. This is unlike many impera-
tive languages that often produce a partial output
and a stack trace. Both imperative and rule based
systems sometimes show bugs by behaving errat-
ically, but only rule based systems show the over-
whelming majority of bugs by terminating with-
out giving any help on error localization.

• The Problem of Procedural Debugging. All de-
ployed debugging tools for rule based programs
known to the authors are based on the procedural
or imperative debugging paradigm. This debug-
ging paradigm is well known from the world of
imperative programming and characterized by the
concepts of breakpoints and stepping. A procedu-
ral debugger offers a way to indicate a rule/rule
part where the program execution is to stop and
has to wait for commands from the users. The user
can then look at the current state of the program
and give commands to execute a number of the
successive instructions. However a rule base does
not define an order of execution - hence the order
of debugging is based on the evaluation strategy
of the inference engine. The execution steps of a
procedural debugger are then for instance: the in-
ference engine tries to prove a goal A or it tries to
find more results for another goal B.
Procedural Debuggers force the developer to learn

3At least in the absence of robust, user managed modu-
larization

4For example by making a rule base unstratifiable

about the inner structure of the inference engine.
This stands in marked contrast to the idea that
rule bases free the developer from worrying about
how something is computed. The development of
rule based systems cannot take full advantage of
the declarative nature of rules, when debugging is
done on the procedural nature of the inference en-
gine.

• Less Refined Tools Support. Compared to tools
available as support for the development with im-
perative languages, those for the development of
rule bases often lack refinement. This discrepancy
is a direct consequence from the fact that in recent
years the percentage of applications built with im-
perative programming languages was much larger
than those built with rule languages.

4 CORE PRINCIPLES

The authors have identified four core principles to
guide the building of better tool support for the cre-
ation of rule bases. These principles where conceived
either by generalizing from tools that worked well or
as direct antidote to problems encountered repeatedly.

• Interactivity. To create tools in a way that they
give feedback at the earliest moment possible. To
support an incremental, try-and-error process of
rule base creation by allowing trying out a rule as
it is created.
Tools that embodied interactivity proved to be
very popular and successful in the three projects
under discussion. Tools such as fast graphical edi-
tors for test queries, text editors that automatically
load their data into the inference engine or sim-
ple schema based verification during rule formu-
lation where the most successful tools employed.
In cases where quick feedback during knowledge
formulation could not be given5, this was reflected
immediately in erroneous rules and unmotivated
developers.
Interactivity is known to be an important suc-
cess factor for development tools, in particu-
lar for those geared towards end user program-
mers (Ruthruff and Burnett, 2005; Ruthruff et al.,
2004). Interactivity as a principle addresses many
of the problems identified in the previous sec-
tion by supporting faster learning during knowl-
edge formulation. Immediate feedback after small
changes also helps to deal with the problem of in-
terconnection and the problem of error reporting.

5This was mostly due to very long reasoning times or
due to technical problems with the inference engine

RULES AS SIMPLE WAY TO MODEL KNOWLEDGE - Closing the Gap between Promise and Reality

89



Figure 1: The overall architecture of tool support for the rule base development.

• Visibility. To show the hidden structure of (poten-
tial) rule interactions at every opportunity. Visi-
bility is included as a direct counteragent to the
problems of opacity and interconnection.

• Declarativity. To create tools in a way that the
user never has to worry about the how; about the
procedural nature of the computation. Declari-
tivity of all development tools is a prerequisite
to realize the potential of reduced complexity of-
fered by declarative programming languages. The
declarititivity principle is a direct response to the
problem of procedural debugging described in the
previous section.

• Modularization. To support the structuring of
a rule base in modules in order to give the user
the possibility to isolate parts of the rule base and
prevent unintended rule interactions. This prin-
ciple is a direct consequence of the problem of
interconnection. However, modularization of rule
bases has been extensively researched and imple-
mented (e.g. (Jacob and Froscher, 1990; Baroff
et al., 1987; Grossner et al., 1994; Mehrotra,
1991) and will not be further discussed in this pa-
per .

5 SUPPORTING RULE BASE
DEVELOPMENT

The principles identified in the previous section need
to be embodied in concrete tools and development
processes in order to be effective. Based on our ex-
perience from the three projects described earlier and
on best practices as described in literature (eg (Preece
et al., 1997; Gupta, 1993; Tsai et al., 1999)) we have

Figure 2: Test, debug and rule creation as integrated activi-
ties.

identified (and largely implemented) an architecture
of tool support for the development of rule bases.

A high level view of this architecture is shown in
figure 1. At its core it shows test, debug and rule cre-
ation as an integrated activity - as mandated by the
interactive principle. These activities are supported
by test coverage, anomaly detection and visualization.
Each of the main parts will be described in more detail
in the following paragraphs.

5.1 Test, Debug and Rule Creation as
Integrated Activity

In order to truly support the interactivity principle
the test, debug and rule creation activities need to be
closely integrated. This stands in contrast to the usual
sequence of: create program part, create test and de-
bug if necessary. An overview of this integrated ac-
tivity is shown in figure 2.

Testing has been broken up into two separate ac-
tivities: the creation/identification of test data and the
creation and evaluation of test queries. This has been
done because test data can inform the rule creation
process - even in the absence of actual test queries.
Based on the test data an editor can give feedback on
the inferences made possible by a rule while it is cre-
ated. An editor can automatically display that (given
the state of the rule that is being created, the contents

ICEIS 2008 - International Conference on Enterprise Information Systems

90



of the rule base and the test data) the current rule al-
lows to infer such and such. This allows the devel-
oper to get instant feedback on whether her intuition
of what a rule is supposed to infer matches reality.
When the inferences a rule enables do not match the
expectations of the user she must be able to directly
switch to the debugger to investigate this. In this way
testing and debugging become integrated, even with-
out a test query being present.

Hence we speak of integrated test, debug and rule
creation because unlike in traditional development:

• test data is used throughout editing to give imme-
diate feedback

• debugging is permanently available to support
rule creation and editing, even without an actual
test query. The developer can debug rules in the
absence of test queries.

5.2 Anomalies

Anomalies are symptoms of probably errors in
the knowledge base (Preece and Shinghal, 1994).
Anomaly detection is a well established and often
used static verification technique for the development
of rule bases. Its goal is to identify errors early that
would be expensive to diagnose later. Anomalies give
feedback to the rule creation process by pointing to
errors and can guide the user to perform extra tests on
parts of the rule base that seem problematic. Anomaly
detection heuristics focus on errors across rules that
would otherwise be very hard to detects. Examples
for anomalies are rules that use concepts that are not
in the ontology or rules deducing relations that are
never used anywhere.

Of the problems identified in section 3, anomalies
detection partly addresses the problem of opacity, in-
terconnection and error reporting by finding some of
the errors related to rule interactions based on static
analysis.

We deployed anomaly detection heuristics within
Project Halo, both as very simple heuristics integrated
into the rule editor and more complex heuristics as a
separate tool. The anomaly heuristics integrated into
the editor performed well and were well received by
the developers, the more complex heuristics, however,
took a long time to be calculated, thereby violated the
interactivity paradigm, and weren’t accepted by the
users.

5.3 Visualization

The visualization of rule bases here means the use of
graphic design techniques to display the overall struc-
ture of the entire rule base, independent of the answer

to any particular query. The goals for such visual-
izations are the same as for UML class diagrams and
other overview representations of programs and mod-
els: to aid teaching, development, debugging, valida-
tion and maintenance by facilitating a better under-
standing of a computer program/model by the devel-
opers. To, for example, show which other parts are
affected by a change. The overview visualization of
the entire rule base is a response to the problem of
opacity.

Not being able to get an overview of the entire
rule base and being lost in the navigation of the rule
base was a frequent complaint in the three projects
described in the beginning. To address this we created
a scalable overview representation of the static and
dynamic structure of a rule base, detailed descriptions
can be found in (Zacharias, 2007).

6 DEBUGGING

In section 2 the current procedural debugging support
was identified as unsuited to support the simple cre-
ation of rule bases. It was established that debuggers
needs to be declarative in order to realize the full po-
tential of declarative programming languages.

6.1 Previous Non-procedural Debuggers

The problem of debugging declarative systems has
been investigated in numerous research projects in the
past; two big threads of research can be identified:
• Algorithmic Debugging6 (Shapiro, 1982; Stumpt-

ner and Wotawa, 1998; Naish, 1992; Brna et al.,
1991; Pereira, 1986; Dershowitz and Lee, 1987) ;
optimized algorithms that search an abstract rep-
resentation of a programs execution for the part
that is causing a bug, using either the user or a
specification as oracle.

• Automatic Debugging7 (Craw and Boswell, 2000;
Craw and Sleeman, 1996; Ginsberg, 1988;
Wilkins, 1990; Waterman, 1968; Ourston and
Mooney, 1990; Richards, 1991; Wogulis and Paz-
zani, 1993; Raedt, 1992; Saitta et al., 1993; Morik
and Emde, 1993), approaches that try to automati-
cally identify (and possible correct) the error caus-
ing a bug, for instance by identifying the smallest

6Similar works have also been published under the terms
Declarative Debugging, Declarative Diagnosis, Guided De-
bugging, Rational Debugging and Deductive Debugging

7The authors use automatic debugging as very broad
broad combination of the areas of Automatic Debugging,
Why-Not Explanation, Knowledge Refinement, Automatic
Theory Revision and Abductive Reasoning

RULES AS SIMPLE WAY TO MODEL KNOWLEDGE - Closing the Gap between Promise and Reality

91



change to the rule base that would change the out-
put to the expected value.

We reject both approaches as unsuited to be the ex-
clusive debugging support within the architecture de-
scribed here for the following reasons:

• Both approaches can be described as computer
controlled debugging. Because the computer con-
trols the debugging process, these tools can only
use the information encoded in the rule base, not
the domain knowledge and intuition of the devel-
oper. These approaches also do not empower the
developer to learn more about the program. Many
approaches just propose a change without giving
the developer a chance to test and correct her ex-
pectations.

• These approaches are hard to reconcile with
the interactivity principle and the integrated rule
creation-test-debug development process because
they depend on the existence of a test case, mostly
together with the expected result.

• To the author’s best knowledge none of the au-
tomatic approaches has ever proved a sufficient
accuracy in identifying errors to find widespread
adoption. Also many of these approaches rely
heavily on the competent programmers hypothe-
ses (DeMillo et al., 1978), that does not hold in all
circumstances. This is particularly critical when
no fallback, non-automatic debugging support is
available to support the user in the misidentified
cases.

6.2 Explorative Debugging

To address this shortcoming we have developed and
implemented the Explorative Debugging paradigm
for rule-based systems (Zacharias and Abecker,
2007). Explorative Debugging works on the declar-
ative semantics of the program and lets the user navi-
gate and explore the inference process. It enables the
user to use all her knowledge to quickly find the prob-
lem and to learn about the program at the same time.
An Explorative Debugger is not only a tool to identify
the cause of an identified problem but also a tool to try
out a program and learn about its working.

Explorative Debugging puts the focus on rules. It
enables the user to check which inferences a rule en-
ables, how it interacts with other parts of the rule base
and what role the different rule parts play. Unlike in
procedural debuggers the debugging process is not de-
termined by the procedural nature of the inference en-
gine but by the user who can use the logical/semantic
relations between the rules to navigate.

An explorative debugger is a rule browser that:

• Shows the inferences a rule enables.

• Visualizes the logical/semantic connections be-
tween rules and how rules work together to arrive
at a result. It supports the navigation along these
connections8.

• It allows to further explore the inference a rule en-
ables by digging down into the rule parts.

• Is integrated into the development environment
and can be started quickly to try out a rule as it
is formulated.

The interested reader finds a complete description of
the explorative debugging paradigm and one of its im-
plementation in (Zacharias and Abecker, 2007).

6.3 The Role of Automatic Debugging

Section 6.1 argued that automatic debugging cannot
form the exclusive debugging support in the context
of the architecture described here. It can, however,
play a supportive role for manual debugging systems.
The techniques of automatic debugging (and in partic-
ular those of why not explanations (Martincic, 2001;
Chalupsky and Russ, 2002) can be harnessed to tackle
the problem of error reporting (see section 3), to cre-
ate an initial explanation for the failure of a rule base
to return any result to a query. In this way it can play
a role similar to that of stack traces in imperative pro-
gramming - to give a starting point for the developer
driven debugging of the system.

7 DISCUSSION

This section adresses two objections against ideas in
this paper often encoutered by the authors.

7.1 The Declarativety of Rules

Rules (and declarative languages in general) promise
that knowledge represented in this way can be more
easily and automatically reused in different contexts,
even in those not envisioned during the rule base’s
creation (McCarthy, 1959):

Expressing information in declarative senten-
ces is far more modular than expressing it
in segments of computer programs or in ta-
bles. Sentences can be true in a much wider

8Logical connections between rules are static dependen-
cies formed for example by the possibility to unify a body
atom of one rule with the head atom of another. Other log-
ical connections are formed by the prooftree that represents
the logical structure of a proof that lead to a particular result

ICEIS 2008 - International Conference on Enterprise Information Systems

92



context than specific programs can be used.
The supplier of a fact does not have to under-
stand much about how the receiver functions
or how or whether the receiver will use it. The
same fact can be used for many purposes, be-
cause the logical consequences of collections
of facts can be available.

Some readers may misunderstand this paper’s in-
sistence on visibility - the showing of the interactions
between rules - to mean that the authors deny this
property and want rule bases to have a rigid/developer
defined structure. This however, is not the authors in-
tention. The argument for the importance of visibility
is as follows:

1. Only a rule base tested extensively has a chance
to work correctly in novel situations.

2. Many of the bugs uncovered during testing will be
caused by errors affecting the interaction between
rules. Examples for such errors are rules using
different attributes to represent the same thing or
rules reflecting different interpretations of a class.

3. Supporting the diagnosis of such errors or pre-
venting their introduction into a rule base there-
fore requires the visbility of rule interactions.

7.2 Comparing Modeling and
Programming

This paper frequently draws on comparisons between
modeling knowledge as rules and the programming
of imperative programs as arguments. Some readers
may object to this on the grounds that programming
and knowledge modeling are fundamentally different
activities and that hence comparisons to programming
cannot inform better support for knowledge model-
ing activities. However, in the end the creation of a
knowledge based system is the engineering of a com-
puter system. And in the final creation of this com-
puter system the development of rule based systems
encounters many of the same problems as the devel-
opment with other programming paradigms - such as
the problem of identifying the error causing a bug.
The building of a knowledge based system is the cre-
ation of a computer program in a particular way, but
it’s the creation of a computer program nonetheless.

8 CONCLUSIONS

Current tools support for the development of rule
based knowledge based systems fails to address many
common problems encountered during this process.

An architecture that combines integrated develop-
ment, debugging and testing supported by test cov-
erage metrics, visualization and anomaly detection
heuristics can help tackle this challenge. The princi-
ples of interactivity, declarativity, visibility and mod-
ularization can guide the instantiation of this architec-
ture in concrete tools. The novel paradigm of explo-
rative debugging together with techniques from the
automatic debugging community can form the robust
basis for debugging in this context.

Such a complete support for the development of
rule bases is an important prerequisite for Semantic
Web rules to become a reality and for business rule
systems to reach their full potential.

ACKNOWLEDGEMENTS

Research reported in this paper was partly funded by
Vulcan Inc. under Project Halo, and supported by On-
toprise GmbH by giving free access to software for
project Online Forecast.

REFERENCES

Baroff, J., Simon, R., Gilman, F., and Shneiderman, B.
(1987). Direct manipulation user interfaces for expert
systems. pages 99–125.

Brna, P., Brayshaw, M., Esom-Cook, M., Fung, P., Bundy,
A., and Dodd, T. (1991). An overview of prolog de-
bugging tools. Instructional Science, 20(2):193–214.

Chalupsky, H. and Russ, T. (2002). Whynot: Debugging
failed queries in large knowledge bases. In Proceed-
ings of the Fourteenth Innovative Applications of Ar-
tificial Intelligence Conference (IAAI-02), pages 870–
877.

Craw, S. and Boswell, R. (2000). Debugging knowledge-
based applications with a generic toolkit. In ICTAI,
pages 182–185.

Craw, S. and Sleeman, D. (1996). Knowledge based refine-
ment of knowledge based systems. Technical report,
The Robert Gordon University.

Decker, S., Erdmann, M., Fensel, D., and Studer, R. (1999).
Ontobroker: Ontology-based access to distributed and
semi-structured unformation. In Database Semantics:
Semantic Issues in Multimedia Systems, pages 351–
369.

DeMillo, R. A., Lipton, R. J., and Sayward, F. G. (1978).
Hints on test data selection: Help for the practicing
programmer. IEEE Computer, 11(4):34–41.

Dershowitz, N. and Lee, Y.-J. (1987). Deductive debugging.
In SLP, pages 298–306.

Ginsberg, A. (1988). Automatic Refinement of Expert Sys-
tem Knowledge Bases. Morgan Kaufmann Publishers.

RULES AS SIMPLE WAY TO MODEL KNOWLEDGE - Closing the Gap between Promise and Reality

93



Grossner, C., Gokulchander, P., Preece, A., and Radhakrish-
nan, T. (1994). Revealing the structure of rule based
systems. International Journal of Expert Systems.

Gupta, U. (1993). Validation and verification of knowledge-
based systems: a survey. Journal of Applied Intelli-
gence, pages 343–363.

Jacob, R. and Froscher, J. (1990). A software engineering
methodology for rule-based systems. IEEE Transac-
tions on Knowledge and Data Engineering, 2(2):173–
189.

Kifer, M., de Bruijn, J., Boley, H., and Fensel, D. (2005). A
realistic architecture for the semantic web. In RuleML,
pages 17–29.

Kifer, M., Lausen, G., and Wu, J. (1995). Logical foun-
dations of object-oriented and frame-based languages.
Journal of the ACM, 42(4):741–843.

Martincic, C. J. (2001). Mechanisms for answering ”why
not” questions in rule- and object-based systems. PhD
thesis, University of Pittsburgh. Adviser-Douglas P.
Metzler.

McCarthy, J. (1959). Programs with common sense. In Pro-
ceedings of the Teddington Conference on the Mecha-
nization of Thought Processes, pages 75–91, London.
Her Majesty’s Stationary Office.

Mehrotra, M. (1991). ”rule groupings: a software engineer-
ing approach towards verification of expert systems”.
Technical report, NASA Contract NAS1-18585, Final
Rep.

Morik, J.-U. K. K. and Emde, W. (1993). Knowledge Acqui-
sition and Machine Learning. Academic Press, Lon-
don.

Naish, L. (1992). Declarative diagnosis of missing answers.
New Generation Comput., 10(3):255–286.

Ourston, D. and Mooney, R. (1990). Changing the rules:
A comprehensive approach to theory refinement. In
Proceedings of the Eighth National Conference on Ar-
tificial Intelligence, pages 815–520.

Pereira, L. M. (1986). Rational debugging in logic program-
ming. In Proceedings of the Third International Con-
ference on Logic Programming, pages 203–210.

Preece, A. D. and Shinghal, R. (1994). Foundation and
application of knowledge base verification. Interna-
tional Journal of Intelligent Systems, 9(8):683–701.

Preece, A. D., Talbot, S., and Vignollet, L. (1997). Eval-
uation of verification tools for knowledge-based sys-
tems. Int. J. Hum.-Comput. Stud., 47(5):629–658.

Raedt, L. D. (1992). Interactive Theory Revision. Academic
Press, London.

Richards, R. M. B. (1991). First-order theory revision. In
Machine Learning: Proceedings of the Eighth Inter-
national Workshop on Machine Learning, pages 447–
451.

Ruthruff, J. and Burnett, M. (2005). Six challenges in sup-
porting end-user debugging. In 1st Workshop on End-
User Software Engineering (WEUSE 2005) at ICSE
05.

Ruthruff, J., Phalgune, A., Beckwith, L., and Burnett, M.
(2004). Rewarding good behavior: End-user debug-
ging and rewards. In VL/HCC’04: IEEE Symposium
on Visual Languages and Human-Centric Computing.

Saitta, L., Botta, M., and Neri, F. (1993). Multistrat-
egy learning and theory revision. Machine Learning,
11(2):153–172.

Shapiro, E. Y. (1982). Algorithmic program debugging.
PhD thesis, Yale University.

Stumptner, M. and Wotawa, F. (1998). A survey of intelli-
gent debugging. AI Commun., 11(1):35–51.

Tsai, W.-T., Vishnuvajjala, R., and Zhang, D. (1999). Ver-
ification and validation of knowledge-based systems.
IEEE Transactions on Knowledge and Data Engineer-
ing, 11(1):202–212.

Waterman, D. A. (1968). Machine Learning of Heuristics.
PhD thesis, Stanford University.

Wilkins, D. (1990). Knowledge base refinement as improv-
ing and incorrect, inconsistent and incomplete domain
theory. Machine Learning, 3:493–513.

Wogulis, J. and Pazzani, M. (1993). A methodology for
evaluating theory revision systems: results with au-
drey ii. In Proceedings of the Sixth International
Workshop on Machine Learning, pages 332–337.

Zacharias, V. (2007). Visualization of rule bases - the
overall structure. In 7th International Conference on
Knowledge Management - Special Track on Knowl-
edge Visualization and Knowledge Discovery.

Zacharias, V. and Abecker, A. (2007). Explorative debug-
ging for rapid rule base development. In Proceedings
of the 3rd Workshop on Scripting for the Semantic Web
at the ESWC 2007.

ICEIS 2008 - International Conference on Enterprise Information Systems

94


