
A GUIDED INTERFACE FOR WEB INTERACTION

Juan Falgueras, Antonio Carrillo, Daniel Dianes and Antonio Guevara
Dpto. Lenguajes y Ciencias de la Computación, Málaga University

Campus de Teatinos 29071, Málaga, Spain

Keywords: User interfaces, Interaction styles, Human-Computer Interaction, Web applications, Web usability.

Abstract: Many Web sites are for one use only and need to guide users through paths of decisions and data entering.
Users use to feel insecure entering data in not well-known sites and don’t mind at all being guided in their
first try. Goals Driven User Interfaces (GDUI) are based on an interaction style specially conceived for this
type of users (occasional users). The traditional method that still prevails in the field of Web design makes it
difficult to create neither usable user interfaces nor GDUI. Modern paradigm of Web use through Web 2.0
applications encourages the development of this interaction style as can be seen in this paper.

1 INTRODUCTION

The evolution of programming standards and
behaviour as well as the increasing processing power
and speed of the communications has brought about
the birth of a new type of application, the Web
application. Most users consulting a Web site do so
in order to perform one, or more, well defined
objectives and wish to do so quickly. They have no
user manuals or any other type of documentation.
The user profile is difficult to determine a priori. On
the other hand, Web applications are not wrapped
and sold, instead, the software provided by the
service is in a machine and the interaction interface
is loaded onto the user’s computer in a remote way.

Web applications can be executed on any
computer, without any special software installation
requirements and using the same personal document
base, independently of the machine being used.

The applications may be viewed as Web pages
but they have a much richer functionality with
respect to the response to the user, which has been
named the Rich Client Interface.

In traditional applications written for a specific
operating system (or for the desktop applications),
both the client and the server are in the same
machine. This is the fundamental point that the web
applications are changing. In such applications, the
user’s browser is a kind of “terminal” very different
from the command terminal and capable of a high
level of interaction:

 The browser can initiate a complex transaction
using arbitrary data, communicating with the
Server using AJAX. The importance of this
should be noted, as before the existence of
AJAX, transactions initiated by the client were
limited to the sending of a Web form, with the
inherent limitations.

 All the elements of the interface may be
modified without the necessity for
communicating with the server, using the
DOM and the JavaScript programming
language.

The main advantage of these two technologies
(DOM and AJAX) is that of a direct and
asynchronous communication, via arbitrary data
structures, both server-client and client server; this is
real bidirectional communication.

Using these technologies in the web applications
increases the sensation of working with a desktop
application, as it is unnecessary to call the server in
order to make changes to the interface. An additional
advantage is that the use of these technologies
decreases the server load and the broadband
necessities in the communication channel.

The Web applications in operation before the
appearance of AJAX and DOM constitute an
“abuse” of the basis of the WWW, as invented by
Tim Berners Lee, which was intended as a means of
sharing hypertext documents linked via a computer
network. Since the advent of these new technologies,
giant steps forward have been made in the usability

70
Falgueras J., Carrillo A., Dianes D. and Guevara A. (2008).
A GUIDED INTERFACE FOR WEB INTERACTION.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - HCI, pages 70-77
DOI: 10.5220/0001706700700077
Copyright c© SciTePress

of what are becoming the real desktop applications
via the Web.

Apart from the advantages obtained in relation to
the ease of use and in the server time, the main
advantage, and of particular interest to us in this
work, is that AJAX and DOM help us to apply the
studies in the field of HCI or Human-Computer
Interaction (Dix, Finlay, Abowd, and Beale, 2003) to
web applications.

2 THE USERS OF WEB
APPLICATIONS

The Object-Action Syntactic-Semantic model
proposed by Shneiderman (Shneiderman, 1980,
2005) suggests that user behaviour is based on two
types of knowledge, syntactic knowledge about
device-dependent details (e.g. which action erases a
character, which action inserts a new line, which
icon scrolls text forward, which abbreviations are
permissible…), and semantic knowledge about
concepts. The semantic knowledge is separated into
task concepts (objects and actions) and computer
concepts (object and actions).

By computer semantics, we are referring to
common actions and objects, such as the knowledge
that computers can keep information (action) in files
(object). For users, the semantic knowledge of a task
domain (for example the accounts in an accountancy
program) can normally be associated to familiar
concepts and should be relatively stable in the user’s
memory. A person can be an expert in the computer
concepts, but a novice in the task concepts, and vice
versa. Semantic knowledge is structured, device
independent, and acquired by learning.

Based on this model, Shneiderman (Shneiderman,
2005), proposed three categories or types of users:
experts, intermittent users and new users.

The first group of users are very well acquainted
with the syntactic and semantic aspects of the
system, and their objective is to complete their work
quickly. They demand fast response times and to be
able to execute actions with only a few strokes of the
keyboard.

Intermittent users can handle the semantic
knowledge about the task to be performed, and
remember the computer concepts, but they have
more difficulty dealing with syntactic
knowledge/aspects of the specific applications.

Finally, it is assumed that the novice users have
no experience working with computers and no
syntactic knowledge about the use of the system and
probably little semantic knowledge of computers in
general. Among these users, there may be some

degree of knowledge about the task domain (for
example, accountancy knowledge) but others may
have only a superficial understanding of it. These
users may feel somewhat uncomfortable when faced
with the prospect of having to use computers and
this will get in the way of their using the system.

However, we are going to consider a fourth
category of user: occasional users (OU). These users
need to use an application or operating system only
occasionally, and in most cases, only once.

Although we could almost consider the OU as a
novice, there is an important difference between the
two: the OU is not interested in extending his/her
interactive experience any further than that which is
necessary to achieve his/her objective, and is not
interested in becoming a frequent user or an expert.
There can be no learning curve, as the result must be
an immediate response to the user interaction at that
particular time.

This is one of the largest groups of Web users. In
general, the OU deliberately chooses not to or else
have any time to practise, either learn or study how
to use a system. Their main requisites are: being able
to use it and not to have to spend time on learning to
do so. For this, they will need ongoing assistance,
and to be guided step by step, both in the process of
carrying out the tasks and in the actual interaction
with the system (i.e., in both syntactic and semantic
knowledge). Normally such users refuse to spend
any time on reading user manuals or even using the
interactive help systems. This further strengthens the
case for considering the web application user as an
occasional user, since these applications are
distributed without user manuals.

3 INTERACTION STYLES

Human-Computer Interaction or HCI (Dix, Finlay,
Abowd and Beale, 2003,) (Lores, 2001) is the study
of the interactive dialogue between people and
computers. It analyses which dialogues are the most
efficient, in the effort to minimize errors, increase
user satisfaction by reducing their frustration, and
therefore making the tasks involving people with
computers more productive. It is a scientific research
area related to Ergonomics, Psychology, and
Software engineering, and includes various tools and
techniques, which help in the development of usable
and good quality user interfaces (UI).

The very diverse interaction styles are frequently
the subject of discussion in the HCI literature. For
example, in the works of (Shneiderman, 2005), (Hix
and Hartson, 1993), (Nielsen, 1993), (Preece,

A GUIDED INTERFACE FOR WEB INTERACTION

71

Rogers, Sharp, Benyon, Holland and Carey, 1994),
(Ziegler, 1996), (Dix, Finlay, Abowd and Beale,
2003), both the types of user interfaces and the most
common interaction styles were presented and
categorized. Among which are the Command
Languages, Forms fill-in, Natural Language, Point
and Click, Direct Manipulation, Menu, and Question
and Answer.

Our immediate objective is to look for the most
appropriate UI for the OU, and, as we will see later,
to examine whether its use and application are
possible in the Web applications.

 Because the application users are mainly OUs,
the use of interfaces based on Command languages
can be ruled out. Functionalities such as Form
filling, the natural language and point and click,
have their limitations and can only be used for
simple or restricted task domains, or to complement
another basic interaction style.

Currently, Direct Manipulation is the most
common type of interaction in desktop applications.
However, in spite of all of its advantages and its
considerable functionality and usefulness, it is not
necessarily intuitive or obvious enough for an OU.
This is because these users would need to know or to
learn the meaning of the visual representations, and
the actions they can perform. Furthermore, in
general these applications incorporate a large
number of commands, menu options, toolbars and
other independent semantic components, and
normally these do not follow a hierarchical time
structure which is suitable for the tasks or the
objectives which the user is trying to accomplish at
the specific moment of the interaction.

Probably, in most cases, Menu selection, and
Questions and answers are the most useful to the
OU, because they require only minimal expertise
and guide users better than the alternative interactive
styles. Nevertheless, these too have limitations as
regards their functionality and usefulness.

 In conclusion then, none of the traditional
interaction styles have been specifically conceived
for, nor are explicitly oriented to, the OU and
therefore for a large portion of Web application
users. Thus, in this work we present an interaction
style conceived especially for the OU, which we
have called Goal Driven Interaction (GDI) and we
will analyze whether its use is possible in the Web
applications.

4 GOAL DRIVEN INTERACTION

Goal Driven Interaction or GDI (Carrillo, Guevara
and Gálvez, 2002) is a human-computer interaction
style that is especially suitable for the type of
interactive applications to be used by the OU.

This style, which has a conversational and
sequential nature, can be considered a kind of
combination of Menus, Direct manipulation and
Wizards interaction styles. The aim is to guide, help
and lead the user, step by step in a hierarchical and
progressive way through the process of interacting
with the application, based on the objectives and
sub-objectives that the user has at a particular point.
In order to accomplish these goals satisfactorily, the
actions and tasks that must be carried out are
described. All this must be done via a mechanism
that holds simple and coherent at all times, using a
simple UI with a well defined and organized
structure (this will be described in section 5).

The goal is to simplify as much as possible the
syntactic knowledge necessary to use the system and
to provide the user both with the semantic domain
concepts both of the task and of the computer so as
to be able to perform the tasks successfully.

As a consequence, all the tasks and actions that
the user must carry out, both internal and external to
the application, must be specified in a hierarchical
way, and in enough detail so that any potential user
will be able to understand them and carry out the
tasks correctly. The aim is to eliminate or reduce the
possibility of making mistakes as much as possible.
In any case, it will be necessary to establish and to
offer mechanisms for rectifying mistakes, undoing
actions, and cancelling goals already initiated.

The fundamentals of the GDI originate in the
works of Newell and Simon (Newell and Simon,
1972) on the human reasoning mechanism for
resolving problems. Their vision of problem
resolution (as in GDI) was based on the breaking
down or analysis of the main or general objective,
into a hierarchical tree of sub-objectives, whose
branch lengths would depend on the degree of
subdivision within the sub-objectives. In the leaves
of the tree, we would find fundamental sub-
objectives reachable via basic information processes.

Based on this work, Card, Moran and Newell
(1980, 1983), developed the most important of the
existing cognitive models, the Human Processor
Model. That starting paradigm (as in GDI) considers
the interaction process as a task of resolving
problems. On the other hand, a psychological model
of the humans is defined as consisting of three
interactive systems: the perceptive, the motor and

ICEIS 2008 - International Conference on Enterprise Information Systems

72

the cognitive, each one having its own memory and
its own processor. The perceptive system is that
which manages the external sensory stimuli, the
motor system controls the actions, and the cognitive
system provides the knowledge to be able to connect
the two.

This vision of the user as an information
processing system allows the formalization of the
activities (physical and mental) involved in the task,
and gave rise to some of the methods for modelling,
specification and evaluation of the user interface that
are widespread today, the GOMS (Goals, Operators,
Methods, and Selection rules) methods (John and
Kieras, 1994, 1996, 1996b). These allow the
description of the sequences of behaviour and
knowledge that the user needs to have in order to
correctly interact with the system.

Therefore as the GOMS model corresponding to
an interface gathers the knowledge users must have
and the procedures they must follow, the aim of GDI
is that the user should not have to dedicate time to
acquiring this type of knowledge, but instead, the
interface should provide it, at the same time as the
interaction process is taking place. All this will be in
accordance with the specification or the (GOMS
type) model of the interface that the analyst will
have developed in the analysis and design phase.

In order to accomplish the information gathering
and the modelling task for this type of UI, we have
devised a methodology and a specific notation based
on NGOMSL (Kieras, 1997), which can be
consulted in (Carrillo, Falgueras and Guevara,
2005).

Another important aspect is the possibility of
using an automatic tool which, from the model or
specification previously developed, will allow a
prototype to be obtained quickly (even though it
may be very basic), which will reflect the result of
the modelling process. This tool will even allow
tests to be done with users to check the suitability of
the mental model of the users to the conceptual
model of the interface. For this purpose, we have
developed the GDIT tool (Carrillo, Falgueras and
Guevara, 2006).

5 GOAL DRIVEN INTERFACES

As we will see in the next section, unlike what
normally happens in the normal WIMP interfaces, a
Goal Driven User Interface (GDUI), in its strictest
version, does not include the standard application
menu bar, nor the toolbar, nor the icons nor the
quick access buttons for the main functions or
commands, nor contextual menus, etc. Instead, in a
GDUI, to reduce the complexity, different system

commands or functions will be presented to the user
(gradually and in a veiled way) while he/she is
“browsing” the hierarchy of goals and actions being
offered. This will happen in a specific area of the
interface (the GDW), as the user initiates new sub-
tasks or performs new actions.

For this purpose, and so that users are presented
with a simple user interface with a well defined and
organized structure and an interaction mechanism
which is simple and consistent throughout the whole
application, the GDUI will be structured in the
following three parts (Fig.1): the Goals Driver
Window (GDW), the Working Window (WW), and
the Active Goals Hierarchy Bar.

Figure 1: General structure of a GDUI.

5.1 Goals Driver Window (GDW)

The GDW is the area of a GDUI (situated on the left
hand side) where the main interaction takes place.
This is the part of the interface where the user is
guided and led by the hierarchy of objectives to be
reached and the actions to be carried out, and where
the different functions of the application can be
accessed. It is a substitute (or an alternative) to the
usual menus, access icons, toolbars or other typical
elements of the direct manipulation WIMP type
interfaces (as can be seen in Figure 1).

5.1.1 Methods and Selections

The GDW will begin with the goal of the highest
level that can be reached with the application, the
highest abstraction level and will always present and
offer the user, either the method or the selection
which allows him/her to achieve the current goal at
any given moment.

If the current goal can be reached by following a
specific method, the GDW will show the set of steps
that constitute the method (Figure 2, left). The GDW
will always clearly indicate the next step to be taken,
and the system will only allow this step to be
performed.

A GUIDED INTERFACE FOR WEB INTERACTION

73

The steps constituting a specific method may be
one of the following:

a) The step may involve the initiation of a new
sub-goal (which at the same time we have
another method or another selection
associated).

b) Or the step may require the user to perform a
specific action.

c) A third type of step exists (which is mainly
used for the repetition of sequences of steps,
and for rectifying errors) which consists of the
user deciding if he/she wishes to skip (within
the method) to the specific step indicated, or to
continue with the next one in the sequence.

d) Finally, all the methods will finish with an
step which indicates that the goal has been
accomplished and after which, the control
flow will be returned to the next step after the
previous method in the active hierarchy.

Figure 2: Example of GDW, of a GDUI, offering a method
(left) and a selection (right).

Otherwise, if in order to reach a current objective the
user must perform a selection, the GDW will show
the different alternatives that the selection consists
of, in such a way that the user can choose one
(Figure 2, right). Although somewhat unusual here,
the user may also be offered the usual choices
existing in the direct manipulation WIMP type
interfaces, although they are not actually in the
GDW, but are in the WW. In this case, the GDW
must provide the user with the method to be
followed in order to perform the selection properly.

Regarding the basic user interaction mechanism
in the GDW, if the current step of the method shown
in the GDW (or the alternative to be chosen in a
selection) involves initiating a new sub-goal, the
user must click on the aforementioned step to initiate
it. The GDW will then show the method or the
selection that allows the said sub-objective to be

accomplished. Otherwise, if the step requires an
action or a task to be performed by the user, this
must be carried out first. Once this has been done,
the system must be informed (in the case where the
system cannot detect it automatically) by clicking
with the mouse on the corresponding step in the
GDW.

5.1.2 Goal Cancellation

By default, all the methods and selections (or to be
more precise, all the goals that can be accomplished
following a method or performing a selection) can
be cancelled by the user. As illustrated in Figure 1,
and 2, this possibility can be seen in the interface by
adding, after the last step of the method shown in the
GDW (or after the last alternative if it is a selection)
an additional and always active step that allows the
user to request the cancellation of the
aforementioned method.

Although other ways of cancellation may be
considered, the one we propose by default is what
we call cancellation at method level (or high grade
cancellation). In this case, when a method (or a
selection) is cancelled, independently of whichever
step the user is at, the system will return to the
method one level higher (i.e., the previous one) in
the active hierarchy and the same state and step
(within that previous method) which led him/her to
the method (or selection) cancelled.

However, in some situations, the system will
have to act on other external systems over which it
does not have complete control. In these cases, for
example when sending an email it would be
impossible to “undo” an action or to cancel it (the
email would already have been sent). In the
hierarchy of objectives, a non-cancellable method
represents a fixed node of no return for the rest of
the interaction with the system. Obviously, if a not
cancellable method is processed/ (OR a non
cancellable method occurs), when the sub objective
reaching the father method is returned, it cannot then
be cancelled. These cases occur when it is
impossible to go back to a previous state of the
system once this type of external action has taken
place.

5.1.3 Forward and Backward Navigation

We have just presented the concept of cancellable
and not cancellable goals. It is possible to go one
step further and where appropriate, to “complicate”
the interface and the interaction even more, in order
to make it more flexible. This involves offering the
user the possibility of “browsing” among the steps
already performed (in the cases where these are
reversible), i.e., going one step backwards or going

ICEIS 2008 - International Conference on Enterprise Information Systems

74

forwards to the next step. This could be achieved in
the interface by placing the corresponding buttons
on the lower part of the GDW.

5.2 Work Window (WW)

The GDUI will assign most of the interface to what
is called the work window (WW). In this part of the
interface the visual representation of the work
performed by the user and by the system will be
presented, also the state of the task in progress, the
state of the system, the representation of the objects
of interest etc.

5.3 Active Goals Hierarchy Bar

This small area of the interface (normally situated in
the upper region) is responsible for showing the
hierarchy of goals at all times, i.e. the hierarchy of
objectives that the user has followed from their
initial goal to the present point in time.

6 APPLICATION OF THE GDI TO
THE WEB

The traditional method that still prevails in the field
of Web design make it difficult to create usable user
interfaces for the applications. The fact that the logic
of the application is separate from the interface and
is connected by a network that does not guarantee a
certain communication speed or stability, such as the
Internet, means that interacting with a Web
application is normally a continuous sequence of
pages being updated.

Once the connection is established and
depending on the connection speed, the server will
eventually return the related content, which may
have a lot, a little or nothing to do with the content
actually on display. Here, to facilitate the process, a
series of cache mechanisms come into play. These
are established by the HTTP protocol and are
specified using server-client communication
headers. This method is an improvement on some
situations, especially when the page that is the result
of an update shares some elements with a previously
loaded page.

Nevertheless, without the capacity to make
changes in the application appearance as quickly as
is possible in the desktop applications, a browser and
the Internet cannot compete with these applications
in spite of being accessible from any location.

There are two technologies that will solve this
limitation, and which will allow the GDI to be used
in Web applications. Their acronyms are DOM

(Document Object Model) and AJAX (Asynchronous
JavaScript and XML). Each of these has an
important role to play.

6.1 DOM

The Document Objective Model (LePera, 2002) is a
way of structuring documents downloaded onto a
browser. An interesting feature is that this structure
has properties that can be consulted and changed and
methods to be invoked. In this way, everything that
is uploaded at any given time in a browser may be
changed. Elements may be displayed or hidden, the
colour or type of letter may be changed, and even
advanced animations may be performed without the
need to refresh the whole page in the server or with a
plug-in. Any value defined in a HTML document
may be modified. This includes attribute values and
label values. It is possible to go even one step
further, changing the labels of a HTML document,
reordering them, making them disappear, creating
new ones, or even making a completely new
document.

6.2 AJAX

Traditional communication, be it either by activating
links or filling out and sending forms is synchronous
(Fig.3). In other words, the browser blocks any
attempt at communication or any update of the
interface while it is awaiting the response to a
request being processed. Therefore, there is a
waiting period in which depending on the browser,
the screen may or may not remain blank. In any
case, once the server responds, the phenomena
known as updating or reloading the interface
occurs, including those elements already previously
loaded and which have not changed from one page
to the other.

AJAX (Garrett, 2005) breaks this barrier by
introducing asynchronous communication (Fig.3).
Using this API, the programmer can perform
asynchronous calls to the server without waiting for
the response. While this is being done, the user can
continue using the interface as normal (executing
steps or carrying out selections in the GDW of a
GDI interface, filling in data, unfolding lists, writing
information, etc) and even making new
asynchronous calls. When the response to the
browser is available, a callback type function
(similar to the Java listener style) will obtain the
information.

The callback function is defined by the
programmer who uses AJAX in the JavaScript
language. With this function, the programmer has
codes that are the result of a call to the server and

A GUIDED INTERFACE FOR WEB INTERACTION

75

these can be consulted in order to find out if the call
has been successful, and also to obtain access to the
results in either the text version or as a DOM
fragment.

 Here the two worlds of DOM and AJAX
coincide. Where there is only a response from the
server, nothing happens, the interface remains
unchanged. Callback function completed their
purpose and finishes when there is nothing to be
done with the result.

However, it is possible to perform modifications
on the DOM document based on what is returned by
the server. If the format of the data transmitted is
HTML, we may simply use the inner HTML
property of some element of the document to change
its content. The change will be effective
immediately. Interestingly, all the other elements
outside the element we change remain the same. We
have managed to modify a specific aspect of the
interface without needing to reload all the other
elements that have nothing to do with the operation
performed by the user.

These two technologies open the door to much
localized changes in the interface which improve the
user experience, and in particular, allow the GDI to
be applied to Web applications in spite of the large
number of modifications that this type of user
interface requires.

In any case, evidently, Web applications will
never be able to be as fast as those in the desktop
application, because although with AJAX only
essential data are transmitted (asynchronously), this
transmission is done using the Internet and is
therefore subject to variations in speed and even
power failures in the system.

Figure 3: The synchronous interaction pattern of a
traditional web application (top) compared with the
asynchronous pattern of an Ajax application (bottom).

7 CONCLUSIONS

Although the initial objective of GDI was not to
guide or lead the Web user (via objectives and
tasks), its use and application to the pages and Web
applications is as natural and effective that this
might appear to have been the intention. In fact, the
most frequent users of Web pages and many types of
applications are occasional users. The most common
type of Web interaction is precisely one without a
learning curve and the frequency of use of many
Web pages is relatively low. AJAX-DOM however
covers perfectly the interactive necessities required
to apply and use the GDI.

Furthermore, the maintenance of modified
NGOMSL specifications required for the GDI
specification (Carrillo, Falgueras, and Guevara,
2005), even allows dynamic building of interfaces
from models on Apache servers for example, or of
simple PHP interpreters of GDI language
specification grammar.

GDI could be considered the ideal dialogue or
interaction style to guide users through new and
unknown tasks, especially for typical Web users
who require quick results.

In relation to the representation in the Work
Window of a GDUI, using AJAX allows us to
directly update the content without having to act at
the normal Web level.

Most of the bureaucratic procedures that have
nowadays eliminated the use of paper, and can be
done via Web sites, can be easily performed via GDI
type interfaces. The user of this type of bureaucratic
and administrative task is, in most cases a perfect
occasional user, without semantic knowledge of the
steps to be followed in order to accomplish the
necessary steps in this typical use of the Web.

REFERENCES

Card, S., Moran, T., Newell, A. 1980. Computer text-
editing: An information processing analysis for a
routine cognitive skill. Cognitive Psychology, 12, 32-
74.

Card, S., Moran T., Newell A. 1983. The Psychology of
Human-Computer Interaction. Hillsdale, New Jersey:
Erlbaum.

Carrillo, A., Guevara, A., Gálvez, S. 2002. Goal Driven
Interaction. III congreso Internacional Interacción
Persona Ordenador, pp 68-75.

Carrillo, A., Falgueras, J., Guevara, A., 2005. A notation
for Goal Driven Interfaces specification. Raquel
Navarro-Prieto & Jesús Lores, Interacción 2004,
Springer, Dordrecht, The Netherlands.

ICEIS 2008 - International Conference on Enterprise Information Systems

76

Carrillo, A., Falgueras, J., Guevara, A., 2006. GDIT: Tool
for the design, specification and generation of Goal
Driven User Interfaces. ICEIS’06.

Dix, A., Finlay, J., Abowd, G., Beale, R. 2003. Human-
Computer Interaction. Second edition. Prentice hall.

Garrett, J.J. 2005. Ajax: A New Approach to Web Applications.
http://www.adaptivepath.com/ideas/essays/archives/00038
5.php

Hix, D., Hartson, H. 1993. Developing user interfaces:
ensuring usability through product & process. New
York, New York, United States of America. John
Wiley & Sons.

John, B.E., Kieras, D.E. 1996. Using GOMS for User
Interface Design and Analysis: Wich Technique?
ACM Transactions on Computer-Human Interaction,
Vol3, No.4, December 1996, pp 287-319.

John, B.E. & Kieras, D.E. 1994. The GOMS family of
analysis techniques: Tools for design and evaluation.
Carnegie Mellon University School of Computer
Science Technical Report No. CMU-CS-94-181. Also
appears as the Human-Computer Interaction Institute
Technical Report No. CMU-HCII-94-106.

John, B.E., Kieras, D.E. 1996. The GOMS family of user
interface analysis techniques: Comparison and
contrast. ACM Transactions on Computer-Human
Interaction, Vol3, No.4, December 1996, pp 320-351.

Kieras, D. 1997. A Guide to GOMS Model Usability.
Evaluation using NGOMSL. In M.Helander & T.
Landauer (Eds.), The handbook of human-computer
interaction. (Second Edition) Amsterdam: North-
Holland, pp 733-766.

LePera, S.A. 2002. Scripting For The 6.0 Browsers.
http://www.scottandrew.com/weblog/articles/dom_1

Lores, J. 2001. (Ed.): Human Computer Interaction. Libro
electrónico editado por AIPO. Versiones disponibles
en la red (http://griho.udl.es/ipo/) y en CD-ROM
(ISBN Versión CD-ROM 84-607-2255-4).

Newell, A., Simon, H. 1972. Human Problem Solving.
Prentice-Hall.

Nielsen, J. 1993. Usability engineering. San Diego,
California, United States of America. Academic Press.

Preece, J., Rogers, Y., Sharp, H., Benyon, D., Holland, S.,
Carey, T. 1994. Human computer interaction. Harlow,
Essex, England. Addison Wesley Longman Limited.

Shneiderman, B. 1980. Software Psychology: Human
Factors in Computer and Information Systems. Little,
Brown, Boston, MA.

Shneiderman, B. 2005. Designing the User Interface:
Strategies for effective Human-Computer Interaction.
Four edition. Addison-Wesley Publishers.

Ziegler, J. 1996. Interactive techniques. ACM Computing
Surveys, Vol. 28, No. 1, March.

A GUIDED INTERFACE FOR WEB INTERACTION

77

