
IMPROVING THE UNDERSTANDABILITY OF I* MODELS

Fernanda Alencar
Departamento de Eletrônica e Sistemas, Universidade Federal de Pernambuco, R. Acad. Hélio Ramos S/N, Recife, Brazil

Carla Silva1, Márcia Lucena1,2, Jaelson Castro1, Emanuel Santos1, Ricardo Ramos1
1Centro de Informática, Universidade Federal de Pernambuco, Av. Prof. Luiz Freire S/N, Recife, Brazil

2Departamento de Informática, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal, Brazil

Keywords: Requirements Engineering, Goal-Oriented Framework, Modelling Language, Structuring Mechanisms.

Abstract: Requirements engineering (RE) has been considered a key activity in almost all software engineering
process. i* is a goal-oriented approach widely adopted in the earlier phases of RE, as it offers a modelling
language that describes the system and its environment in terms of actors and dependencies among them.
However, often the models become cluttered even for small applications, compromising their
understanding, evolution and scalability. In large and complex applications, this problem increases
significantly. In this paper we investigate the use of structuring mechanisms to deal with the complexity
which may arise when i* is used to model complex domains.

1 INTRODUCTION
1

Requirements specification should include not only
software specifications but also business models and
other kinds of information describing the context in
which the intended system will operate. During the
early stages of requirements engineering, it is
necessary to identify and specify how the intended
system meets organizational goals, why the system
is needed, what alternatives were considered, what
the implications of the alternatives are for the
various stakeholders, and how the stakeholders’
interests and concerns might be addressed. The i*
framework provides expressive models to achieve
these, wherein motivations and rationale are
explicitly captured in a requirements model. Thus,
the i* framework (Yu, 1995) is becoming widely
used for organizational modelling, capturing social
and intentional characteristics of the system
organisation context (Giorgini et al., 2002).

In particular Tropos (Castro et al., 2002)
(Bresciani et al., 2004), an agent-oriented software
development framework, adopts i* to support the
initial phases of software development lifecycle.

*1Currently in post-doc position at Univ. Nova de Lisboa, PT

Indeed, actors in i* can be autonomous, as
advocated by agent-oriented software technologies
(Yu, 2001), as well as intentional, since it has
desires and beliefs. Nowadays, we are dealing with
complex systems, such as agent-based ones and,
consequently, the i* models can become very large,
hard to read and understand.

The framework i* is a rich ontology that has
many constructors and relationships. However, the
amount of relationships may increase even for small
examples (as show Figure 1). This occurs when the
analyst goes deeper into context understanding
analysis and applies this analysis introducing some
new internal and external relationships in the model.
Even with three or four actors, the understandability
may be damaged since it is very sensible to the
granularity of model details. This situation depends
on the analyst and how far the model is detailed. The
i* models are defined by the amount of internal
relationships in the actor’s boundary. Whenever the
analysis of a complex domain is deepened, through
the refinement of the several alternative solutions,
more complex models will arise. Those are
important points to deal with. Therefore, we need to
investigate approaches to reduce the i* models
complexity and to improve their reusability and
understandability. Although there are several

129
Alencar F., Silva C., Lucena M., Castro J., Santos E. and Ramos R. (2008).
IMPROVING THE UNDERSTANDABILITY OF I* MODELS.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - ISAS, pages 129-136
DOI: 10.5220/0001709001290136
Copyright c© SciTePress

variants of the original i* (Yu, 1995), tailored to
support many Tropos versions (Bresciani et al.,
2004), (Susi et al., 2005), (Bertolini et al., 2005),
they are not concerned with the reduction of
complexity in i* models. In this paper, we propose
to use two new structuring mechanisms: one to help
to hide details of alternatives (i.e. different means to
achieve an end) present in the model; and the other
to cope with the order of the operationalization of
actors’ intentions. Thus, we extend the i* metamodel
by adding new constructs tailored to increase the
structuring power of i* models. Our goal is to
introduce a new visualization mechanism to improve
the readability and understandability of i* models. In
doing so, we may help to reduce the size and
complexity of these diagrams, facilitating their
analysis. To illustrate our proposal, we use the
Health Care example presented in (Yu, 1995).

This paper is organized as follows. Section 2
overviews the i* framework. Section 3 presents our
proposal for extending the i* modelling language.
Section 4 discusses the benefits of using the
extended i* models, while Section 5 describes some
related works. Finally, Section 6 summarizes our
work and points out open issues.

2 THE i* FRAMEWORK
OVERVIEW

2.1 The Health Care Example

To illustrate our proposal throughout the paper, let
us consider the health insurance domain already
modelled using the i* notation in (Yu, 1995). In this
domain, medical costs are covered by an insurance
company in return for Premium payment. Treatment
by a physician must be pre-approved for a physician
to receive reimbursement. A claims manager issues
approval by verifying that the patient’s policy is
applicable to the medical condition, and by
confirming that the treatment plan is appropriate
according to medical opinion. Patients pay insurance
because they want their medical expenses to be
covered in case of sickness or injury. Physicians
submit treatment plans to insurance companies for
approval because they want to be reimbursed for
giving the treatment. Claims managers seek medical
assessment of treatment plans because they want to
prevent unnecessary treatments, in order to control
costs. This kind of deeper understanding about the
“whys” constitutes an important part of the
knowledge about a domain and can be captured by

using the concepts and models provided by the i*
framework, since it defines a richer ontology that
recognizes motivations, intentions and rationales
beneath the surface features of a process.

2.2 Main Concepts and Models of i*

The i* framework (Yu, 1995) captures
organizational requirements using the strategic
relationships among actors. Systems and their
environments are described in terms of intentional
relationships among strategic actors. Actors are
intentional since they have desires and needs, and
are strategic since they are concerned about
opportunities and vulnerabilities.

The i* framework offers two models: the
Strategic Dependency (SD) model and Strategic
Rationale (SR) model. The SD model includes a set
of nodes and links connecting them, where nodes
represent actors (depender and dependee) and each
link indicates a dependency between two actors
(dependum).

Figure 1: The Strategic Dependency Model for Claims
Manager Actor.

An example of a SD model for the health care
domain (Figure 1) focuses on the Claims Manager
actor and its strategic dependencies in the insurance
company. It shows (some of the) relationships
among Claims Managers, Claims Clerks, Claims
Repositories, Physicians, Departments and Medical
Assessors. Physicians depend on Claims Managers
to Get Approval Of Treatment (a task dependency),
while Claims Managers, in turn, depend (i) on
Medical Records Department to provide Patient
Medical Files (a resource dependency), (ii) on
Claims Clerk to Assess Treatment (a task
dependency), (iii) on Claims Cases Repository to get
Medical Claims Precedents (a resource dependency),

ICEIS 2008 - International Conference on Enterprise Information Systems

130

Figure 2: The Health Care Strategic Rationale Model.

(iv) on Policy Records Department to get Patient
Policy Records (a resource dependency) and, (v) on
Medical Assessors to have Medical Claim Assessed
(a goal dependency)
In this example we do not have a softgoal
dependency which can be associated to a non-
functional requirement.

The SR model is used to expand the description
of a given actor (e.g. Claims Manager actor in
Figure 1). Apart from the previous four types of
dependencies, three new types of relationships are
incorporated in the SR model: (i) task-
decomposition links describe what should be done to
perform a certain task (e.g. Approval Treatment
task); (ii) means-end links suggest that one model
element (e.g. Let Claims Clerk Assess Treatment
task) can be offered as a means to achieve another
model element (Treatment Be Assessed goal); (iii)
contributions links suggest how a task (e.g. Make
Medical Assessment) can contribute to satisfy a
softgoal (e.g. Fast Turnaround).

The SR model (Figure 2) captures some of the
rationales involved in an insurance claims setting. A
Physician must submit a treatment plan to the
Insurance Company for prior approval, or else the
treatment may not be reimbursed. The Insurance
Company verifies that the type of treatment is
covered by the policy, and that the proposed
treatment is reasonable according to medical
opinion.

The SR model shows that the Claims Manager is
able to produce Approval Of Treatment (a resource)
via the Approval Treatment task. This task is
decomposed into of two components – the subgoal
Treatment Be Assessed, and the subtask of Sign
Approval Document. Originally, the task-
decomposition link does not explicitly define the
order in which its components are required.
However, often this ordering information facilitates
its understandability.

One way to have the treatment plan assessed is
to let a claims clerk do it. Another way is for the
Claims Manager to do it herself. This alternative
requires the Claims Manager to verify the policy
(that the medical condition and the treatment plan
are covered under the patient’s policy, and that the
policy is in force) and also to have the treatment
plan assessed for its medical appropriateness,
producing the treatment assessment. Thus, the
Medically Assessed goal can be achieved by relying
on someone with special medical knowledge (a
medical assessor) to do it, or by doing it herself,
making use of case knowledge about previous
claims, from a repository. These alternatives are
explicated by the means-end link.

From this simple example, we can identify two
problems which can compromise the readability and
scalability of the model: the absence of ordering
information in the operationalization of the tasks as
well as the complexity which arises when several
alternatives (with different extent of intentional
elements) are taken in consideration. In fact,
empirical evaluation has indicated that there is a lack
of modularity in the i* framework (Estrada et al.,
2006). Moreover, currently, only two views are
supported, the Strategic Dependency (SD) Model
and the Strategic Rational (SR) Model. Therefore, as
systems models evolve and become larger, better
information hiding and structuring mechanisms are
needed.

Next section presents our proposal to extend the
i* modelling language by adding new concepts to
help us in the analysis of the models produced.

3 THE EXTENDED i*
MODELLING LANGUAGE

Metamodels are models that describe the structure of
models. They define the constructs of a modelling

IMPROVING THE UNDERSTANDABILITY OF I* MODELS

131

language and their relationships, as well as
constraints and modelling rules. Although a version
of the i* metamodel has been specified in (Yu,
1995) using Telos (Mylopoulos, 1990), we specify it
now using the Meta-Object Facility (OMG, 2002).
The idea is to incorporate new abstractions to hide
detailed information (in general related to
alternatives to reach a goal) and therefore, produce
simplified model, as well as to order the
operationalization of actors’ intentions.

According to the metamodel introduced in
Figure 3, i* models are composed of at least one
Node, which can be a Dependum or a
DependableNode. The DependableNode is
specialized in an Actor and an InternalElement. This
means that an Actor (or its internal InternalElement)
can depend on an InternalElement inside of another
Actor (or the Actor itself). An InternalElement can
be specialized into an Alternative or an
IntentionalElement, as well as can be related to
IntentionalElements through a MeansEndLink, a
ContributionLink or a TaskDecompositionLink.

Observe in the metamodel that the new i*
language constructs are the InternalElement, the
Alternative and two new attributes in the
TaskDecompositionLink. An InternalElement is any
element inside the boundaries of an Actor or
Alternative. An Alternative is a metaclass added to
allow the suppression of a subgragh composed of at
least one InternalElement and in charge of the
operationalization of an InternalElement through a
MeansEndLink relationship. A sub-element related
to a task through TaskDecompositionLink
relationships can be ordered by using the optional
priority attribute, which defines its order of
execution. Elements with the same priority number
can be executed in parallel. A redundant attribute
parallel is used to explicitly indicate this
parallelism. The other metaclasses in the metamodel
belongs to the original i* framework (Yu, 1995).

It is important to highlight the distinction
between abstract and concrete syntax of a language.

Figure 3: The Extended i* Metamodel.

ICEIS 2008 - International Conference on Enterprise Information Systems

132

The abstract syntax of a language is defined by
its metamodel, while the concrete syntax of a
language defines the concrete form of the textual or
graphical representation of the constructs and is not
defined in the metamodel. The concrete syntax of
the language define by the extended metamodel is
presented in Figure 4.

An Alternative is graphically represented by a
diamond (Figure 4), which can be expanded or
contracted to provide specific views of an actor’s
rationale and, consequently, produce simpler SR
models. In the concrete syntax, the parallelism is
represented by || symbol. We can have sibling
elements with and without priority labels. Those
without priority labels have the lowest priority.
Some restrictions apply to priorities: (i) the number
1 (one) has the highest priority; (ii) the priority
number must be continuous and sequential. (iii)
softgoals do not have priority labels, because they
are not directly operationalized. We emphasize
which for each new task to be decomposed, the
labels in the related task-decomposition links must
be re-initialized.

Note that the elements Treatment Be Assessed
goal and Sign Approval Document task have,

respectively, priority labels 1 and 2. Thus we initiate
the analysis by the left branch (priority 1). Going
down at the graph analysis we can see that the
elements Verify Patient Policy task, Medically
Assessed goal and Treatment Assessment resource
have, respectively, priority labels 1, 2|| and 2||. The
last labels indicate that these elements are in parallel.
Furthermore, as explained before, softgoals do not
have priority labels.

The use of priority labels enables us to visualize
and analyse, in a better way, the order of execution
of the elements. This adds a temporal behaviour to
elements in SR models facilitating the analysis of
the execution flow of a task.

4 DISCUSSION

An important concept defined in the context of SR
models is the notion of routine (Yu, 1995). A routine
is an interconnected collection of intentional
elements (subgoals, subtasks, resources and
softgoals) serving to some purpose for an actor.

Figure 4: The Extended i* Modelling Language.

IMPROVING THE UNDERSTANDABILITY OF I* MODELS

133

In other words, a routine is a subgraph in the SR
model with a single link to a “means” node from
each “end” node in a means-end relationship.
Therefore, it represents one particular course of
action among the multiple alternatives to accomplish
an intentional element (Yu, 1995). However, in the
case of softgoals, in which means-end relationships
represent partial contributions of tasks or softgoals
to achieve a specific softgoal, a routine will include
multiple means-ends links contributing to softgoals.

The SR model explicitly enumerates an actor’s
set of routines. An actor often has more than one
routine for accomplishing something, providing a
convenient unit for analysis when evaluating
alternatives. Thus, to simplify the visualization of i*
models, now we are able to focus on one routine (to
achieve a specific dependency) each time. A routine
refers to one process and its rationales. One example
of a routine is presented in Figure 5, in which the
view of the SR model suppresses the Alternative 2
and focuses on Alternative 1 to achieve the
Treatment Be Assessed goal. In this case, the routine
to accomplish the Approval Of Treatment task
dependency is the subgraph that includes Let Claims
Clerk Asses Treatment and Sign Approval Document
tasks.

Figure 5: First view of the Claims Manager SR Model

Another routine to accomplish the Approval Of
Treatment task dependency is presented in Figure 6
(a), in which Alternative 1 and Alternative 4 are
suppressed and the attention is paid to Alternative 2
and Alternative 3. In this view, the routine
considered is the subgraph including

VerifyPatientPolicy, ReviewPatientMedHistory and
SignApprovalDocument tasks.

The last possible routine to accomplish the
Approval Of Treatment task dependency is shown in
Figure 6 (b). In this view, the Alternative 1 and
Alternative 3 are suppressed and the Alternative 2
and Alternative 4 are focused. Therefore, this routine
involves the subgraph including Verify Patient
Policy, Let Medical Assessor Make Medical
Assessment and Sign Approval Document tasks.

Notice also that the extended modelling language
now allows the ordering of the sequence of
execution of sub-elements in task decompositions.
An attribute in the task-decomposition link states the
priority of the operationalization of a sub-element to
accomplish the decomposed task. For example, in
Figure 5, the Treatment Be Assessed goal must be
operationalized before all sub-elements (priority 1),
while the Sign Approval Document task must be
executed latter (priority 2). If the priority property is
empty, then the order of the sub-element
operationalization does not matter. This is the case
of Fast Turnaround softgoal in Figure 6 (a).
Moreover, we can also specify sub-elements which
must be operationalized in parallel, such as
Medically Assessed goal and Treatment Assessment
resource. The sub-elements’ ordering in a task
decomposition is essential in the analysis of the
process being modelled to help decision making
among alternatives.

5 RELATED WORK

The proposal presented in (Alencar et al., 2007) uses
the principles of Aspect-Oriented Software
Development to simplify i* models. They propose
an approach to identify, modularise and compose
crosscutting concerns in i* models. In doing so, they
aim at reducing the graphical complexity of i*
models, especially large i* descriptions. However,
they do not deal with the different views of i*
models, neither with the sub-elements’ ordering in
task decompositions.

The approach proposed in (You, 2004)
introduces systematic methods to deal with
scalability issues of i* models. To accomplish it, he
used views (a projection over a model according to
some criteria) as a way to break down one baseline
model into self-contained segments in order to
increase human understandability.

In the approach four types of views where
introduced: Actor Class (AC), Strategic Dependency
(SD), Strategic Rationale (SR) and Evaluation

ICEIS 2008 - International Conference on Enterprise Information Systems

134

Results (EVLR). The AC focus on various forms of
actors and the associations among the different
forms of each actor. The SD model focuses on inter-
actor dependency relationships. SR view focus on
“the rationales that actors have about adopting one
configuration or another” (Yu, 1995). The EVLR
helps the decision-making process over alternative
system configurations. Each view is associated with
a formally defined selection rule so that the
projection of a specific view from a baseline model
can be automated.

Although that approach increases the number of
views produced in the i* framework, the complexity
of the SR model, as well as the ordering of sub-

elements in a task decomposition have not been
addressed.

On the other hand, in our proposal, the issue of
ordering the operationalization of the sub-elements
of a task is addressed by extending the i* modelling
language itself. In fact, we have extended the i*
metamodel to allow the addiction of two properties
in the task-decomposition link: one to represent the
order in which the sub-element must be
operationalized; and other to state if its
operationalization can be in parallel with another
sub-element.

In doing so, we did not need to use diagrams of
other modelling languages, such as UML (OMG,
2005), to improve the understandability of the i*

Figure 6: a) The Second View of Claims Manager SR Model; b) The Third View of the Claims Manager SR Model.

IMPROVING THE UNDERSTANDABILITY OF I* MODELS

135

models. Moreover, the extended i* metamodel also
defines a new abstraction (the alternative) to allow
the generation of several different views of the same
model. In particular, each view focuses in a
particular routine to accomplish something, reducing
the complexity of the model and, therefore,
improving its readability and understandability.

6 CONCLUSIONS

In this paper we propose an extension of the i*
modelling language by adding new constructs to the
i* metamodel to improve the understandability of
the i* models. By doing so, we have added two
attributes to the task-decomposition link to define
the order in which the components of a decomposed
task are required. Moreover, a new abstraction has
been added to the metamodel, called alternative, to
suppress specific sub graphs in the SR model and,
therefore, produce simpler views of the same SR
model. In fact, each view focuses on a specific
routine to achieve a dependency. These views may
reduce the complexity of i* models, increasing their
readability, maintainability and scalability. In fact, it
is now necessary to carry out experiments with some
available metrics (Ramos et al., 2008) (Franch,
2006) to estimate the degree of amount complexity
reduction using our approach.

Currently, we are working on the inclusion of
routines identification and their association with
viewpoints (Sommerville et al., 1998) in i* models.
Finally, we plan to evolve the current i* support tool
(Yu and Yu, 2000) to include the new constructs of
the extended metamodel. Moreover, the new
constructs requires the formal specification of
constraints to be considered when specifying i*
models. Currently, these constraints are being
specified in OCL (OMG, 2006) and will be
presented in future work.

ACKNOWLEDGEMENTS

This work was supported by CAPES/GRICES Proc.
129/05.

REFERENCES

Alencar, F., Castro, J., Moreira, A., Araújo, J., Monteiro,
C., Ramos, R., Mylopoulos, J., 2007. Simplifying i*
Models. In AOIS’07 in conjunction with CAiSE’07.
Tapir Academic Press, Norway. 635-649.

Bertolini, D., Perini, A., Susi, A., Mouratidis, H., 2005.
The Tropos Visual Language. A MOF 1.4 Compliant
Metamodel. Agentlink III AOSE TFG 2. Slovenia.

Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J.,
Perini, A., 2004. Tropos: An Agent-Oriented Software
Development Methodology. Journal of Autonomous
Agents and Multi-Agent Systems, 8(3): 203-236.

Castro, J., Kolp, M., Mylopoulos, J., 2002. Towards
Requirements-Driven Information Systems
Engineering: The Tropos Project. In Information
Systems News, Elsevier, 27: 365-89.

Estrada, H., Rebollar, A. M., Pastor, O., Mylopoulos, J.,
2006. An Empirical Evaluation of the i* Framework in
a Model-Based Software Generation Environment. In
CAiSE’06. LNCS 4001, Springer-Verlag , 513-527 .

Franch, X., 2006. On the Quantitative Analysis of Agent-
Oriented Models. In CAiSE’06, LNCS 4001 Springer-
Verlag: 495–509.

Giorgini, P., Mylopoulos, J., Nicchiarelli, E., Sebastiani,
R., 2002. Reasoning with Goal Models. In Proc. of the
21st Int. Conference on Conceptual Modelling. LNCS
2503. Springer-Verlag, London, 167-181.

Mylopoulos J., Borgida A., Jarke M., Koubarakis M.,
1990. Telos: Representing Knowledge About
Information Systems. ACM Transactions on
Information Systems, 8(4): 325–362

Object Management Group (OMG), 2002. Meta-Object
Facility (MOF) Specification, 1.4. Available at:
http://www.omg.org/cgi-bin/apps/doc?formal/02-04-
3.pdf. Last access: 11/2007.

Object Management Group (OMG), 2005. Unified
Modelling Language (UML) Superstructure, 2.0.
Available at: http://www.omg.org/docs/formal/05-07-
04.pdf. Last access: 09/2007.

Object Management Group (OMG), 2006. Object
Constraint Language (OCL) Specification, 2.0.
Available at: http://www.omg.org/cgi-bin/apps/doc?
formal/06-05-01.pdf. Last access: 11/2007.

Ramos, R., Castro, J., Araujo, J., Moreira, A., Alencar, F.,
Penteado, 2008. R. Early Aspects Refactoring. In
Proc. of the XI IDEAS’08. FASA: Recife-PE, 238-252.

Sommerville, I. Sawyer, P. Viller, S., 1998. Viewpoints
for requirements elicitation: a practical approach.
Proc. of RE’98, 74—81.

Susi, A., Perini, A., Mylopoulos, J., Giorgini, P., 2005.
The Tropos Metamodel and its Use. Informatica.
Slovenia, 29(4): 401-408.

You, Z., 2004. Using Meta-Model-Driven Views to
Address Scalability In i* Models. MSc thesis,
Department of Computer Science, University of
Toronto, Canada.

Yu, E., 1995. Modelling Strategic Relationships for
Process Reengineering. Ph.D. thesis. Department of
Computer Science, University of Toronto, Canada.

Yu, E., 2001. Agent-Oriented Modelling: Software Versus
the World. In AOSE’01, LNCS 2222, Canada, 206-225.

Yu, E., Yu, Y., 2000. Organization Modelling
Environment. At: http://www.cs.toronto.edu/km/ome/
Last access: 12/2007.

ICEIS 2008 - International Conference on Enterprise Information Systems

136

