
FROM PROCESS TO SOFTWARE SYSTEMS’ SERVICES
Using a Layered Model to Connect Technical and Process-related Views

Christian Prpitsch
Institute for Computer Science and Business Information Systems

University of Duisburg–Essen, Germany

Keywords: Abstraction, layer, process support, workflow, reusable subprocess, collaboration, e-learning.

Abstract: A layered model is a solution to the problem of two disjunct points of view on the same problem. One group
has a technical background but does not know much processes. The other group’s members have a process
perspective. This contribution introduces a meta–model consisting of three layers. The outer ones represent
the disjunct points of view. The inner one contains elements of both other layers and combines them. It also
contains a system–independent scripting language to automatically configure software systems.

1 INTRODUCTION

The administration of collaborative courses in a learn-
ing environment is a collection of complex and re-
peated tasks. A collaborative course is in this contri-
bution a course where learners build groups and do
some exercises. Administration is done by the lec-
turer and technican, called acotrs, in terms of watch-
ing and moderating the learning process and taking
care of software systems. We answer the question
what language or meta–model should be used for sup-
porting both lecturer and technicans.

The example scenario is derived from e–learning
but the presented model can be transfered to many
other use cases. Therefore one has to interchange ac-
tors and the workflow itself. We evaluated the model
by using it in a scenario of cooperative writing. It is
well known to most scientists

Users not being familiar with complex informa-
tion systems often have difficulties to make decisions
about the usage of software. They usually do not have
enough competencies and experience in the evalua-
tion of systems requirements. System administrators
in general belong to a group of staff not being familiar
with complex workflows in different business cases.
So they need a model to exchange requirements and
opportunities.

This contribution starts with a short overview
about existing meta–models on both sides. Then
we outline a scenario of a collaborative course in e–
learning. With this scenario we try to model both the
perspective of a workflow as seen by the lecturer and

the perspective of software systems and services as
seen by the technicans with the shown approaches.
This is either not possible or does not meet the needs.
After that we present our approach of connecting both
perspectives by defining an additional layer of ab-
straction. In the last section we shortly describe the
improvements introduced by our approach.

2 RELATED WORK

This section summarises some selected approaches of
modeling the perspectives business process and soft-
ware systems as described in other research projects
on this matter. We selected them by relevance on their
specific area. A business process is related to a busi-
ness case with defined start and termination. A work-
flow is defined as the technical support of a business
process. The workflow contains subprocesses doing
small subtasks (Mueller, 2005, 8). In this contribu-
tion we use the term workflow to express the model
of a complete business case and subprocess for sub-
tasks. A workflow is independent of concrete soft-
ware systems but uses services for describing them.
It can be used in different environments by assigning
different software systems. Subprocesses are treated
as patterns and can be reused in many workflows.

When we compared many different workflows in
the course of the study there were several common
patterns concerning parts of the process. Some of
these patterns belong to cooperative writing as de-

298
Prpitsch C. (2008).
FROM PROCESS TO SOFTWARE SYSTEMS’ SERVICES - Using a Layered Model to Connect Technical and Process-related Views.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - ISAS, pages 298-304
DOI: 10.5220/0001703202980304
Copyright c© SciTePress



scribed by (Lowry et al., 2004). They show several
patterns how collaborative work can take place in the
task of writing a text. Controlling of writing tasks is
explained in (Posner and Baecker, 1992).

The first approach is the Unified Activity Manage-
ment (UAM) by (Harrison et al., 2005) and (Cozzi
et al., 2006). It is based on an artefact named ac-
tivity which brings semantics and structure to a given
problem and consists of metadata and assignments.
The activity is a layer of abstraction in the workflow.
It is visible and editable by every user. So the user
is aware of the activity and the usage of an activity
management system. They include references on re-
sources and users / people. Every user inerts a role
in the context of the activity. The approach UAM is
designed to support a number of users while perform-
ing cooperative tasks. UAM is used as a tool to co-
ordinate and control a business process. There is an
evaluation of UAM in (Cozzi et al., 2006, 708) with
a case study of accomodation for new internees at a
scientific institution.

The standard for orchestration of web services
Web Service Business Process Execution Language
(BPEL) by OASIS (OASIS, 2007) defines a language
to orchestrate existing web services with connection
elements derived from process definition. XML is
used as meta–language. BPEL does not specify any
graphical representation. The Business Process Mod-
elling Notation (BPMN) (Object Management Group,
2007) by OMG is one language to solve this problem.
The metamodel consists of tasks, (sub–)processes and
control sequences arranged in so called swimlanes. In
BPEL there are abstract and concrete workflows spec-
ified. A concrete workflow is ready to be executed by
a workflow processing engine. Any abstract workflow
uses the same syntax and semantics as a concrete one
but there is some information missing so that it can
not be executed. A good comparison is the object–
oriented pattern of abstract and concrete classes.

There is an extension to BPEL called BPEL for
People (BPEL4People) (Agrawal et al., 2007) by an
industrial consortium. It adds human beings into the
BPEL model. Users can be grouped to roles. They
carry out activities. This extension is ignored because
BPEL needs a central workflow engine and therefore
does not meet the requirements.

Abstract and concrete workflows are also men-
tioned by (Deelman et al., 2003). The goal of that
concept is to create workflows which are defined in
terms of services instead of systems. The term “work-
flow” means a complex process of performing data
intensive operations on grid environments. An ab-
stract workflow is not runnable within a workflow en-
gine. It has to be transfered into a concrete one by

replacing the services with concrete systems provid-
ing those services.

Modelling of business processes is done by the
usage of Event–Controlled Process Chains (EPCs)
as first mentioned by (Keller et al., 1992). An EPC
consists of alternating events and business–functions
connected by control sequences. They are used in
an extended Version for describing business cases for
enterprise ressource planning systems. A business–
function is carried out by an anctor which can be a
human being or any technical system. There is an
approach to use EPCs as graphical representation of
BPEL by (Mendling and Ziemann, 2005).

3 SCENARIO

This section shows a shortened scenario from the con-
text of e–learning. It is used to get requirements on a
meta–model for modelling this kind of scenarios. The
author has some years of experience with the scenario
in virtual study course. The scenario is a course about
basic principles in programming. The students get a
simplified real–world problem and have to create a
runnable program. They are requested to build small
groups of 3 to 5 students having mixed qualifications.

The actors in the scenario are a lecturer, a tech-
nican per software system, and many students. On
the technical site there are one Learning Manage-
ment System (LMS) and one programming environ-
ment (PE). All the learning content is contained in the
LMS. While creating the course for the first time, the
lecturer made a workflow of how collaboration will
take place, which people are involved, and where to
get the technical resources. This workflow is then
written on a piece of paper. Every term it is executed
by hand. The workflow is illustrated in figure 1.

Students have to form groups and tell the lecturer
by e–mail about that to manually create correspond-
ing usergroups in the LMS. The disadvantage of this
subtask is the media break while using e–mail (Whit-
taker and Sidner, 1996; Fisher et al., 2006). Every
group gets their own workspace in the LMS and PE
where only group members and lecturers are allowed
to step in. In the PE the lecturer has to order the cre-
ation of the workspace including all necessary soft-
ware by the administrator. Thereafter the PE is ready
to be accessed by the students. For equality reasons
all workspaces have to be identically prepared. After
the students have finished their exercise they submit
the solution by mail. The lecturer grades the submis-
sions and the scenario is terminated.

The lecturer had to decide what systems to use for
the course. There are requirements hidden in the non–

FROM PROCESS TO SOFTWARE SYSTEMS' SERVICE - Using a Layered Model to Connect Technical and
Process-related Views

299



students form 
groups

create 
user-groups

create 
environment

create 
workspace

do 
exercises

submit 
solution

per group

technican

students

students

students

technican

lecturer

Figure 1: Process with actors while doing the course.

formal workflow. The workflow itself is not able to
be executed automatically. The abstracted workflow
of the course “Introduction into Programming” shares
process patterns (Lowry et al., 2004) with any course
where students have to write a text in groups. In a
more complex scenario there are additional systems
to be integrated in the workflow (e.g. version control).

This is the simplest form of the workflow. To re-
duce manual interaction and make it more realistic,
we add some more process control. It is derived from
IMS Learning Design (LD) (IMS Global Learning
Consortium, 2003). There are special dates, when ex-
ercises have to be completed. After these dates there
are sample solutions put into a common workspace
to be viewed by everyone. The same pattern is to be
used if students are requested to bring their work to a
defined state until a set date. This is a task in the PE,
where the LD–player is not available. In the scenario
of collaborative writing there are dates to synchronize
the work, as shown by (Lowry et al., 2004, 74ff).

We discovered in this scenario some weeknesses
concerning process management. First, the workflow
is not persisted in a formal way. Therefore, it is im-
possible to automatically execute it. It is not effi-
cient to create it manually for supporting every sin-
gle course. The repeated tasks to support every group
is simple to execute but creates a lot of effort in sum
of all groups. A central controlling instance is to be
avoided because autonomy is left at the systems. The
following requirements are needed to make a solu-

tion:

• workflow is in a formal notation

• minimal effort to implement into existing soft-
ware

• no central controlling instance

• repeatable tasks must be supported

• reusable subprocesses to be used while modeling

• flexible adding of reusable artefacts

• support of time–based actions

4 EVALUATION OF EXISTING
APPROACHES

In this section we will discuss the existing ap-
proaches. The evaluation is done by comparing the
meta–models from section 2.

All presented standards and approaches do not
provide a solution for modelling the scenario from
both technical and process–related perspective. The
connection between a technical model consisting of
software systems and their provided services and a
process–related one with actors and tasks is not avail-
able yet. In EPC there is an ability to map a process
on a BPEL–model as mentioned by (Mendling and
Ziemann, 2005). As mentioned in the scenario we
must not have one central application for controling
the workflow. If we would use BPEL we had to use a
so called workflow engine (OASIS, 2007). Therefore
these technologies to connect process and technical
perspective are not usable in our context because of
BPEL.

Both (Deelman et al., 2003) and BPEL (OASIS,
2007) use a term “abstract workflow” but in a differ-
ent manner so both are not compatible. We define an
abstract workflow the same as (Deelman et al., 2003).
The definition from BPEL is used for a partly con-
crete workflow.

The UAM approach addresses mainly endusers.
They have to work on the artefacts and therefore sys-
tems require changes which means additional effort
while implementing it. In the scenario from section 3
is no need to present artefacts to a user. In our experi-
ence there have often been difficulties while present-
ing too much new technology to a user. Therefore the
solution’s artefacts have to be invisible to some roles
like students.

Our additional requirement of time–based actions
cannot be modeled from both perspectives. The tech-
nical models use timers with very short duration (sec-
onds to hours) but usually do not give access to long–

ICEIS 2008 - International Conference on Enterprise Information Systems

300



run dates like three months or so. The process–
oriented ones provide timers “until a date” or “during
a period”. Both are incompatible.

5 SOLUTION BY ADDING
ABSTRACTION

Our solution sections the problem from section 3 into
layers as presented in figure 2. The idea is to use
two layers, each of them to be used by one group.
Groups are divided by tasks and competencies. Then
we introduce a third layer between them to be used
as a connection. The upper layer is used by a group
with competencies in formal description of business
processes. In the above scenario this is the lecturer.
The lowest layer is to be used by technicans with
high competencies in administrating software sys-
tems. They are also able to describe services provided
by their systems. We use the middle layer to create a
connection between both layers. Figure 3 shows the
process by using our model. It starts with the initial
creation and terminates when the course is ready to be
used by a class. The next paragraphs will explain the
three layers and their connections.

system class

software 
system

workflow

moodle progr. 
env.

LMS library

library 
system

Figure 2: Layers of abstraction with some items.

The layer of software systems represents any sys-
tems or applications provided for use in the later
mentioned workflow. Usually a system is imple-
mented as a web accessible application but we also
assume standalone applications and systems without
user–interface belonging to this. Any application has
to provide services. The definition of web services
(SOAP by W3C) explains a service as a machine–to–
machine service without any direct user–interaction.
To have a complete description of all provided ser-

vices we have to add the definition of user–interfaces
as well. While web services are to be defined by
WSDL the users’ services are to be defined by a more
task–related notation in normal language. To get the
available services of one special system it has to im-
plement a service called explain which provides all
needed metadata about the system.

The goal of defining web services by the Web
Services Definition Language (WSDL) is to enable
inter–system–operability. In order to achieve the in-
teroperability of system classes one has to define a
set of services to be provided by every system of a
class. There are also projects dealing with this: The
MISTEL project (Bopp et al., 2006), the JAVA Con-
tent Repository API Standard (Nuescheler and Pie-
gaze, 2006) and the IMS Resource List Interoperabil-
ity (IMS Global Learning Consortium, 2004). These
projects describe some systems, abstract from their
special implementation by the definition of services
and interchangable formats.

We define a system class by its provided ser-
vices. Every class has to implement a service set
containing mandatory and optional services. Differ-
ent system classes do not need to have disjunct ser-
vice sets. There are some groups of services as pre-
defined classes, e. g. LMS, PE and Document repos-
itory. Their users’ services are well known, so we do
not mention them again. The metadata provided by
the explain–service refers to system classes and tells
about optional services. One software system can be-
long to several system classes if it fulfills their service
sets. System classes have to be defined from the per-
spective of a user and not of a technican. Therefore
the grouping of services is done along with the defini-
tion of tasks one could do with the system class (e. g.
authoring) or that could be done by the system class
itself (e. g. versioning).

The most abstract layer is the workflow consisting
of subtasks and control sequences (e.g., conditions,
sequences, break points). Substasks consist of ser-
vices provided by system classes. So it is matched on
one or more system classes. The creator of a work-
flow is in general a user not being familiar with tech-
nical details. It is sufficient to describe a real–world
workflow in terms of services and control sequences.
They need competencies in describing a subtask in
terms of services and control sequences. They can
use predefined subtasks as well. Their task is to make
use of their competencies and experiences in creating
and rating workflows in their field of practice. Then a
technican can decide what member of a system class
to use while performing this workflow. The shortened
process from creation of any process until its usage is
shown in figure 3.

FROM PROCESS TO SOFTWARE SYSTEMS' SERVICE - Using a Layered Model to Connect Technical and
Process-related Views

301



There is no “workflow engine” (see BPEL) or any-
thing alike necessary to execute the workflows. They
are created, transformed and distributed by a stand–
alone or shared application. Then the workflow is ex-
ecuted peripheral by every system. It is intended by
our approach to step in systems as less as possible to
keep the implementation simple. Any permissions are
left under control of the system itself. Therefore we
decided not to use a central workflow engine. Now we
will explain how the workflow is put into the systems.

The disadvantage of implementing a special en-
vironment for every single usergroup is addressed by
the automation of workflow–implementation. There-
fore the formal description of the workflow and deci-
sions what systems to use are needed. A formal and
reusable definition of how to set up the requested en-
vironment is needed. Then an engine is able to create
the complete environment or even parts of it. In the
scenario from section 2 we use the ability for creating
parts of the environment. The usergroups are known
to the workflow–engine so it can automatically create
the environment.

The technology to be used for this scripting is at
the time not finally defined. We actually use a for-
mat similar to XSLT to define the workflow indepen-
dent from systems. This file is called workflow file.
It contains also the configuration parts needed to cre-
ate environments (see scenario). This configuration is
very simple because it is a goal to be independent of
software systems and just depend on system classes.
One of the commands is create workspace along with
some arguments. The second part is an XML–file
containing actual data like usergroups and systems’
metadata we named data file.

The technical process of instantiating a workflow
is as follows: The workflow file “is applied” on the
data file. The result is a script composed of the work-
flow with actual configuration details inside, as e. g.
systems and usergroups. There are some parts named
config in this file. They are pushed to the systems
named inside. A system receives this command–
script and either executes it directly or transforms it
before. The system can apply an XSLT–file on it and
gets a system–specific script because the script is still
in XML. The format of this specific script has no im-
pact on the other systems involved in the workflow.

Changes can occur while operating software sys-
tems. Our model only needs few maintenance as ex-
pleined in the following. Adding a system requires
to classify it into a system class. Then the system is
ready to be used. When deleting a system it has to be
deleted in all system classes, too. Replacement of a
system requires the update of its name and metadata
in all system classes. Update of a system can require

the same procedure. When a system disappears all its
occurences in workflows can be found automatically.

defines
process

names
services

maps both

writes specific 
items (groups,..)

creates scripts 
per system

starts course

technican

technican

lecturer

lecturer

defines 
software systems

defines 
system classes

lecturer

technican

Figure 3: Defining a process in our model.

The communication between systems is done via
web services SOAP. Such an architecture is called a
service–oriented architecture as defined by (Conrad
et al., 2006). The decision is based on platform inde-
pendency of this kind of middleware. The second rea-
son is the usage of HTTP as a transport protocol. Both
the user–interface (in most cases a web GUI) and the
machine interaction can be carried by the same pro-
tocol. As mentioned in the former paragraph we use
XML to exchange information so it is consequent to
transport them by a technology based on XML itself.
Some services are globally defined. The most im-
portant service is the explain–service, as mentioned
above. Each two systems have to agree on the exact
specification of the content they interchange. In case
of documents this would be the metadata set. There is
a suitable solution of systems communication defined
by the project MISTEL in (Bopp et al., 2006).

6 DISCUSSION OF THE
APPROACH

The transformation is under supervision of the user
who has to make decisions. None the less users are

ICEIS 2008 - International Conference on Enterprise Information Systems

302



provided with proposals of suitable options. The dif-
ferent concept of abstract workflows from BPEL is
used by our approach to provide the ability for partly
creation of an executable workflow. We use the same
definition of abstract as (Deelman et al., 2003). A
newly created workflow is abstract by definition. It is
transformed into a runnable workflow by users with
assistance of the workflow management application.
In this task we use the definition from BPEL to store
partly defined workflows.

Our approach is focused on supporting the role
lecturer. Technicans also use the approach to support
lecturers by caring about their systems. In our expe-
rience it is favourably to present details only to staff
really needing them, especially technical facts. In the
scenario from section 2 the artefacts are transparent
to users of the role student. The automatic configu-
ration of many instances of the same software system
is daily work to many system administrators. They
often use self–created scripts or management–tools to
improve their work. With usage of our approach those
scripts are defined in a system–independent language.

The initial effort to create an environment imple-
menting our approach depends on the systems which
have to be integrated. Some licenses of commercial
systems prohibit the necessary extensions so they can
not be used. One working solution is the creation
of proxy systems transforming SOAP calls into the
systems internal format. A web service stack based
on HTTP is available to nearly all programming lan-
guages, especially the widely used JAVA, PHP and
Microsoft .NET.

We improved the scenario from section 3 by cre-
ating a model in terms of the abstraction model from
section 5. The first improvement takes place before
the course starts. The lecturer creates a model of
the workflow and passes it to technicans in order to
check system classes and available software systems
for existance. This model can be reused partly or in
whole by other lecturers who use a similar workflow.
They just have to change few artefacts or control se-
quences. Configurations for systems are derived from
the model. They are passed to the systems and a
course is ready to start.

After the first step of the course is completed there
are usergroups. The lecturer receives them from the
LMS in an XML format. This file is merged with
the model to get specific configuration–commands.
These commands are passed to the intended systems
via their configuration web service. This is the main
improvement if the workflow would be used with only
one course. Before a decision is made about using
our approach or not it has to be calculated if the ef-
fort to create the scenario is less than the saved time

while creating environments for every single user-
group. The step of submission can be done automati-
cally by setting a timer. When it expires there is no
more work on the exercise possible, all results are
packaged and sent to the lecturer.

The effort on doing repeated tasks decreased. Stu-
dents did not notice the improvement but had a profit
by faster creation of their groups with equal environ-
ments. As mentioned at the beginning of section 2
it is possible to transfer this scenario on collaborative
writing. Patterns identified by (Lowry et al., 2004)
are to be predefined and can be reused in any future
workflow.

7 CONCLUSIONS

This contribution shows a solution as model a busi-
ness process on a high level and attach technical de-
tails expressed as system classes. We defined an inter-
face between the process–oriented meta–model used
by people creating or describing business processes
and the technical description of software systems.
While decomposing complex business processes into
smaller subprocesses we create reusable artefacts. As
supporting several processes we get many predefined
artefacts so the chance on having something nearly
ready to use rises.

Future research will be looking for even more ab-
straction from technical details. The goal is to allow
ad hoc networks (or grids) not being installed in just
the one organisation but using services and content
from many systems. In the future the question should
be what to combine to reach a goal and not what to
create. Within the context of service–oriented archi-
tecture and service–component–oriented architecture
we think we can add some benefit.

ACKNOWLEDGEMENTS

This work is funded by the Deutsche Forschungs-
gemeinschaft (DFG), section Scientific Libraries,
see www.dfg.de and the MISTEL project’s website
www.systemkonvergenz.de.

REFERENCES

Agrawal, A., Amend, M., Das, M., Ford, M., Keller,
C., Kloppmann, M., Koenig, D., Leymann, F.,
Mueller, R., Pfau, G., Ploesser, K., Rangaswamy,
R., Rickayzen, A., Rowley, M., Schmidt, P., Trick-
ovic, I., Yiu, A., and Zeller, M. (2007). Ws–bpel

FROM PROCESS TO SOFTWARE SYSTEMS' SERVICE - Using a Layered Model to Connect Technical and
Process-related Views

303



extension for people. Specification Vers. 1.0, online:
http://download.boulder.ibm.com/ibmdl/
pub/software/dw/specs/ws-bpel4people/
BPEL4People_v1.pdf.

Bopp, T., Hampel, T., Hinn, R., Pawlowski, J., and Prpitsch,
C. (2006). Mistel – an approach to access multiple
resources. In Manolopoulos, Y., Filipe, J., Constan-
topoulos, P., and Cordeiro, J., editors, Proceedings of
the 8th International Conference on Enterprise Infor-
mation Systems – ICEIS 2006, pages 319 – 322, Pa-
phos / CY. INSTICC, INSTICC.

Conrad, S., Hasselbring, W., Koschel, A., and Tritsch, R.
(2006). Enterprise Application Integration. Spektrum,
Heidelberg / DE.

Cozzi, A., Farrell, S., Lau, T., Smith, B. A., Drews, C.,
Lin, J., Stachel, B., and Moran, T. P. (2006). Activity
management as a web service. IBM Systems Journal,
45(4):695 – 712.

Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G.,
Vahi, K., Blackburn, K., Lazzarini, A., Arbree, A.,
Cavanaugh, R., and Koranda, S. (2003). Mapping
abstract complex workflows onto grid environments.
Journal of Grid Computing, 1(1):25 – 39.

Fisher, D., Brush, A. J., Gleave, E., and Smith, M. A.
(2006). Revisiting whittaker & sidner’s ”email over-
load” ten years later. In CSCW ’06: Proceedings of the
2006 20th anniversary conference on Computer sup-
ported cooperative work, pages 309 – 312, New York
/ USA. ACM Press.

Harrison, B. L., Cozzi, A., and Moran, T. P. (2005). Roles
and relationships for unified activity management.
In Proceedings of the 2005 international ACM SIG-
GROUP conference on Supporting group work, pages
236 – 245.

IMS Global Learning Consortium (2003). Ims learn-
ing design information model. Spezifikation, IMS
Global Learning Consortium Inc., online: http://
www.imsglobal.org/learningdesign. Ver. 1.0.

IMS Global Learning Consortium (2004). Ims resource
list interoperability information model. Spezifika-
tion, IMS Global Learning Consortium Inc., online:
www.imsglobal.org/rli. Ver. 1.0.

Keller, G., Nuettgens, M., and Scheer, A.-W. (1992).
Semantische prozessmodellierung auf der grundlage
ereignisgesteuerter prozessketten. Veroeffentlichun-
gen des Instituts fuer Wirtschaftsinformatik, Univer-
sity Saarbruecken / DE, 89:1 – 31.

Lowry, P. B., Curtis, A., and Lowry, M. R. (2004). Building
a taxonomy and nomenclature of collaborative writ-
ing to improve interdisciplinary research and practice.
Journal of Business Communication, 41:66 – 99.

Mendling, J. and Ziemann, J. (2005). Transformation of
bpel processes to epcs. In Nuettgens, M. and Rump,
F., editors, Proceedings of EPK 2005, pages 41 – 53,
Hamburg / DE. CEUR Workshop Proceedings Vol.
167.

Mueller, J. (2005). Workflow–based Integration. Springer,
Berlin / DE.

Nuescheler, D. and Piegaze, P. (2006). Content repository
api for java technology specification - java specifica-
tion request 170. Technical report, JSR 170 Group.

OASIS (2007). Web services business process ex-
ecution language. Standard 2.0, OASIS, on-
line: http://docs.oasis-open.org/wsbpel/2.
0/OS/wsbpel-v2.0-OS.pdf.

Object Management Group (2007). Business process
modeling notation specification. Specification v
1.2 draft, Object Management Group (OMG), on-
line: http://www.omg.org/cgi-bin/apps/doc?
dtc/07-06-03.pdf.

Posner, I. R. and Baecker, R. M. (1992). How people
write together. In Proceedings of the 25th Hawaii
International Conference on System Sciences, vol-
ume 4, pages 127 – 138. online: http://www.kmdi.
toronto.edu/rmb/papers/D26.pdf.

Whittaker, S. and Sidner, C. (1996). Email overload — ex-
ploring personal information management of email. In
Proceedings of the ACM Conference on Human Fac-
tors in Computer Systems (CHI), pages 276 – 283.
ACM, ACM Press.

ICEIS 2008 - International Conference on Enterprise Information Systems

304


